Electronic Journal of Mathematical Analysis and Applications, Vol. 3(2) July 2015, pp. 283-288. ISSN: 2090-729(online) http://fcag-egypt.com/Journals/EJMAA/

INCLUSION RELATIONS FOR CERTAIN CLASS OF MULTIVALENT MEROMORPHIC FUNCTIONS

JYOTI AGGARWAL, RACHANA MATHUR

ABSTRACT. The purpose of the present paper is to introduce new subclasses of meromorphic multivalent functions defined by using a linear operator and obtain some inclusion relationship.

1. INTRODUCTION

Let Σ_p denote the class of functions of the form

$$f(z) = \frac{1}{z^p} + \sum_{n=1}^{\infty} a_n z^{n-p} \qquad (m, p \in \mathbf{N}),$$
(1.1)

which are analytic and p-valent in the punctured unit disk

$$D = \{ z \in C : 0 < |z| < 1 \} = E \setminus \{ 0 \},\$$

where E is the open unit disk.

Let $P_k(\rho)$ be the class of analytic functions p(z) defined in unit disc $E = D \cup \{0\}$, satisfying the properties p(0) = 1 and

$$\int_{0}^{2\pi} \left| \frac{\Re p(z) - \rho}{1 - \rho} \right| d\theta \le k\pi, \tag{1.2}$$

where $z = re^{i\theta}$, $k \ge 2$ and $0 \le \rho < 1$. This class has been introduced in [3]. For $\rho = 0$, we obtain the class P_k defined and studied in [4], and for $\rho = 0$, k = 2, we get the well - known class P of functions with positive real part. The case k = 2 gives the class $P(\rho)$ of functions with positive real part greater then ρ .

From (1.2) we can easily deduce that $p(z) \in P_k(\rho)$ if, and only if, there exist $p_1, p_2 \in P(\rho)$ such that, for E,

$$p(z) = \left(\frac{k}{4} + \frac{1}{2}\right) p_1(z) - \left(\frac{k}{4} - \frac{1}{2}\right) p_2(z)$$
(1.3)

²⁰¹⁰ Mathematics Subject Classification. 30C45.

Key words and phrases. Generalized hypergeometric function; Meromorphic multivalent functions; Convex functions; Hadamard product(or convolution), Functions with positive real part, Integral operator.

Submitted Aug. 19, 2014.

Let f(z) is given by (1.1) and

$$g(z) = \frac{1}{z^p} + \sum_{n=1}^{\infty} b_n z^{n-p}.$$
 (1.4)

Then the Hadamard product (or convolution) is defined by

$$(f * g)(z) = \frac{1}{z^p} + \sum_{n=m}^{\infty} a_n b_n z^{n-p} = (g * f)(z).$$
(1.5)

In the recent paper, Noor [3] (see also [8]) introduced the following family of integral operators defined on the meromorphic functions of the class Σ_p .

Let ${}_{q}\mathcal{F}_{s}(a_{1},...,a_{q};b_{1},...,b_{s};z)$ be a function given by

$${}_{q}\mathcal{F}_{s}(a_{1},...,a_{q};b_{1},...,b_{s};z) = \frac{1}{z^{p}} {}_{q}F_{s}(a_{1},...,a_{q};b_{1},...,b_{s};z)$$
(1.6)

 $\begin{array}{l} (q \leq s+1, \; q, s \in \mathbf{N}_0 = \mathbf{N} \cup \{0\} \, , \; z \in D, \; a_i, b_j \in C \setminus Z_0^-; \; Z_0^- = \{0, -1, \ldots\} \, , \\ i = 1, \ldots, q \; and \; j = 1, \ldots, s) \end{array}$

where $_{q}F_{s}(z)$ is the well - known generalized hypergeometric function [7].

Corresponding to ${}_{q}\mathcal{F}_{s}(a_{1},...,a_{q};b_{1},...,b_{s};z)$ defined by (1.6), we introduce a function $\mathcal{F}^{(-1)}(a_{1},...,a_{-};b_{1},...,b_{-};z)$ by

$${}_{q}\mathcal{F}_{s}(a_{1},...,a_{q};b_{1},...,b_{s};z) * {}_{q}\mathcal{F}_{s}^{(-1)}(a_{1},...,a_{q};b_{1},...,b_{s};z) = \frac{1}{z^{p}(1-z)^{\lambda+p}} \quad (\lambda > -p),$$
(1.7)

Therefore the function $_q \mathcal{F}_s^{(-1)}(a_1,...,a_q;b_1,...,b_s;z)$ has the following form

$${}_{q}\mathcal{F}_{s}^{(-1)}(a_{1},...,a_{q};b_{1},...,b_{s};z) = \sum_{n=0}^{\infty} \frac{(\lambda+p)_{n}(b_{1})_{n}...(b_{s})_{n}}{(a_{1})_{n}...(a_{q})_{n}} z^{n-p}.$$

$$= \frac{1}{z^{p}} + \sum_{n=1}^{\infty} \frac{(\lambda+p)_{n}(b_{1})_{n}...(b_{s})_{n}}{(a_{1})_{n}...(a_{q})_{n}} z^{n-p}.$$
(1.8)

We now define the linear operator

$${}_{q}I^{\lambda,p}_{s}(a_{i};b_{j}):\Sigma_{p}\to\Sigma_{p}.$$

by

$$\left({}_{q}I_{s}^{\lambda,p}(a_{i};b_{j})f \right)(z) = \left({}_{q}I_{s}^{\lambda,p}(a_{1},...,a_{q};b_{1},...,b_{s})f \right)(z) = \left({}_{q}\mathcal{F}_{s}^{(-1)}(a_{1},...,a_{q};b_{1},...,b_{s};z)*f \right)(z)$$

$$(1.9)$$

$$(q \le s+1, \ q, s \in \mathbf{N}_{0} = \mathbf{N} \cup \{0\}, \ z \in D, \ a_{i}, b_{j} \in C \setminus Z_{0}^{-}; \ Z_{0}^{-} = \{0,-1,...\},$$

$$i = 1,...,s$$

i = 1, ..., q and j = 1, ..., s) Therefore the function ${}_q\mathcal{F}_s^{(-1)}(a_1, ..., a_q; b_1, ..., b_s; z)$ has the following form

$${}_{q}\mathcal{F}_{s}^{(-1)}(a_{1},...,a_{q};b_{1},...,b_{s};z) = \sum_{n=0}^{\infty} \frac{(\lambda+p)_{n}(b_{1})_{n} \dots (b_{s})_{n}}{(a_{1})_{n} \dots (a_{q})_{n}} z^{n-p}.$$
$$= \frac{1}{z^{p}} + \sum_{n=1}^{\infty} \frac{(\lambda+p)_{n}(b_{1})_{n} \dots (b_{s})_{n}}{(a_{1})_{n} \dots (a_{q})_{n}} z^{n-p}.$$
(1.10)

284

Thus from (1.9), we have

$$\left({}_{q}I_{s}^{\lambda,p}(a_{i};b_{j})f\right)(z) = \frac{1}{z^{p}} + \sum_{n=1}^{\infty} \frac{(\lambda+p)_{n}(b_{1})_{n}\dots(b_{s})_{n}}{(a_{1})_{n}\dots(a_{q})_{n}} a_{n}z^{n-p}.$$
(1.11)

For convenience, we use the notation

$$\left({}_{q}I_{s}^{\lambda,p}(a_{i}+m;b_{j}+n)f \right)(z) = \frac{1}{z^{p}} + \sum_{n=1}^{\infty} \frac{(\lambda+p)_{n}(b_{1})_{n} \dots (b_{j}+n)_{n} \dots (b_{s})_{n}}{(a_{1})_{n} \dots (a_{i}+m)_{n} \dots (a_{q})_{n}} a_{n}z^{n-p}.$$

$$(i = 1, \dots, q \text{ and } j = 1, \dots, s)$$

Obviously the operators studied recently by Noor [3] and Yuan et al. [9] are special cases of ${}_qI_s^{\lambda,p}$ - operator defined by (1.11).

It can easily be verified that

$$z[(_{q}I_{s}^{\lambda,p}(a_{i}+1;b_{j})f)(z)]' = a_{i} (_{q}I_{s}^{\lambda,p}(a_{i};b_{j})f)(z) - (a_{i}+p) (_{q}I_{s}^{\lambda,p}(a_{i}+1;b_{j})f)(z) + (1.12)$$

and

$$z[\left({}_{q}I_{s}^{\lambda,p}(a_{i};b_{j})f\right)(z)]' = (\lambda+p) \left({}_{q}I_{s}^{\lambda+1,p}(a_{i};b_{j})f\right)(z) - (\lambda+2p) \left({}_{q}I_{s}^{\lambda,p}(a_{i};b_{j})f\right)(z) - (\lambda+2p) \left({}_{q}I_{s}^{\lambda,p}(a_{$$

Definition 1.1. Let $f \in \Sigma_p$. Then $f \in {}_q \mathcal{T}_s^{\lambda,p,k}(\rho,\beta,a_i,b_j)$ if and only if

$$\left[(1-\beta)z^{p}({}_{q}I^{\lambda,p}_{s}(a_{i};b_{j})f)(z) + \beta z^{p}({}_{q}I^{\lambda+1,p}_{s}(a_{i};b_{j})f)(z) \right] \in P_{k}(\rho), \ z \in E,$$

where $\beta > 0$, $k \ge 2$, $0 \le \rho < 1$, $\lambda > -p$, $p \in N$ and conditions given with (1.6) hold.

Definition 1.2. Let $f \in \Sigma_p$. Then $f \in {}_q \Sigma S_s^{\lambda,p,k}(\rho,\beta,a_i,b_j)$ if and only if

$$\left[\beta z^{p} ({}_{q}I^{\lambda,p}_{s}(a_{i};b_{j})f)(z) + (1-\beta)z^{p} ({}_{q}I^{\lambda,p}_{s}(a_{i}+1;b_{j})f)(z)\right] \in P_{k}(\rho), \ z \in E,$$

where $\beta > 0, \ k \ge 2, \ 0 \le \rho < 1, \ \lambda > -p, \ p \in N$ and conditions given with (1.6) are satisfied.

Lemma 1.1. (see [5]). If p(z) is analytic in E with p(0) = 1 and α is a complex number satisfying $Re(\alpha) \ge 0$ ($\alpha \ne 0$), then

$$Re[p(z) + \alpha z p'(z)] > \gamma \quad (0 \le \gamma < 1)$$

implies

$$Re[p(z)] > \gamma + (1 - \gamma)(2\sigma - 1).$$

where σ is given by

$$\sigma = \sigma_{Re\alpha} = \int_0^1 \left(1 + t^{Re(\alpha)} \right)^{-1} dt.$$

Lemma 1.2. (see [6]). Let c > 0, $\lambda > 0$, $\rho < 1$ and $p(z) = 1 + b_1 z + b_2 z^2 + ...$ be analytic in E. let $Re[p(z) + \lambda czp'(z)] > \rho$ in E, then

$$Re[p(z) + czp'(z)] \ge 2\rho - 1 + \left(\frac{1-\rho}{\lambda}\right) + 2(1-\rho)\left(1-\frac{1}{\lambda}\right)\frac{1}{c\lambda}\int_0^1 \frac{u^{\frac{1}{c\lambda}-1}}{1+u}du.$$

The result is sharp.

2. MAIN RESULTS

Theorem 1. Let $\beta > 0$, $\lambda > -p$, $0 \le \rho < 1$, $p \in \mathbb{N}$ and let $f \in {}_{q}\mathcal{T}_{s}^{\lambda,p,k}(\rho,\beta,a_{i},b_{j})$. Then $z^{p}({}_{q}I_{s}^{\lambda,p}(a_{i};b_{j})f)(z) \in P_{k}(\rho_{1})$, where

$$\rho_1 = \rho + (1 - \rho)(2\gamma_1 - 1), \qquad (2.1)$$

and

$$\gamma_1 = \int_0^1 \left(1 + t^{\frac{\beta}{(\lambda+p)}} \right)^{-1} dt.$$
 (2.2)

with the conditions given in (1.6).

 \mathbf{Proof} . Let

$$z^{p}({}_{q}I^{\lambda,p}_{s}(a_{i};b_{j})f)(z) = p(z).$$
(2.3)

Then p(z) is analytic in E, after some calculations, we get

$$(1-\beta)z^{p}({}_{q}I^{\lambda,p}_{s}(a_{i};b_{j})f)(z) + \beta z^{p}({}_{q}I^{\lambda+1,p}_{s}(a_{i};b_{j})f)(z) = p(z) + \frac{\beta}{\lambda+p}zp'(z).$$

Since $f \in {}_{q}\mathcal{T}^{\lambda,p,k}_{s}(\rho,\beta,a_{i},b_{j})$, therefore

$$\left\{p(z) + \frac{\beta}{\lambda + p}zp'(z)\right\} \in P_k(\rho) \quad for z \in E.$$

This implies that

$$Re\left[p_i(z) + \frac{\beta}{\lambda + p} z p_i^{'}(z)\right] > \rho, \quad i = 1, 2.$$

using Lemma 1.1, we see that $Re \{p_i(z)\} > \rho_1$, where ρ_1 is given by (2.1). Consequently $p(z) \in P_k(\rho_1)$ for $z \in E$, and proof is complete. Similarly we have

Theorem 2. Let $\beta > 0$, $\lambda > -p$, $0 \le \rho < 1$, $p \in \mathbb{N}$ and let $f \in {}_q\Sigma S_s^{\lambda,p,k}(\rho,\beta,a_i,b_j)$. Then $z^p({}_qI_s^{\lambda,p}(a_i+1;b_j)f)(z) \in P_k(\rho_2)$, where

$$\rho_2 = \rho + (1 - \rho)(2\gamma_2 - 1), \qquad (2.4)$$

and

$$\gamma_2 = \int_0^1 \left(1 + t^{\frac{\beta}{a_i}} \right)^{-1} dt.$$
 (2.5)

with the conditions given in (1.6).

Theorem 3. Let $\beta > 0$, $\lambda > -p$, $0 \le \rho < 1$, $p \in \mathbf{N}$ and let $f \in {}_{q}\mathcal{T}^{\lambda,p,k}_{s}(\rho,\beta,a_{i},b_{j})$. Then $z^{p}({}_{q}I^{\lambda+1,p}_{s}(a_{i};b_{j})f)(z) \in P_{k}(\rho_{3})$, where

$$\rho_3 = 2\rho - 1 + \left(\frac{1-\rho}{\beta}\right) + 2(1-\rho)\left(1-\frac{1}{\beta}\right)\left(\frac{\lambda+p}{\beta}\right) \int_0^1 \frac{u^{\frac{\lambda+p}{\beta}-1}}{1+u} du.$$
(2.6)

This result is sharp.

The Proof of Theorem 3 is similiar to Theorem 1. Here we use Lemma 1.2 instead of Lemma 1.1.

Similarly we have

Theorem 4. Let $\beta > 0$, $\lambda > -p$, $0 \le \rho < 1$, $p \in \mathbf{N}$ and let $f \in {}_q \Sigma \mathcal{S}_s^{\lambda,p,k}(\rho,\beta,a_i,b_j)$. Then $z^p({}_qI_s^{\lambda,p}(a_i;b_j)f)(z) \in P_k(\rho_4)$, where

$$\rho_4 = 2\rho - 1 + \left(\frac{1-\rho}{\beta}\right) + 2(1-\rho)\left(1-\frac{1}{\beta}\right)\left(\frac{a_i}{\beta}\right) \int_0^1 \frac{u^{\frac{a_i}{\beta}-1}}{1+u} du.$$
(2.7)

286

Next we define a function

$$F_{\delta}(z) = \frac{1}{\delta} z^{(-\frac{1}{\delta}-p)} \int_{0}^{z} t^{\frac{1}{\delta}+p-1} f(t) dt \quad (\delta > 0, f(z) \in \Sigma_{p})$$
(2.8)

Then the linear operator $({}_{q}I_{s}^{\lambda,p}(a_{i};b_{j})F_{\delta})(z)$ satisfies the following relations.

$$z[({}_{q}I_{s}^{\lambda,p}(a_{i}+1;b_{j})F_{\delta})(z)]' = a_{i} ({}_{q}I_{s}^{\lambda,p}(a_{i};b_{j})F_{\delta})(z) - (a_{i}+p) ({}_{q}I_{s}^{\lambda,p}(a_{i}+1;b_{j})F_{\delta})(z),$$
(2.9)

and

$$z[({}_{q}I_{s}^{\lambda,p}(a_{i};b_{j})F_{\delta})(z)]' = (\lambda+p) ({}_{q}I_{s}^{\lambda+1,p}(a_{i};b_{j})F_{\delta})(z) - (\lambda+2p) ({}_{q}I_{s}^{\lambda,p}(a_{i};b_{j})F_{\delta})(z)$$

$$(2.10)$$

Theorem 5. Let $\beta > 0$, $\lambda > -p$, $0 \le \rho < 1$, $p \in \mathbf{N}$ and let $f \in {}_{q}\mathcal{T}_{s}^{\lambda,p,k}(\rho,\beta,a_{i},b_{j})$. Then $F_{\delta}(z) \in {}_{q}\mathcal{T}_{s}^{\lambda,p,k}(\rho_{1},(\lambda+p)\beta,a_{i},b_{j})$ for $z \in E$, where ρ_{1} is given by (2.1) and the conditions given in (1.6) hold.

Proof. We have

$$({}_{q}I_{s}^{\lambda,p}(a_{i};b_{j})F_{\delta})(z) = \frac{1}{\delta} z^{-\frac{1}{\delta}-p} \int_{0}^{z} t^{\frac{1}{\delta}+p-1} ({}_{q}I_{s}^{\lambda,p}(a_{i};b_{j})f)(t)dt$$
(2.11)

Differentiating (2.11), and using the identity (2.10), we have

$$(1-(\lambda+p)\beta)z^p({}_qI_s^{\lambda,p}(a_i;b_j)F_\delta)(z)+(\lambda+p)\delta z^p({}_qI_s^{\lambda+1,p}(a_i;b_j)F_\delta)(z)=z^p({}_qI_s^{\lambda,p}(a_i;b_j)f)(z)$$

Now using Theorem 1, we obtain the required result contained in Theorem 5. Similarly we have

Theorem 6. Let $\beta > 0$, $\lambda > -p$, $0 \le \rho < 1$, $p \in \mathbf{N}$ and let $f \in {}_{q}\Sigma S_{s}^{\lambda,p,k}(\rho,\beta,a_{i},b_{j})$. Then $F_{\delta}(z) \in {}_{q}\Sigma S_{s}^{\lambda,p,k}(\rho_{2},\alpha_{i} \ \delta,a_{i},b_{j})$ for $z \in E$, where ρ_{2} is given by (2.4) and the conditions given in (1.6) hold.

Theorem 7. For $0 \le \beta_2 < \beta_1$, $\lambda > -p$, $0 \le \rho < 1$, $p \in \mathbb{N}$, $k \ge 2$, we have

$${}_{q}\mathcal{T}^{\lambda,p,k}_{s}(\rho,\beta_{1},a_{i},b_{j}) \subset {}_{q}\mathcal{T}^{\lambda,p,k}_{s}(\rho,\beta_{2},a_{i},b_{j})$$

$$(2.12)$$

with the conditions given in (1.6).

Proof. For $\beta_2 = 0$, the proof is immediate. Let $\beta_2 > 0$ and $f \in_q \mathcal{T}_s^{\lambda,p,k}(\rho,\beta_1,a_i,b_j)$. Then there exist two functions $h_1, h_2 \in P_k(\rho)$ such that, from definition 1.1 and Theorem 1,

$$(1 - \beta_1)z^p({}_qI_s^{\lambda,p}(a_i;b_j)f)(z) + \beta_1 z^p({}_qI_s^{\lambda+1,p}(a_i;b_j)f)(z) = h_1(z)$$
(2.13)

and

$$z^{p}({}_{q}I^{\lambda,p}_{s}(a_{i};b_{j})f)(z) = h_{2}(z)$$
(2.14)

Hence

$$(1-\beta_2)z^p({}_qI_s^{\lambda,p}(a_i;b_j)f)(z) + \beta_2 z^p({}_qI_s^{\lambda+1,p}(a_i;b_j)f)(z) = \left(\frac{\beta_2}{\beta_1}\right)h_1(z) + \left(1-\frac{\beta_2}{\beta_1}\right)h_2(z)$$
(2.15)

Since the class $P_k(\rho)$ is a convex set, it follows that the right-hand side of (2.15) belongs to $P_k(\rho)$ and we arrive at the result (2.12).

Similarly we have

Theorem 8. For $0 \le \beta_2 < \beta_1$, $\lambda > -p$, $0 \le \rho < 1$, $p \in \mathbb{N}$, $k \ge 2$ then

$${}_{q}\Sigma\mathcal{S}^{\lambda,p,k}_{s}(\rho,\beta_{1},a_{i},b_{j}) \subset {}_{q}\Sigma\mathcal{S}^{\lambda,p,k}_{s}(\rho,\beta_{2},a_{i},b_{j})$$

with the conditions given in (1.6).

References

[1] B. Pinchuck, Functions with bounded boundary rotation, Isr. J. Math., 10(1971), 7–16.

[2] A.O. Mostafa, Applications of differential subordination to certain subclasses of p-valent mero-

morphic functions, involving a certain operator, Math. Comput. Modelling, 54 (2011), 1486–1498.
[3] K. I. Noor, On certain classes of meromorphic functions involving integral operators, J. Ineq. Pure and Appl. Math., 7(2006), Art. 138.

[4] K. Padmanabhan and R. Parvatham, Properties of a class of functions with bounded boundary rotation, *Ann. Polon. Math.*, **31**(1975), 311–323.

[5] S. Ponnusamy, Differential subordination and Bazilevic functions, Proc. Ind. Acad.Sci. (Math Sci.) 104, (1994), 397-411. Preprint.

[6] L. M. Sheng, Properties for some subclasses of analytic functions, Bull. Inst. Math. Acad. Sinica, 30 (2002), 9–26.

[7] H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood, Chichester), John Wiley and Sons, New York.

[8] P. Vijaywargiya, Convolution properties of certain class of multivalent meromorphic functions, *Kyungpook Math. J.*, 49(4), (2009), 713-723.

[9] S.-M. Yuan, Z.-M. Liu and H. M. Srivastava, Some inclusion relationships and integralpreserving properties of certain subclasses of meromorphic functions associated with a family of integral operators, J. Math. Anal. Appl., 337(2008), 505-515.

Jyoti Aggarwal

DEPARTMENT OF MATHEMATICS, GOVT. DUNGAR (P.G.) COLLEGE, BIKANER, INDIA *E-mail address*: maths.jyoti860gmail.com

Rachna Mathur

DEPARTMENT OF MATHEMATICS, GOVT. DUNGAR (P.G.) COLLEGE, BIKANER, INDIA *E-mail address:* rachnamathur@rediffmail.com