
Electronic Journal of Mathematical Analysis and Applications,

Vol. 4(1) Jan. 2016, pp. 11-14

ISSN: 2090-729(online)

http://fcag-egypt.com/Journals/EJMAA/

————————————————————————————————

SOME RESULTS ON 2-BANACH ALGEBRAS

R. TAPDIGOĞLU, Ü. KÖSEM

Abstract. We consider a 2-Banach algebra and prove some new results, in-
cluding Gelfand-Mazur type theorems.

1. Introduction

In this article we give some new results for 2-Banach algebras. In particular, we
prove an analogy of famous Gelfand-Mazur theorem for 2-Banach algebras.

Recall that the concept of 2-Banach algebra, apparently, was introduced by
Mohammed and Siddiqui [1]. Following by Mohammed and Siddiqui [1], note that
a 2-Banach algebra B is an algebra with dimB > 2 which is a 2-Banach space
(with respect to 2-norm topology) and in addition, the following condition being
satisfied:

∥a, bc∥ ≤ M ∥a, b∥ . ∥a, c∥ , a, b, c ∈ B

M > 0 is a constant.
Note that the concept of 2-Banach space was introduced by Gähler [2]. Later,

the various aspect of this concept have been studied in [3, 4, 5, 6, 7, 8, 9]. In
particular, Mohammed and Siddique [1] proved analog of some known results of
the usual Banach algebras in 2-Banach algebras.

Before giving our results, let us give some necessary definitions and notations.
Let X be a vector space of dimension greater than 1 and ∥., .∥ be a real function

on X ×X satisfying the following conditions:
1) ∥a, b∥ = 0 if and only if a and b are linearly dependent;
2) ∥a, b∥ = ∥b, a∥ ;
3) ∥λa, b∥ = |λ| . ∥a, b∥ for any number λ ;
4) ∥a+ b, c∥ ≤ ∥a, c∥+ ∥b, c∥ for every a, b, c ∈ X.
∥., .∥ is called a 2-norm and X equipped with ∥., .∥ is a 2-normed space (see [2]).

Gähler [2] has proved that ∥., .∥ is a non-negative function.
A sequence {xn} in 2-Banach space X is called a Cauchy sequence if there exists

y, z ∈ X such that y and z are linearly independent, the lim ∥xn − xm, y∥ = 0 and
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the lim ∥xn − xm, z∥ = 0. A sequence {xn} in a 2-normed space X is said to be
convergent if there is an x ∈ X such that the lim ∥xn − x, y∥ = 0, for every y ∈ X.

2. Results

In this section, we give some new results for 2-Banach algebras.
Let G(B) denote the set of all invertible elements of B. The following theorems

shows that G(B) is an open set of B and the map x → x−1is continuous with
respect to 2-norm topology.

Theorem 1. Let B be a unital 2-Banach algebra, x ∈ G(B), h ∈ B and ∥h, b∥ <
1
2∥x

−1, b∥−1 for all b ∈ B. Then x+ h ∈ G(B) and∥∥(x+ h)−1 − x−1 + x−1hx−1, b
∥∥ ≤ 2

∥∥x−1, b
∥∥3 ∥h, b∥2

for any b ∈ B.

Proof. Let us write the element x+h in the form x+h = x(e+x−1h), where e is an
identity element of the 2-Banach algebra B, that is for every a ∈ B, a.e = e.a = a
and ∥a, e∥ ≠ 0. Since ∥x−1h, b∥ < 1

2 , it is not difficult to show that e + x−1h

is invertible, and hence, x(e + x−1h) is an invertible element in B. Indeed, since
∥(−x−1h)n, b∥ ≤ ∥ − x−1h, b∥n for any b ∈ B, we assert that the sequence

Sn := e− x−1h+ (x−1h)2 − (x−1h)3 + ...+ (x−1h)n (1)

is a Cauchy sequence in B. By considering that B is complete with respect to 2-
norm topology, Sn → s (n → ∞) for some s ∈ B. Using that (−x−1h)n → 0
(n → ∞) and

Sn. (e− x) = e− xn+1 = (e− x) .Sn,

then its follows from continuity of multiplication with respect to 2-norm in B (see,
for example, [1]) that an element s ∈ B is an inverse of the element e + x−1h.
Further, it follows from (1) that∥∥s− e+ x−1h, b

∥∥ = ∥(x−1h)2 − (x−1h)3 + ..., b∥

≤
∞∑

n=2

∥x−1h∥n =
∥x−1h, b∥2

1− ∥x−1h, b∥
(2)

for every b ∈ B.
On the other hand, since

(x+ h)−1 − x−1 + x−1hx−1 = [(e+ x−1h)−1 − e+ x−1h]x−1,

by considering (2) we have:

∥(x+ h)−1 − x−1 + x−1hx−1, b∥ = ∥[(e+ x−1h)−1 − e+ x−1h]x−1, b∥
≤ 2∥x−1h, b∥2∥x−1, b∥

for all b ∈ B, which gives the desired result. The theorem is proved. �
Corollary 1. If B is a 2-Banach algebra, then G (B) is an open set in B, and the
map x → x−1 is a 2-homeomorphism of G (B) onto G (B) .

Note that as in the usual Banach algebra, it can be proved (see, for example,
Rudin [10]) that the spectrum of element x in 2-Banach algebra is non-empty set,
i.e., σ(x) ̸= ∅. This allow us to prove Gelfand-Mazur type theorem in 2-Banach
algebra B.
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Theorem 2. Let B be a 2-Banach algebra such that every nonzero element x in
B is invertible. Then B is isometrically isomorphic to the field of complex numbers
C.

Proof. If x ∈ B and λ1 ̸=λ2, then only one of these elements can be equal to 0.
Therefore, at least one of this is invertible. Since σ(x) ̸= ∅, it follows that σ(x) =
{λ(x)} for every x ∈ B. By considering that λ(x)e − x is noninvertible, we have
that λ(x)e − x = 0, that is x = λ(x)e, and therefore, the map x → λ(x) is an
isomorphism between B and C, and moreover, this map is isometric isomorphism,
because

|λ(x)| = ∥λ(x)e, b∥ = ∥x, b∥
for all x ∈ B and b ∈ B ,which completes the proof of theorem. �

Theorem 3. Let B be a 2-Banach algebra, xn ∈ G(B), n = 1, 2, ..., and let x ∈
∂G(B) (the boundary of the set G(B)). If ∥ xn−x, b ∥→ 0 (n → ∞) for any b ∈ B,
then

∥∥x−1
n , b

∥∥ → ∞ (n → ∞).

Proof. Suppose in contrary that there exists a finite number M > 0 such that∥∥x−1
n , b

∥∥ < M for any b ∈ B and infinite numbers n .We can then choose the

number n such that ∥xn − x, b∥ < 1
M for all b ∈ B. Then, for such n we have that∥∥e− x−1

n x, b
∥∥ =

∥∥x−1
n (xn − x), b

∥∥
≤

∥∥x−1
n , b

∥∥ . ∥xn − x, b∥ < M.
1

M
= 1

for all b ∈ B, and hence, x−1
n x ∈ G(B). Since x = xn(x

−1
n x) and G(B) is a group,

we obtain that x ∈ G(B). But this is contradiction, because G(B) is an open set in
B. The theorem is proved. �

Our next result gives Gelfand-Mazur type theorem. Its proof uses Theorem 3.

Theorem 4. Let B be a 2-Banach algebra such that

∥x, b∥.∥y, b∥ ≤ M∥xy, b∥(x ∈ B, y ∈ B)

for all b ∈ B and some positive number M. Then B is isometrically isomorphic to
C.

Proof. Let y be a boundary point for the G(B). Then, obviously, there exist a
sequence {yn} with yn ∈ G(B) such that y = limn yn in 2-norm topology. According
to Theorem 3, we obtain that lim

∥∥y−1
n , b

∥∥ = ∞ for any b ∈ B. By condition of

theorem ∥yn, b∥ .
∥∥y−1

n , b
∥∥ ≤ M ∥e, b∥ (n = 1, 2, ...), that is

∥yn, b∥ ≤ M ∥ e, b ∥
∥ y−1

n , b ∥
→ 0(n → ∞),

which shows that 0 = limn ∥yn, b∥ = ∥y, b∥ for any b ∈ B, and thus, ∥y, b∥ = 0,
which implies that y and b are linearly dependent. This means that λb = y for any
b ∈ B. On the other hand, if x ∈ B and µ is a boundary point in σ(x), that is
µ ∈ ∂σ(x), then µe − x is a boundary point in any G(B). Then, µe − x = ηb for
any b ∈ B. In particular, µe − x = τe, and hence x = (µ − τ)e, which means that
B = {ζe : ζ ∈ C} , as desired. The theorem is proved. �

In conclusion note that a 2-Banach algebra need not be in general a Banach
algebra.
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