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AN ACTIVE SET NEWTON’S INTERIOR-POINT ALGORITHM FOR

SOLVING A CONSTRAINED OPTIMIZATION PROBLEM

B. EL-SOBKY AND Y. ABO-ELNAGA

Abstract. In this paper, an active set Newton’s interior-point algorithm for solving
a constrained optimization problem is introduced. An active-set technique is used
to convert the inequality constraint of constrained optimization problem to equality

constraint. A Coleman-Li scaling matrix is used together with Newton’s interior point
method to solve the constrained optimization problem.

A Matlab implementation of the active set Newton’s interior-point algorithm was

used in solving three test problems and the results are reported. The results show
that our approach is of value and merit further investigations.

1. Introduction

Operation research is concerned with the application of scientific tools and techniques
to decision-making problems involving operations of an integrated system so as to provide
optimum solutions to a problem. The methods of operations research are very often
used in management science, industrial engineering, mathematics, economics, etc. to
analyze complex real-world systems, typically with the goal of improving or optimizing
performance. It provides an understanding that gives the managers new insights and
capabilities to determine better solutions in their decision-making problems. In the real
world, many decision-making problems can be described by using a general constrained
optimization model.

In this paper, we introduce an active set Newton’s interior-point algorithm for solving
the constrained optimization problem. The proposed algorithm uses the active-set strat-
egy to covert the inequality constraint of constrained optimization problem to equality
constraint. The chief feature of the proposed active set is that the active set is identified
and updated naturally by the trial step. Many authors, have considered active set tech-
niques for solving general nonlinear programming problems [[4], [8], [9], [10], [11], [12],
[13], [14], [16], [20], [21], [23], [24] ].
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The proposed algorithm uses the Coleman-Li scaling matrix together with Newton’s
interior point method to solve the constrained optimization problem. The Coleman-Li
scaling matrix was first introduced by Coleman-Li [1] for unconstrained optimization
problem and Newton’s interior point method was suggested by Das [2]. The Coleman-Li
scaling matrix was generalized to general nonlinear programming problem by[[2], [5], [6],
[7]].

The following notations are used throughout the rest of the paper. The sequence of
points generated by the algorithm is denoted {xk}. A subscripted function means the value
of the function evaluated at a particular point. For example, fk ≡ f(xk), Gk ≡ G(xk),
∇fk ≡ ∇f(xk), ∇Gk ≡ ∇G(xk), ϕk ≡ ϕ(xk; ρk), Wk ≡ W (xk) and so on. We use the

notation x
(j)
k to denote the jth component of the vector xk, (∇ϕ(xk; ρk))

(j)
k to denote the

jth component of the vector ∇ϕk, and so on.
The paper is organized as follows. In Section 2, we describe, an active set strategy and

Newton’s method. In Section 3, we present a reduced method that computes Newton?s
step by solving a smaller dimension linear system. In Section 4, we introduce an interior-
point method and a formal description of the active set Newton’s interior-point algorithm
for solving the constrained optimization problem is presented. Section 5 contains a Matlab
implementation of the active set Newton’s interior-point algorithm. Three case studies are
presented and the results are reported. Finally, Section 6 contains concluding remarks.

2. An active set strategy and Newton’s method

Minimization problems with upper and /or lower bounds on some of the variables
form important and common class of problems. In this paper, we consider the following
constrained optimization problem

minimize f(x)
subject to gi(x) = 0 i ∈ E,

gi(x) ≤ 0 i ∈ I,
α ≤ x ≤ β,

(2.1)

where f : ℜn → ℜ, gi : ℜn → ℜm, E
∪

I = {1, ...,m} and E
∩

I = ∅, α ∈ {ℜ
∪
{−∞}}n,

β ∈ {ℜ
∪
{∞}}n, m < n, and α < β. The functions f and gi, i = {1, ...,m} are assumed

to be at least twice continuously differentiable.
Various optimization techniques have been proposed by many researchers to deal with

the above constrained optimization problem with varying degree of success. The proposed
algorithm uses an indicator matrix [4] to convert the inequality constraint to equality
constraint. The indicator matrix W (x) ∈ ℜm×m is a diagonal matrix whose diagonal
entries are

wi(x) =

 1, if i ∈ E,
1, if i ∈ I and gi(x) ≥ 0,
0, if i ∈ I and gi(x) < 0.

(2.2)

Using the above matrix, Problem (2.1) can be transformed to the following problem

minimize f(x),
subject to G(x)TW (x)G(x) = 0,

α ≤ x ≤ β,
(2.3)
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where G(x) = (g1(x), ..., gm(x))T is continuously differentiable function.
The Lagrangian function associated with Problem (2.3) is given by

L(x, λ, µ; ρ) = f(x)− λT (x− α)− µT (β − x) + ρ∥W (x)G(x)∥2, (2.4)

where ρ is positive parameter, λ and µ are lagrange multiplier vectors associated with the
inequality constraints (x− α) and (β − x) respectively.

The first-order necessary conditions for a point x∗ to be a solution of Problem (2.1)
are the existence of multipliers λ∗ ∈ ℜn

+, and µ∗ ∈ ℜn
+, such that (x∗, λ∗, µ∗) satisfies

∇ϕ(x∗; ρ∗)− λ∗ + µ∗ = 0, (2.5)

α ≤ x∗ ≤ β, (2.6)

and for all j corresponding to x(j) with finite bound, we have

λ
(j)
∗ (x

(j)
∗ − α(j)) = 0, (2.7)

µ
(j)
∗ (β(j) − x

(j)
∗ ) = 0, (2.8)

where ∇ϕ(x∗; ρ∗) = ∇f(x∗) + ρ∗∇G(x∗)W (x∗)G(x∗).
Following [[1], [2], [5]], we define the diagonal scaling matrix S(x) whose diagonal

elements are given by

s(j)(x) =


√
(x(j) − α(j)), if ∇ϕ(x; ρ)(j) ≥ 0 and α(j) > −∞,√
(β(j) − x(j)), if ∇ϕ(x; ρ)(j) < 0 and β(j) < +∞ ,

1, otherwise.

(2.9)

Using the scaling matrix S(x), the first order necessary conditions (2.5)-(2.8) are equiv-
alent to the following equation

S2(x)∇ϕ(x; ρ) = 0, (2.10)

and the point x∗ satisfies the box constraint

α ≤ x ≤ β. (2.11)

Notice that the system (2.10) is continuous but not everywhere differentiable. The
non-differentiability occurs when s(j) = 0. These points are avoided by restricting x in
the interior of the box constraint (2.11). The other non-differentiability occurs when a
variable x(j) has a finite lower bound and an infinite upper bound and (∇ϕ(x; ρ))(j) = 0.
But these points are not significant, so we define a vector η(x) whose components are

η(j)(x) = ∂((s(j))
2
)

∂x(j) , j = 1, ..., n such that η(j) to be zero whenever (∇ϕ(x; ρ))(j) = 0.
Hence, we can write

η(j)(x) =

 1, if ∇ϕ(x; ρ)(j) ≥ 0 and α(j) > −∞,
−1, if ∇ϕ(x; ρ)(j) < 0 and β(j) < +∞ ,
0, otherwise.

(2.12)

Applying Newton’s method on the nonlinear system (2.10) and assuming α < x < β,
we have the following linear system

[S2(x)∇2ϕ(x; ρ) + diag(∇ϕ(x; ρ))diag(η(x))]∆x = −S2(x)∇ϕ(x; ρ), (2.13)

where ∇2ϕ(x; ρ) = ∇2f(x) + ρ∇G(x)W (x)∇G(x)T .
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Newton?s step is computed by solving the above linear system (2.13) for ∆x. One of
the disadvantages of obtaining Newton?s step by solving the linear system (2.13) lies in
the fact that the dimension of the linear system (2.13) is large for large-scale problems.
In the following section , we present a reduced method that computes Newton?s step by
solving a smaller dimension linear system.

3. A reduced method

Consider an n× (n−m) matrix Z(x) with columns that form an orthonormal basis for
the null space of (S2(x)∇G(x)W (x)G(x))T . i.e.

Z(x)TS2(x)∇G(x)W (x)G(x) = 0, (3.1)

where the matrix Z(x) depends on ρ. Here ρ is omitted to simplify the notation.
In this paper, the matrix Z(x) can be obtained from the QR factorization of S2(x)∇G(x)W (x)G(x)

as follows:

S2(x)∇G(x)W (x)G(x) =
[
Y (x) Z(x)

] [ R(x)
0

]
. (3.2)

The orthonormal columns of Y (x) ∈ ℜn×m form a basis for the column space of S2(x)∇G(x)W (x)G(x)
and R(x) is an (m×m) upper triangular matrix. It is easy to see that, Y (x)TY (x) = Im,
Z(x)TZ(x) = In−m, and Y (x)TY (x)+Z(x)TZ(x) = In. The matrix R(x) is nonsingular,
if x lies in a sufficiently small neighborhood of x∗, and the matrix S2(x)∇G(x)W (x)G(x))
has full column rank at x∗.

Using a continuous differentiable null space matrix Z(x) which is constructed in Good-
man [15], the first order necessary condition for a feasible point x∗ with respect to the
box constraint (2.11) , to be solution for Problem (2.1) can be written in the form

Z(x)TS2(x)∇f(x) = 0. (3.3)

Applying Newton’s method on the system (3.3), then we have

[Z(x)T [S2(x)∇f(x)]′ + [Z(x)′]TS2(x)∇f(x)]∆x = −Z(x)TS2(x)∇f(x). (3.4)

To compute Z(x)′, we differentiate the equation (3.1). This gives that

Z(x)T [S2(x)∇G(x)W (x)G(x)]′ + [Z(x)′]TS2(x)∇G(x)W (x)G(x) = 0. (3.5)

From (3.2) and (3.5), we have

[Z(x)′]TY (x) = −Z(x)T [S2(x)∇G(x)W (x)G(x)]′R(x)−1.

Since Y (x)TY (x) = Im, then we have

[Z(x)′]T = −Z(x)T [S2(x)∇G(x)W (x)G(x)]′R(x)−1Y (x)T .

Multiplying both side of the above system from the right in S2(x)∇f(x) and take

ρ = −R(x)−1Y (x)TS2(x)∇f(x), (3.6)

then, we have

[Z(x)′]TS2(x)∇f(x) = ρZ(x)T [S2(x)∇G(x)W (x)G(x)]′

= ρZ(x)T [S2(x)∇G(x)W (x)∇G(x)T + diag(∇G(x)W (x)G(x))diag(η(x))].

(3.7)
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Since

Z(x)T [S2(x)∇f(x)]′ = Z(x)T [S2(x)∇2f(x) + diag(∇f(x))diag(η(x))], (3.8)

then from (3.4), (3.7), and (3.8), we have

Z(x)T [S2(x)∇2ϕ(x; ρ) + diag(∇ϕ(x; ρ))diag(η(x))]∆x = −Z(x)TS2(x)∇f(x). (3.9)

Hence the Newton step is computed by solving the system (3.9). A detailed description
of the main steps of the active set Newton’s interior point algorithm for solving Problem
(2.1) is presented in the following section.

4. An interior-point method

Once the step ∆xk is computed by solving the system (3.9) at any iteration k at which
α ≤ xk ≤ β, a damping parameter ξk is needed to ensure that xk+1 is feasible with respect
to the box constraint (2.11). The damping parameter ξk is defined to be

ξk = min{1,min
j

{u(j)
k , v

(j)
k }}, (4.1)

where

u
(j)
k =

{
α(j)−x

(j)
k

∆x
(j)
k

, if α(j) > −∞ and ∆x
(j)
k < 0,

1, otherwise,

and

v
(j)
k =

{
β(j)−x

(j)
k

∆x
(j)
k

, if β(j) < ∞ and ∆x
(j)
k > 0,

1, otherwise.

Since, we always require {xk} satisfy, α < xk < β for all k, then another damping in the
step may be needed to satisfy this inequality. Therefore, we set xk+1 = xk + δkξk∆xk,
where δk is defined to be 1 if α < xk + ξk∆xk < β. Otherwise, we choose δk ∈ [1 −
γ∥∆xk∥, 1], where γ > 0 is pre-specified fixed constant.

We outline the active set Newton’s interior-point algorithm for solving Problem(2.1)

Algorithm 4.1. (An active set Newton’s interior-point algorithm )
A formal description of the active set Newton’s interior-point algorithm for solving Prob-
lem (2.1) is presented in the following
Step 0. (Initialization)

Given x0 ∈ ℜn such that α < x0 < β.
Evaluate ρ0,W0, S0, and η0. Set k = 0.
Choose ε such that ε > 0.

Step1.(Test for convergence)

If ∥ZT
k S

2
k∇fk∥ ≤ ε, then terminate the algorithm.

Step2.(Compute the Newton step ∆xk )

Compute Newton’s step ∆xk by solving the system(3.9).

Step3.(Test for interior-point)
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a) Compute the damping parameter ξk using (4.1).
b) Set xk+1 = xk + ξk∆xk.
c) If α < xk+1 < β, then go to step 4.
Else, set xk+1 = xk + δkξk∆xk, where δk ∈ [1− γ∥∆xk∥, 1],

Step 4. (Compute the parameter ρk+1)

Compute ρk+1 by solving (3.6).

Step5.(Update the active set)

Compute Wk+1.

Step6. (Update the scaling matrix)

Compute S(xk+1) and ξk+1.

Step7. Set k = k + 1 and go to Step 1.

5. Implementations

To demonstrate the effectiveness of the active set Newton’s interior-point algorithm,
three test examples with linear constraints, nonlinear constraints, and non-convex con-
straints, particularly on test problem of team is large size. These test problems was
already solved by researchers [[18], [22], [19]] who have used other approaches to evaluate
the performance of our suggested algorithm. We will present a comparison between their
results and our results in Table (6.1). The proposed algorithm is coded in MATLAB
environment and run under MATLAB Version 7 with machine epsilon about 10−16.

Successful termination with respect to the proposed algorithm means that the termi-
nation condition of the algorithm is met with ε = 10−10. On the other hand, unsuccessful
termination means that the number of iterations is greater than 500, the number of func-
tion evaluations is greater than 1000.

5.1. Test Problem 1. This problem has 13 variables and nine inequality constraints [18]

minimize f1(x) = 5
∑4

i=1 xi − 5
∑4

i=1 x
2
i −

∑13
i=5 xi

subject to g1(x) = 2x1 + 2x2 + x10 + x11 ≤ 10,
g2(x) = 2x1 + 2x3 + x10 + x12 ≤ 10,
g3(x) = 2x2 + 2x3 + x11 + x12 ≤ 10,
g4(x) = −8x1 + x10 ≤ 0,
g5(x) = −8x2 + x11 ≤ 0,
g6(x) = −8x3 + x12 ≤ 0,
g7(x) = −2x4 − x5 + x10 ≤ 0,
g8(x) = −2x6 − x7 + x11 ≤ 0,
g9(x) = −2x8 − x9 + x12 ≤ 0,
0 ≤ xi ≤ 1, i = 1, ..., 9,
0 ≤ xi ≤ 100, i = 10, 11, 12,
0 ≤ x13 ≤ 1.

Notes that the convexity of the feasible domain is satisfies due the linearity of the con-
straint which usually require smaller effort than the non convex problems because in non
convex problem the feasible domain (search space) may be disjoint or irregular, but the
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proposed algorithm is capable to handle such problem, as we will introduce in the next
example.

By using algorithm (4.1) the global solution of the Test Problem 1 is the same solution
which is obtained by algorithm [18] such that x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1) with a
function value equal to f1

∗ = −15 .

5.2. Test Problem 2. We first choose two-dimensional general constrained optimization
problem [22]

minimize f2(x) = (x1
2 + x2 − 11)2 + (x1 + x2

2 − 7)2

subject to g1(x) = x1
2 + (x2 − 2.5)2 − 4.84 ≤ 0,

g2(x) = 4.84− (x1 − 0.05)2 − (x2 − 2.5)2 ≤ 0,
0 ≤ xi ≤ 6, i = 1, 2.

By using algorithm (4.1) the optimum solution of the Test Problem 2 is x∗ = (2.2483, 2.3803)
with a function value equal to f2

∗ = 13.545 while algorithm [22] introduced an approach
handling the same problem with an optimum solution x∗ = (2.246826, 2.381865) with a
function value equal to f2

∗ = 13.59085.

5.3. Test Problem 3. This problem has five variables and six inequality constraints [19].

minimize f3(x) = 37.293239x1 + 0.8356891x1x5 + 5.3578547x3
2 − 40792.141

subject to g1(x) = 0.0022053x3x5 − 0.0006262x1x4 − 0.0056858x2x5 − 85.334407 ≤ 0,
g2(x) = −0.0022053x3x5 + 0.0006262x1x4 + 0.0056858x2x5 + 85.334407 ≤ 92,
g3(x) = −80.51249− 0.0071317x2x5 − 0.0029955x1x2 − 0.0021813x3

2 ≤ −90,
g4(x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x3

2 ≤ 110,
g5(x) = −9.300961− 0.0047026x3x5 − 0.0012547x1x3 − 0.0019085x3x4 ≤ −20,
g6(x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 ≤ 25,
78 ≤ x1 ≤ 102,
33 ≤ x2 ≤ 45,
27 ≤ xi ≤ 45, i = 3, 4, 5.

By using algorithm (4.1) the optimum solution of the Test Problem 3 is x∗ = (78, 33, 29.9, 45, 36.823)
with a function value equal to f3

∗ = −30693 while [19] introduced an approach handling
the same problem with an optimum solution x∗ = (78, 33, 29.995, 45, 36.776) with a func-
tion value equal to f3

∗ = −30665.5.
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Test problem algorithm solution

Test problem 1 Michalewicz and Attia [18] f1
∗ = −15

new algorithm f1
∗ = −15

Test problem 2 Powell and Skolnick [22] f2
∗ = 13.59085

new algorithm f2
∗ = 13.545

Test problem 3 Michalewicz and Schoenauer, [19] f3
∗ = −30665.5

new algorithm f3
∗ = −30693

Table 6.1.

6. Concluding remark

We introduced the active set Newton’s interior point algorithm for solving the con-
strained optimization problem. The proposed algorithm uses active-set strategy to convert
the inequality constrain to equality constrain and the Coleman-Li scaling matrix together
with a formulation for Newton’s interior point method are used to solve the equality con-
straint problem. To study the performance of this algorithm, we have considered three
test problems. The results were reported. We believe that our approach is of value and
merit further numerical investigations.

The following points are the signification contributions of this paper

• The proposed approach combines Coleman-Li scaling matrix together with New-
ton’s interior point method to solve the equality constraint problem.

• One of the disadvantages of obtaining Newton?s step by solving the linear system
lies in the fact that the dimension of the linear system is large for large-scale prob-
lems. In this algorithm , we present a reduced method that computes Newton?s
step by solving a smaller dimension linear system.

• For future work, there are many question should be answered
– Improving the proposed algorithm to be capable for treating large scale non-

linear programming problems and non differentiable case.
– We have to impalement the proposed algorithm on real life problem.



EJMAA-2016/4(1) NEWTON’S INTERIOR-POINT ALGORITHM 23

References

[1] T. R. COLEMAN and Y. LI An interior trust region approach for nonlinear minimization subject to

bounds, SIAM J. Optimization, 6(1996), 418-445.
[2] I. Das, An interior point algorithm for the general nonlinear programming problem, Department of

computational and applied mathematics, Rice University, Hoston, TX 77251-1892,(1996).
[3] J. Dennis, M. El-Alem, and M. Maciel, A global convergence theory for general trust-region-based

algorithms for equality constrained optimization, SIAM J Optimization, 7(1)(1997), 177-207.
[4] J. Dennis, M. El-Alem, and K. Williamson, A trust-region approach to nonlinear systems of equalities

and inequalities, SIAM J Optimization, 9(1999), 291-315.
[5] J. Dennis, M. Heinkenschloss, and L. Vicente. Trust-region interior-point SQP algorithms for a class

of nonlinear programming problems. Tech. Rep. TR94-45, Department of Computational and Applied
Mathematics, Rice University, Houston, TX 77251 (1994).

[6] M. El-Alem, M. El- Sayed, and B. El-Sobky, Local Convergence of Interior - point Newton Method
for Constrained Optimization, Journal of Optimization theory and applications, 120(3)(2004), 487 -

502.
[7] M.El-Alem, B. El- sobky, and M. Abdel -Aziz, Extending Goodman’s Method to General Nonlinear

Programming, Bulletin pure and applied mathematics, 3(2)(2009), 135-141.
[8] B. El-Sobky, Arobust trust-region algorithm for general nonlinear constrained optimization problems,

PhD thesis, Department of Mathematics, Alexandria University, Alexandria, Egypt(1998).
[9] B. El-Sobky, A global convergence theory for an active trust region algorithm for solving the general

nonlinear programming problem, Applied Mathematics and computation archive, 144(1)(2003), 127-

157.
[10] B. El-Sobky, A Multiplier active-set trust-region algorithm for solving constrained optimization prob-

lem, Applied Mathematics and computation archive, 219(2012), 127-157.
[11] B. El-Sobky, A New Convergence theory for Trust-Region Algorithm for Solving Constrained Opti-

mization Problems , Applied Mathematics Science, 7(110)(2013), 5469-5489.
[12] B. El-Sobky, A penalty active-set trust-region algorithm for solving general nonlinear programming

problem , Sylwan, 9(158)(2014), 273-290.
[13] B.El-sobky and Y.Abouel-Naga, Multi-objective Economic Emission Load Dispatch Problem with

Trust-region Strategy, Electric Power Systems Research, 108(2014), 254-269.
[14] P. Gill, W. Murray, M. Saunders, and M. Wright, Some theoretical properties of an augmented

Lagrangian merit function, Stanford University, report SOL (1986), 86-6.
[15] J. GOODMAN, Newton?s method for constrained optimization, Math Programming, 33(1985), 162-

171.
[16] S. Han. A globally convergent method for nonlinear programming. JOTA, 22:297-309, (1977).
[17] D. Himmelblau, Applied nonlinear programming, New York: McGraw-Hill, (1972).

[18] Z. Michalewicz and N. Attia, Evolutionary optimization of constrained problems, Proc, Third Annual
Conference on Evolutionary Programming, (1994), 98?108.

[19] Z. Michalewicz and M. Schoenauer, Evolutionary algorithms for constrained parameter optimization
problems, Evolutionary Computation, 4(1)(1996), 1?32.

[20] E. Omojokun, Trust-region strategies for optimization with nonlinear equality and inequality con-
straints, PhD thesis, Department of Computer Science, University of Colorado, Boulder, Col-
orado(1989).

[21] M. Powell. Algorithms for nonlinear constraints that used Lagrangian functions. Mathematical Pro-

gramming, North-Holland Publishing Company, 14(1978), 224-248.
[22] D. Powell and M. Skolnick, Using genetic algorithms in engineering design optimization with non-

linear constraints, Proc, Fifth International Conference on Genetic Algorithms, Urbana, IL, (1993),
424?430.

[23] K. Schittkowski, On the convergence of a sequential quadratic programming method with an aug-
mented Lagrangian line search function, Math. Operations Forchung U.Statistic Ser., Optimization,
14(1983), 197-216.

[24] Yuan. Y, On the convergence of a new trust region algorithm. Numer. Math. 70(1995), 515-539.



24 B. EL-SOBKY AND Y. ABO-ELNAGA EJMAA-2016/4(1)

Bothina El-Sobky

Faculty of Science, Alexandria University, Alexandria, Egypt
E-mail address: bothinaelsobky@yahoo.com

Yusria Abo-Elnaga

Department of basic science, Higher Technological Institute, Tenth of Ramadan City , Egypt
E-mail address: yousrianaga@yahoo.com


