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EXISTENCE OF SOLUTIONS FOR NONLOCAL PROBLEMS IN

ORLICZ-SOBOLEV SPACES VIA MONOTONE METHOD

RABIL AYAZOGLU (MASHIYEV)†, MUSTAFA AVCI, NGUYEN THANH CHUNG

Abstract. In this paper, using theory of monotone operators, we study the

existence of weak solutions for a class of nonlocal nonvariational problems in
the Orlicz-Sobolev spaces.

1. Introduction

In this article, we are concerned with a class of nonlocal problems in Orlicz-
Sobolev spaces of the form{

−M(u)div(a(|∇u|)∇u− a(|u|)u) = f(x, u) in Ω,

u = 0 on ∂Ω,
(1)

and {
−M(u)div(a(|∇u|)∇u− g(x, u,∇u)) = f(x, u) in Ω,

u = 0 on ∂Ω,
(2)

where Ω is a bounded domain in RN (N ≥ 3) with smooth boundary ∂Ω, f is a
Carathéodory function and M is a continuous and bounded functional. The func-
tion φ(t) := a(t)t is an increasing homeomorphisms from R onto R. For the case

a(t) = |t|p−2
, equations (1) and (2) turn into the well-known p−Laplacian equa-

tion (p > 1) which has been extensively studied during the last decades by many
authors. We refer to ([4, 9, 12, 16, 18, 22]) and the references therein for detailed
background.
The study of variational problems in the classical Sobolev and Orlicz-Sobolev spaces
is an interesting topic of research due to its significant role in many fields of math-
ematics, such as approximation theory, partial differential equations, calculus of
variations, non-linear potential theory, the theory of quasiconformal mappings,
non-Newtonian fluids, image processing, differential geometry, geometric function
theory, and probability theory (see [2, 3, 6, 7, 8, 13, 19, 20]). Moreover, problems (1)
and (2) possess more complicated nonlinearities, for example, it is inhomogeneous,
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so in the discussions, some special techniques will be needed. However, the inhomo-
geneous nonlinearities have important physical background. Therefore, equations
(1) and (2) may represent a variety of mathematical models corresponding to cer-
tain phenomenons (see [13]), e.g.,

(1) Nonlinear elasticity: φ(t) =
(
1 + t2

)α − 1, α > 1
2 ,

(2) Plasticity: φ(t) = tα (log (1 + t))
β
, α ≥ 1, β > 0,

(3) Generalized Newtonian fluids: φ(t) =
∫ t

0
s1−α

(
sinh−1 s

)β
ds,

0 ≤ α ≤ 1, β > 0.

In the present paper, we study the nonlocal problems (1) and (2) in the Orlicz-
Sobolev spaces. However, unlike the above mentioned papers, problems (1) and
(2) cannot be settled in the variational framework because of the functional M.
Indeed, the existence of M makes these problems very complicated and make us
force to apply different tools, such as the monotone operator theory, for this class of
problems. So, in that context, we use two well-known theorems named as Browder
theorem and Leray-Lions theorem. We want to remark that, to our best knowledge,
there is no paper which considers nonvariational nonlocal problems via monotone
operator methods in the Orlicz-Sobolev spaces, and hence, the results of the present
paper are new and original.

2. Preliminaries

To study problems (1) and (2), let us introduce the functional spaces where it
will be discussed. We will give just a brief review of some basic concepts and facts
of the theory of Orlicz and Orlicz-Sobolev spaces, useful for what follows, for more
details we refer the readers to the monographs ([1, 17, 21, 23]) and the papers
([5, 7, 8, 10, 15]).
The function a : (0,∞) → R is such that the mapping φ : R → R defined by

φ(t) :=

{
a(|t|)t for t ̸= 0,

0, fort = 0,

is an odd, strictly increasing homeomorphism from R onto R.
For the function φ, let us define

Φ(t) =

∫ t

0

φ(s)ds ∀t ∈ R.

The function Φ introduced above is a Young function, that is, Φ(0) = 0, Φ is convex,
and

lim
t→∞

Φ(t) = +∞.

Furthermore, since Φ(t) = 0 if and only if t = 0,

lim
t→0

Φ(t)

t
= 0 and lim

t→∞

Φ(t)

t
= +∞,

the function Φ is then called an N -function.
The function Φ∗ defined by the formula

Φ∗(t) =

∫ t

0

φ−1(s)ds ∀t ∈ R

is called the complementary function of Φ and it satisfies the condition

Φ∗(t) = sup{st− Φ(s) : s ≥ 0} ∀t ≥ 0.
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Notice that the function Φ∗ is also an N -function in the sense of the following
Young inequality

st ≤ Φ(s) + Φ∗(t) ∀s, t ≥ 0.

We define the numbers

φ0 := inf
t>0

tφ(t)

Φ(t)
andφ0 := sup

t>0

tφ(t)

Φ(t)
. (3)

Throughout this paper, we assume that

1 < φ0 ≤ tφ(t)

Φ(t)
≤ φ0 < ∞ ∀t ≥ 0, (4)

which implies that Φ satisfies the ∆2-condition, i.e.,

Φ(2t) ≤ KΦ(t) ∀t ≥ 0, (5)

where K is a positive constant (see,e.g., [21]).
In this paper, we also need the following condition

the function t 7→ Φ(
√
t) is convex for all t ∈ [0,∞). (6)

Under the condition (4), for a N -function Φ, the Orlicz space LΦ(Ω) coincides with
the set (equivalence classes) of measurable functions u : Ω → R such that∫

Ω

Φ(|u (x)|) dx < +∞

and is equipped with the (Luxemburg) norm, i.e.

∥u∥LΦ(Ω) = ∥u∥Φ := inf

{
k > 0 :

∫
Ω

Φ

(
|u (x)|

k

)
dx ≤ 1

}
,

which makes the pair (LΦ(Ω), ∥ · ∥Φ) a Banach space.
For the Orlicz spaces, the Hölder inequality holds (see [23]):∫

Ω

uv dx ≤ 2∥u∥LΦ(Ω)∥u∥L∗
Φ(Ω) u ∈ LΦ(Ω), v ∈ LΦ∗(Ω).

The Orlicz-Sobolev space W 1LΦ(Ω) is the space defined by

W 1LΦ(Ω) :=

{
u ∈ LΦ(Ω) :

∂u

∂xi
∈ LΦ(Ω), i = 1, 2, ..., N

}
,

and W 1LΦ(Ω) is a Banach space with respect to the norm

∥u∥W 1LΦ(Ω) = ∥u∥1,Φ := ∥u∥Φ + ∥|∇u|∥Φ.

Now, we introduce the Orlicz-Sobolev space W 1
0LΦ(Ω) as the closure of C∞

0 (Ω) in
W 1LΦ(Ω). It turns out that the space W 1

0LΦ(Ω) can be renormed by using as an
equivalent norm

∥u∥ := ∥|∇u|∥Φ.

Lemma 2.1 [see [3, 19, 20]] Let u ∈ W 1
0LΦ(Ω). Then we have

(i) ∥u∥φ0 ≤
∫
Ω
Φ(|∇u(x)|) dx ≤ ∥u∥φ0 if ∥u∥ < 1.

(ii) ∥u∥φ0 ≤
∫
Ω
Φ(|∇u(x)|) dx ≤ ∥u∥φ0

if ∥u∥ > 1.
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We notice that the Orlicz-Sobolev spaces, unlike the Sobolev spaces they gener-
alize, are in general neither separable nor reflexive. A key tool to guarantee these
properties is represented by the ∆2-condition (5). Actually, condition (5) assures
that both LΦ(Ω) and W 1

0LΦ(Ω) are separable (see [1]). Conditions (5) and (6) as-
sure that LΦ(Ω) is a uniformly convex space and thus, a reflexive Banach space (see
[20]); consequently, the Orlicz-Sobolev space W 1

0LΦ(Ω) is also a reflexive Banach
space.

We also note that with the help of condition (4), Orlicz-Sobolev space W 1
0LΦ(Ω)

is continuously embedded in the classical Sobolev space W 1,φ0

0 (Ω), as a result,
W 1

0LΦ(Ω) is continuously and compactly embedded in the classical Lebesgue space

Lq(Ω) for all 1 ≤ q < φ∗
0 := Nφ0

N−φ0
.

We can give certain examples of functions φ : R → R which are odd, increasing
homeomorphisms from R onto itself and satisfy conditions (4) and (6):

(1) Let φ (t) = p |t|p−2
t ∀t ∈ R, with p > 1: For this function it can be proved

that φ0 = φ0 = p. Besides, in this particular case the corresponding Orlicz
spaceLΦ(Ω) is the classical Lebesgue space Lp(Ω) while the Orlicz-Sobolev

space W 1
0LΦ(Ω) is the classical Sobolev space W 1,p

0 (Ω).

(2) Let φ(t) = log (1 + |t|α) |t|p−2
t ∀t ∈ R, with p, α > 1: For this function it

can be shown that φ0 = p, φ0 = p+ α.

(3) Let φ(t) = |t|p−2t
log(1+|t|) if t ̸= 0, φ(0) = 0, with p > 2: For this function we

have φ0 = p− 1, φ0 = p.

The main results of the present paper are based on the following well-known lem-
mas (see, e.g., [11]).

Lemma 2.2 [Browder] Let X be a reflexive real Banach space. Moreover, let
T : X → X∗ be an operator satisfying the conditions:

(i) T is bounded;
(ii) T is demicontinuous;
(iii) T is coercive;
(iv) T is monotone on the space X, i.e., for all u, v ∈ X we have

(T (u)− T (v) , u− v) ≥ 0. (7)

Then the equation

T (u) = h∗ (8)

has at least one solution u ∈ X for every h∗ ∈ X∗. If, moreover, the inequality (7)
is strict for all u, v ∈ X, u ̸= v, then the equation (8) has precisely one solution
u ∈ X for every h∗ ∈ X∗.

Lemma 2.3 [Leray-Lions] Let X be a reflexive real Banach space. Moreover,
let T : X → X∗ be an operator satisfying the conditions:

(i) T is bounded;
(ii) T is demicontinuous;
(iii) T is coercive.

Moreover, let there exists a bounded mapping Ψ : X ×X → X∗ such that

(iv) Ψ(u, u) = T (u) for every u ∈ X;
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(v) For all u,w, h ∈ X and any sequence {tn}∞n=1 of real numbers such that
tn → 0, we have

Ψ(u+ tnh,w) ⇀ Ψ(u,w);

(vi) For all u,w ∈ X we have (the so-called condition of monotonicity in the
principal part)

(Ψ(u, u)−Ψ(w, u), u− w) ≥ 0,

(vii) If un ⇀ u and

lim
n→∞

(Ψ(un, un)−Ψ(u, un), un − u) = 0,

then we have

Ψ(w, un) ⇀ Ψ(w, u) for arbitrary w ∈ X;

(viii) If w ∈ X, un ⇀ u and Ψ(w, un) ⇀ z, then

lim
n→∞

(Ψ(w, un), un) = (z, u).

Then the equation (8) has at least one solution u ∈ X for every h∗ ∈ X∗.

In the sequel, for function a introduced above, we assume that:
Define a : [0,+∞) → (0,+∞) such that there exist a constant a0 > 0 such that

a(t) ≥ a0 > 0, ∀t ∈ [0,+∞). (9)

We point out that a(t) = |t|p−2 + a0 satisfies the conditions mentioned for func-
tion a.

In the rest of this section, we prove the following auxiliary result.

Lemma 2.4 Assume that the condition (9) holds. Then for any k, l > 0, there
exists a positive constant C(δ), δ = min{1, a0, k, l}, such that

(ka(|ξ|)ξ − la(|η|)η, ξ − η) ≥ C(δ)Φ(|ξ − η|) ∀ξ, η ∈ RN . (10)

Proof. If we consider the homogeneity of norm, we can assume that |ξ| = 1 and
|η| ≤ 1. Moreover, according to a convenient basis in RN , we can assume

ξ = (1, 0, ..., 0) and η = (η1, η2, 0, ..., 0) with |η| ≤ 1.

Let also denote a (|ξ|) = aξ and a (|η|) = aη. Then we can proceed as follows: To
verify (10) holds, we will show

(kaξ − laηη1) (1− η1) + laηη
2
2

(1− η1)
2
+ η22

≥ C,

which is equivalent to (10). Then we must show that the function

β (t, s) =
kaξ − (laηt+ kaξt) s+ laηt

2

(1− 2st+ t2)
(11)

is bounded from below by a positive constant. Then for fixed t, we get

∂β

∂s
=

− (laηt+ kaξt)
(
1− 2st+ t2

)
−
(
kaξ − (laηt+ kaξt) s+ laηt

2
)
(−2t)

(1− 2st+ t2)
2 .

Then, we obtain

kaξ − (laηt+ kaξt) s+ laηt
2 =

(laη + kaξ)
(
1− 2st+ t2

)
2

, (12)
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when ∂β
∂s = 0. Therefore, replacing (12) in (11), we get

β (t, s) =
(laη + kaξ)

(
1− 2st+ t2

)
2 (1− 2st+ t2)

=
(laη + kaξ)

2
≥ C (δ)

2
> 0,

where δ = min{1, a0, k, l} > 0. The proof is completed.

3. Main results

In this section, we shall state and prove the main results of the paper by using
the monotone operator method. For brevity, we denote by X and X∗ the Orlicz-
Sobolev space W 1

0LΦ(Ω) and its dual space
(
W 1

0LΦ(Ω)
)∗
, respectively.

Let us define the operators J, F : X → X∗ by

(J(u), v) = M(u)

∫
Ω

(a(|∇u|)∇u∇v + a(|u|)uv) dx, ∀u, v ∈ X,

(F (u), v) =

∫
Ω

f(x, u)v dx, ∀u, v ∈ X,

and set

T := J − F.

Then, from the monotone operator theory, the solution function u ∈ X of (1)
satisfying the operator equation

T (u) = J (u)− F (u) = 0. (13)

is also the solution of the integral equation

M(u)

∫
Ω

(a(|∇u|)∇u∇v + a(|u|)uv) dx−
∫
Ω

f(x, u)vdx = 0 ∀v ∈ X. (14)

Namely, the existence of weak solution of problem (1) is equivalent to the existence
of solution of the operator equation (13) (see, e.g., [11, 14]).

Our first result is given by the following theorem.

Theorem 3.1 Assume that the following assertions hold:

(f0) f : Ω × R → R is a Carathéodory function, and assume that there exist
C2 > 0 such that

|f(x, t)| ≤ C2

(
1 + |t|q−1

)
,

for all t ∈ R and a.e. x ∈ Ω, where φ0 < q < φ∗
0;

(f1) f(x, 0) = 0 and (f(x, t)− f(x, s))(t− s) ≤ 0 for all s, t ∈ R and a.e. x ∈ Ω;
(M0) M : X → (0,+∞) is continuous and bounded on any bounded subset of X

such that there are constants m0,m1 > 0 such that m0 ≤ M(u) ≤ m1 for
all u ∈ X.
Then problem (1) has precisely one weak solution.

Proof. It is obvious from (f0) that T is well defined. Indeed, we first see that the
functional ∫

Ω

(a(|∇u|)∇u∇v + a(|u|)uv) dx
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is well defined. Moreover, taking into account that M is bounded and continuous
then boundedness and continuity (and hence demicontinuity) of T is derived.
From (f1) and (M0), for sufficiently large ∥u∥, using Lemma 2.1

(T (u), u) = M(u)

∫
Ω

(
a(|∇u|) |∇u|2 + a(|u|) |u|2

)
dx−

∫
Ω

f(x, u)udx

≥ m0 ∥u∥φ0 ,

which shows that T is coercive. Let us show the monotonicity of T . If u = v,
T (u) = T (v). For the case u ̸= v, from (f1) and (M0) and Lemma 2.4 we have

(T (u)− T (v), u− v)

≥ M(u)

∫
Ω

(a(|∇u|)∇u(∇u−∇v) + a(|u|)u(u− v)) dx

−M(v)

∫
Ω

(a(|∇v|)∇v(∇u−∇v) + a(|v|)v(u− v)) dx

=

∫
Ω

(M(u)a(|∇u|)∇u−M(v)a(|∇v|)∇v) (∇u−∇v) dx

+

∫
Ω

(M(u)a(|u|)u−M(v)a(|v|)v)) (u− v) dx

≥ C(δ)

∫
Ω

(Φ(|∇u−∇v|) + Φ(|u− v|)) dx,

where δ = min{1, a0,M(u),M(v)}. This implies the monotonicity of T . As a
consequence of Lemma 2.2, the equation

T (u) = J (u)− F (u) = h∗

has at least one solution u ∈ X for every h∗ ∈ X∗. Moreover, since the last
inequality above is strict, it follows then from Lemma 2.2 that there is a unique
solution of (13), which in turn is a unique weak solution of (1). The proof is
completed.

We want to remark that the operator

Th∗ (u) := T (u)− h∗

also satisfies all the conditions of Lemma 2.2. Therefore, it suffices to prove that
the operator equation (13) has at least one solution, as we showed.

Now, we consider problem (2). Similarly, we define the operators I,K : X → X∗

by

(I(u), v) = M(u)

∫
Ω

a(|∇u|)∇u∇v dx ∀u, v ∈ X,

(K(u), v) = M(u)

∫
Ω

g(x, u,∇u)v dx ∀u, v ∈ X,

and set

G := I +K − F,

where operator F is defined as previous. Then, the solution u ∈ X of (2) satisfying
the operator equation

G (u) = I (u) +K (u)− F (u) = 0 (15)
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is also the solution of the integral equation

M(u)

∫
Ω

(a(|∇u|)∇u∇v + g(x, u,∇u)v) dx−
∫
Ω

f(x, u)v dx = 0 ∀v ∈ X. (16)

This fact shows that the solutions of (15) correspond to the weak solutions of
problem (2).

The second result of the present paper is:

Theorem 3.2 Assume that the conditions (f0), (f1) and (M0) hold. In addition,
suppose that the function g : Ω × RN+1 → R is a Carathéodory function, and for
all (t, ξ1, ξ2, ...ξN ) ∈ RN+1 and a.e. x ∈ Ω, it satisfies the followings:

(g0) there exist a constant C > 0 and a function h ∈ Lφ′
0(Ω) such that

|g(x, t, ξ1, ξ2, ..., ξN )| ≤ h(x) + C

N∑
i=1

|ξi|r−ϵ,

where r = φ0 − 1 + ϵ with ϵ ∈ (0, 1);
(g1) the inequality

g(x, t, ξ1, ξ2, ..., ξN )t ≥ 0,

holds.
Then problem (2) has at least one solution.

Proof. From Theorem 3.1, we know that I is bounded and continuous. Moreover,
by compact embeddingX ↪→ Lq (Ω) and assumption (f0) the operator F is bounded
and (sequentially weakly-strongly) continuous. Let us proceed for K. First of all,
it is immediately seen that K(u) is linear in v. To establish its continuity it suffices
to check that

sup
∥v∥≤1

|(K(u), v)| < ∞. (17)

Therefore, using (M0), (g0), Hölder inequality and continuous embedding, we have

∥K(u)∥ = sup
∥v∥≤1

|(K(u), v)| = sup
∥v∥≤1

∣∣∣∣M(u)

∫
Ω

g(x, u,∇u)v dx

∣∣∣∣
≤ m1 sup

∥v∥≤1

∫
Ω

∣∣∣∣∣h(x) + C
N∑
i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣r−ϵ
∣∣∣∣∣ |v| dx

≤ m1 sup
∥v∥≤1

(∫
Ω

|h|φ′
0
|v|φ0 + C

∣∣|∇u|r−ϵ
∣∣
φ′

0
|v|φ0

)
≤ Cm1∥u∥r−ϵ sup

∥v∥≤1

∥v∥

≤ Cm1∥u∥r−ϵ, φ′
0 =

φ0

φ0 − 1
.

Therefore, K is bounded, and hence it is continuous. As a consequence, G is
bounded and continuous. From (f1) , (M0) and (g1), for sufficiently large ∥u∥, we
have

(G(u), u) = M(u)

∫
Ω

(
a(|∇u|)|∇u|2 + g(x, u,∇u)u

)
dx−

∫
Ω

f (x, u)udx

≥ m0 ∥u∥φ0 ,
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which implies that G is coercive. The assumptions (i)-(iii) are verified.
Let us define an operator Ψ : X ×X → X∗ by

(Ψ(u,w), v) := (I(u), v) + (L(w), v), ∀u,w, v ∈ X,

where L := K − F , and hence L : X → X∗ is also bounded and continuous. Then

(Ψ(u, u), v) = M(u)

∫
Ω

(a(|∇u|)∇u∇v + g(x, u,∇u)v) dx−
∫
Ω

f (x, u) v = (G(u), v),

i.e., Ψ(u, u) = G(u) for all u ∈ X, so assumption (iv) is verified. In order to verify
the assumption (v), let u,w, h ∈ X and any sequence of real numbers {tn}∞n=1 such
that tn → 0 as n → ∞. Then

Ψ(u+ tnh,w) = I(u+ tnh) + L(w).

Since I is continuous, we have

I(u+ tnh,w) + L(w) → I(u) + L(w),

or
Ψ(u+ tnh,w) → Ψ(u,w).

Let us continue for the assumption (vi). Using Lemma 2.4 and Lemma 2.1, respec-
tively, we have

(Ψ(u, u)−Ψ(w, u), u− w) = (I(u), u− w) + (L(u), u− w)− (I (w) , u− w)− (L (u) , u− w)

=

∫
Ω

(M(u)a(|∇u|)∇u−M(w)a(|∇w|)∇w,∇u−∇w) dx

≥ C(δ)

∫
Ω

Φ(|∇u−∇w|) dx

≥ C(δ)min
{
∥u− w∥φ0 , ∥u− w∥φ

0
}
≥ 0,

where δ = min{1, a0,M(u),M(w)}. For the assumption (vii), let us assume that
un ⇀ u in X and

lim
n→∞

(Ψ(un, un)−Ψ(u, un), un − u) = 0,

which is equivalent to

lim
n→∞

(I(un)− I(u), un − u) = 0. (18)

Since un ⇀ u in X, the sequence {un} is bounded in X. Therefore, from conditions
(9) and (M0), the functions a andM are bounded for any n ∈ N. Then from Lemma
2.4 and Lemma 2.1, we have

(I(un)− I(u), un − u) =

∫
Ω

(M(un)a(|∇un|)∇un −M(u)a(|∇u|)∇u,∇un −∇u) dx

≥ C(δn)

∫
Ω

Φ(|∇un −∇u|) dx

≥ C(δn)min
{
∥un − u∥φ0 , ∥un − u∥φ

0
}
≥ 0,

where δn = min{1, a0,M(un),M(u)}. From the proof of Lemma 2.4 and the
condition (M0), it is easy to see that C(δn) > 0 for all n. Therefore, considering
(18), we must have that ∥un − u∥ → 0 as n → ∞, i.e., un → u in X.
In addition, by continuity of L, we have

Ψ(w, un) = I(w) + L(un) → I(w) + L(u) = Ψ(w, u)
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for arbitrary w ∈ X.
Finally, let w ∈ X and un ⇀ u in X. Then, by continuity of L, we get

(Ψ(w, un), un) = (I(w), un) + (L(un), un) → (I(w), u) + (L(u), u) = (Ψ(w, u), u).

Since un ⇀ u in X, we also have Ψ(w, un) → I(w) + L(u) = Ψ(w, u), which
verifies the assumption (viii). Consequently, from Lemma 2.3, operator equation
(15) has at least one solution, which is a weak solution of problem (2). The proof
is completed.
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