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GRADIENT RECOVERY TECHNIQUES IN ONE-DIMENSIONAL
GOAL-ORIENTED PROBLEMS

M. EL-AGAMY, A. ELSAID, H. M. NOUR

Abstract. In this paper, we propose a new technique to evaluate a posteriori
error estimate for goal-oriented problems using recovery techniques. In our
technique, we replace the gradient in the goal-oriented error estimate by the
recovered gradient obtained by the polynomial preserving recovery technique.
Also, we present a new local re�nement algorithm suitable to the proposed
technique. Finally, the validity of the proposed technique is illustrated by
numerical examples.

1. Introduction

Adaptive control based on a posteriori error estimates has become standard in
�nite element methods. Having established a �nite element space, we iterate the
procedure (Solve � Estimate � Re�ne) until a stopping criterion is satis�ed [1].
Generally, error estimators can be classi�ed under two categories. The �rst one
is the residual type estimators, as in [2], and the second one is the recovery type
estimators, as in [3].
Goal-oriented methods have been conceived in the 1990s as a generalization to

classical a posteriori error estimation methods. The idea of goal-oriented methods
indicates that the numerical simulations are generally performed to study speci�c
features of solutions to initial and boundary-value problems. These are the quanti-
ties of interest and represent the goals of the predictions. Obviously, it is important
to be able to estimate the error in such quantities of interest and use these estimates
to adapt the mesh in order to control their accuracy. Despite considerable progress,
many of the popular techniques are based on the residual type estimators, as in
[4]-[11].
Finite element recovery techniques are post-processing methods that reconstruct

numerical approximations from �nite element solutions to obtain the improved
solutions. The practical usage of the recovery technique is not only to improve the
quality of the approximation, but also to construct recovery type a posteriori error
estimators in adaptive computation [12].
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In the literature of �nite element recovery methods, gradient recovery has at-
tracted considerable attentions from scientists and engineers. Di¤erent kinds of
gradient recovery techniques are developed based on weighted averaging [13], [14],
local or global projections [15]-[17], smoothing techniques [18], [19] and least-square
type methods [20]-[22]. Gradient recovery technique has been widely used in engi-
neering practice for its robustness as an a posteriori error estimator, its supercon-
vergence of the recovered derivatives, and its e¢ ciency in implementation; see, e.g.,
[23]-[30] and references therein.
In this work, a new approach for evaluating a posteriori error estimate for goal-

oriented problems is presented. This approach is based on replacing the gradient
in the goal-oriented error estimate by the recovered gradient obtained by the poly-
nomial preserving recovery (PPR) introduced in [21], [26]. Also, a new local re-
�nement algorithm that properly implements the proposed technique is suggested.
We conclude this work by presenting the results of some numerical examples that
illustrate the e¢ ciency of the new technique.

2. Goal-oriented error estimation

Suppose that we are given the elliptic boundary-value problem

��u = f in 
; u = 0 on @
; (1)

and a linear functional G such that G(u) is a quantity of physical, engineering or
scienti�c interest. In order to approximate G(u), one may compute G(uh), where
uh is the linear �nite element approximation to u over a conforming mesh T of 
.
We are interested in estimating the goal-oriented error eh

eh = jG (u� uh)j = jhu� uh ; Gij ; (2)

where h. ; .i denotes the standard scalar product. Numerous contributions have
been made to have an upper bound to eh in both the mathematical and engineering
literature and the reader is referred to the approaches [5]-[10] for further details and
references. In [11], the authors discussed the disadvantages of these approaches and
also develop and compare a number of alternative approaches to obtain guaranteed
and fully computable bounds to eh of arbitrary order �nite element approximations
in the context of a linear second-order elliptic problem.
In fact, combining the solution of the dual problem

��z = f in 
; z = 0 on @
; (3)

with Galerkin orthogonality yields the representation formula

G (u� uh) = h��z ; u� uhi
= hrz ; r (u� uh)i
= hr (u� uh) ; r (z � zh)i ; (4)

where zh is the linear �nite element approximation of z [9]. We develop an al-
ternative approach to obtain bound to the goal-oriented error. The exact gradients
in (4) are replaced by the recovered gradients obtained by the PPR technique. So,
the estimated error �h is calculated by the scalar product
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�h = hRhuh �ruh ; Rhzh �rzhi ; (5)

where Rhuh and Rhzh are the PPR recovered gradients of uh and zh, respectively.

3. PPR technique

Gradient recovery techniques are classi�ed into three types: averaging techniques
[31], projection techniques [32], and �ltering techniques [13]. Any of the aforemen-
tioned techniques has a drawback: complexity, long computational time, meshes
must have special structure, or �nite elements must be low in order. In an attempt
to overcome these problems, Zienkiewicz and Zhu [29] developed the well-known
superconvergent patch recovery (SPR) which enjoys several advantages.
In [21] and [26], the authors aimed to design a new gradient recovery technique

that systematically works in �nite element methods of all orders in 2D and 3D and
at the same time inherits the good properties of the SPR. To achieve this goal, the
authors introduced the PPR and they analyzed and showed that the PPR is as
good as or better than the SPR.
To recover the gradient using the PPR technique at a mesh node p, a patch �p of

elements is selected. Then, a polynomial that best �ts the �nite element solution, in
least-squares sense, at the mesh nodes in �p is constructed. The recovered gradient
is de�ned to be the gradient of the �tting polynomial. Nodes on @
 are handled in
the same way, although they need extra care in constructing their patches [26].
It was found that the convergence rate at some exceptional points of the domain

exceeds the global known optimal rates. The term �superconvergence� was sug-
gested as a name for this phenomenon. Currently, this term is used in a broader
sense where, at least, three types of superconvergence are identi�ed:
1. Pointwise superconvergence in which the known global convergence rates are

exceeded at some a priori known points.
2. Interpolantwise superconvergence. In this type uh (ruh) is a higher order

perturbation of a special projection of u (ru) onto the �nite element space.
3. Superconvergence by postprocessing. This type is observed in approximations

of u or ru obtained with various means of postprocessing where the resulting
approximations may have accelerated convergence rates in 
0 � 
.
The PPR-recovered gradient has a superconvergence property. As it is known, if

the recovered gradient is superconvergent to the exact gradient, then the a posteriori
error estimator based on this recovered gradient is exact in asymptotic sense.

4. Local refinement algorithm

After having computed the local error estimate, we now face the problem of
marking the elements that have to be re�ned. Di¤erent approaches for marking
strategies can be found in [1]. Let �h;0 be the initial mesh. Now we start the
procedure to compute a sequence of meshes and approximate solutions. Compute
the local error estimate �h;T for every element T of the mesh �h;k for some integer
k � 0 and set an appropriate tolerance for the error estimate and choose �; � 2
(0; 1).
The approaches in [1] provide a measure for the total error by

�2h =
P
T2�h

�2h;T . (6)
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We propose a new algorithm in the following procedure, compatible with estimate
(5) we proposed for the goal-oriented problems.
while (j�hj > tolerance) do

sum = 0 ;
t = 1 ;
while (jsumj < � : j�hj) do

t = t� � ;
if (t 6= 0)
for all T 2 �h;k

if (T is not marked)
if (
���h;T �� > t : ���h;T ��max) mark T ;
sum = sum + �h;T ;

By choosing � we can control how �ne the procedure should work. One may
choose � depending on the complexity of f . Note that this algorithm is not expen-
sive in its computational cost, because all local errors have already been computed.
Having marked the elements, we re�ne the mesh appropriately and then solve again.

5. Numerical examples

We apply the proposed approach to obtain an estimate for the goal-oriented
error to one-dimensional problems. Numerical examples are presented to show the
resulting estimator provide tight bound with the e¤ectivity index �h de�ned by

�h = j�hj =eh ; (7)

tending to unity.
We suppose that the main goal is to obtain an �accurate�value of the solution u

or du=dx at a given point x0 in [0; 1]. We appeal here to the use of the molli�cation
introduced in [4], which allows us to introduce the following quantity of interest

L�(u;x0) =
1R
0

u(x):G�(x� x0) dx; (8)

or

L�(u;x0) =
1R
0

du

dx
(x):G�(x� x0) dx: (9)

The mollifying process can be viewed as an averaging of the quantity u or du=dx
over a small neighborhood of the point x0. This approach is also suited to estimate
the pointwise error in the �rst derivatives of the solution, since pointwise derivatives
are generally not de�ned at the element interfaces for the �nite element solution.
It is customary to choose the molli�ers G� of the form

G�(x� x0) = C . exp
�

�2

(x� x0)2 � �2

�
; (10)

if jx� x0j < � and G�(x�x0) = 0 elsewhere. The constant C, depends on � and
x0, is selected to satisfy

x0+�R
x0��

G�(x� x0)dx = 1; (11)
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a numerical integration of the last integral provides that C � 2:2523 ��1 [4]. In
the following examples, we �x the following parameters

� = 0:1; � = 0:25; x0 = 0:5 and tolerance 10�6

and explore the in�uence of the parameter � with respect to the mesh size h on
the e¤ectivity index �h de�ned by (7).

Example 1.

Consider the problem

� u00 = f in 
; u = 0 on @
; (12)
and the dual problem

� z00 = G in 
; z = 0 on @
; (13)
where 
 is [0; 1].
We choose f so that the exact solution is

u(x) = x(x� 1): (14)

Figure 1. The initial mesh (16 nodes)

Figure 2. E¤ectivity index for � = 0:1

Figure 3. Final mesh for � = 0:1

Figure 4. Zoom in for �nal mesh for � = 0:1
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Figure 5. E¤ectivity index for � = 0:15

Figure 6. Final mesh for � = 0:15

Figure 7. Zoom in for �nal mesh for � = 0:15

Figure 8. E¤ectivity index for � = 0:2

Figure 9. Final mesh for � = 0:2

Figure 10. Zoom in for �nal mesh for � = 0:2
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The graphs show that the e¤ectivity index tends to unity in a fast rate and for
di¤erent values of �. We note that the solution to this problem has an extrema at
x0 = 0:5:

Example 2.

For the equations in (12) and (13), we choose another f so that

u(x) = x4 (x� 1); (15)

and start with the same initial mesh as in Example 1 (Figure 1).

Figure 11. E¤ectivity index for � = 0:1

Figure 12. Final mesh for � = 0:1

Figure 13. Zoom in for �nal mesh for � = 0:1

Figure 14. E¤ectivity index for � = 0:15
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Figure 15. Final mesh for � = 0:15

Figure 16. Zoom in for �nal mesh for � = 0:15

Figure 17. E¤ectivity index for � = 0:2

Figure 18. Final mesh for � = 0:2

Figure 19. Zoom in for �nal mesh for � = 0:2

The solution of this example has an extrema at x = 0:8. The �gures show that
when � is large enough such that the neighborhood of this extrema intersects with
the compact support of the function G, the e¤ectivity index exhibits high oscillation
before it reaches unity.

Example 3.

We extend the methodology to another problem

� d

dx
[(x+ 1) u0] + u = f in 
; u = 0 on @
; (16)

where 
 is [0; 1]. Set f so that the solution of this problem given by (14). Also,
we start with the initial mesh in Figure 1.
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Figure 20. E¤ectivity index for � = 0:1

Figure 21. Final mesh for � = 0:1

Figure 22. Zoom in for �nal mesh for � = 0:1

Figure 23. E¤ectivity index for � = 0:15

Figure 24. Final mesh for � = 0:15

Figure 25. Zoom in for �nal mesh for � = 0:15
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Figure 26. E¤ectivity index for � = 0:2

Figure 27. Final mesh for � = 0:2

Figure 28. Zoom in for �nal mesh for � = 0:2

The graphs of the mesh re�nement of this problem show that some re�nement is
made outside the domain of the function G near the left boundary of the problem
domain. Also, though the e¤ectivity index tends to unity, the oscillations in the
graphs indicate that the proposed algorithm requires some modi�cations to tackle
problems with variable coe¢ cients in a faster way.

6. Conclusion

In this work, we proposed a new technique for evaluating a posteriori error
estimate for one-dimensional goal-oriented problems. In the error estimate, the
gradients for the exact solution to the original and dual problems are replaced by
the corresponding recovered gradients obtained by the PPR technique.
The results obtained in the numerical examples illustrate that, due to the super-

convergence of the recovered gradients, the error estimate provides a tight bound
with e¤ectivity index tending to unity. In comparison with the other techniques,
the results are accomplished with smaller number of degrees of freedom. We note
that there are several parameters that contribute to the results of the proposed tech-
nique. This includes the initial mesh and the parameters of the local re�nement
algorithm such as �, � and the error tolerance.
In view of these promising results, the authors plan to investigate the perfor-

mance of the method on two-dimensional problems, to analyze the behavior for
various linear functionals of general interest, and to extend the methodology to
other classes of problems.
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