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EXISTENCE AND HYERS-ULAM STABILITY OF NONLINEAR

IMPULSIVE DIFFERENTIAL EQUATIONS WITH NONLOCAL

CONDITIONS

CHINNASAMY. PARTHASARATHY

Abstract. In this article, we study the nonlinear impulsive differential equa-

tions with nonlocal conditions in β-normed spaces. We have approached the
new concepts of β-Ulam’s type stability. Also we present sufficient conditions
for the existence of solutions for impulsive Cauchy problem. Then we obtain
generalized β-Ulam-Hyers-Rassias stability results for the impulsive problems

on a compact interval with nonlocal conditions.

1. Introduction

In the past decades, many researchers studied differential equations with instan-
taneous impulses of the type

x′(t) = f(t, x(t)), t ∈ J ′ := J \ {t1, . . . , tm}, J := [0, T ],

x(t+k ) = x(t−k ) + Ik(x(t
−
k )), k = 1, 2, . . . ,m.

(1)

where f : J × R → R and Ik : R → R and tk satisfy 0 = t0 < t1 < · · · < tm <
tm+1 = T , x(t+k ) = limϵ→0+ x(tk + ϵ) and x(t−k ) = limϵ→0− x(tk + ϵ) represent
the right and left limits of x(t) at t = tk respectively. Here, Ik is a sequence of
instantaneously impulse operators and have been used to describe abrupt changes
such as shocks, harvesting, and natural disasters. For more existence, stability and
periodic solutions on (1) and other impulsive models, one can read the monographs
of [8, 11, 26]. Furthermore, the result of Hyers-Ulam stability for linear differential
equations have been generalized in [1, 2, 3, 4, 5].

In pharmacotherapy, the above instantaneous impulses can not describe the cer-
tain dynamics of evolution processes. For example, one considers the hemodynamic
equilibrium of a person, the introduction of the drugs in the bloodstream and the
consequent absorption for the body are gradual and continuous process. So we do
not expect to use (1) to describe such process. In fact, the above situation should
be shown by a new case of impulsive action, which starts at an arbitrary fixed
point and stays active on a finite time interval. From the viewpoint of general
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theories, Hernández and O’Regan [16] initially offered to study a new class of ab-
stract semilinear impulsive differential equations with not instantaneous impulses
in a PC-normed Banach space. Meanwhile, Pierri et al. [23] continue the work in
a PCα-normed Banach space and develop the results in [16].

Motivated by [16, 23, 25, 28], we continue to study existence and uniqueness of
solutions to differential equations with not instantaneous impulses in a Pβ-normed
Banach space (see Section 2) of the form

u′(t) = Au(t) + f(t, u(t), T u(t),Su(t)), t ∈ (si, ti+1], i = 0, 1, 2, . . . ,m,

u(0) + g(u) = u0,

u(t) = ζi(t, u(t)), t ∈ (ti, si], i = 1, 2, . . . ,m,

(2)

in a Banach space X, where A is the infinitesimal generator of a strongly continuous
semigroup {S(t)|t ≥ 0} and ti, si are pre-fixed numbers satisfying 0 = s0 < t1 ≤
s1 ≤ t2 < · · · < sm−1 ≤ tm ≤ sm ≤ tm+1 = T , f : [0, T ] × X × X × X → X is
continuous, g ∈ PC(J,X) and ζi : [ti, si]×X → X is continuous for all i = 1, 2, . . . ,m,

T u(t) =
∫ t

0

K(t, s)u(s)ds, K ∈ C[D,R+],

Su(t) =
∫ t

0

H(t, s)u(s)ds, H ∈ C[N ,R+],

where D = {(t, s) ∈ R2} : 0 ≤ s ≤ t ≤ T , N = {(t, s) ∈ R2} : 0 ≤ s ≤ t ≤ T and
PC(J,X) consist of a function u that are a map from J into X such that u(t) is
continuous.

It is remarkable that Ulam type stability problems [27] have attracted many
famous researchers. The readers can refer to monographs of Hyers [17], [18], Rassias
[24] and other recent works [6, 7, 13, 14, 15, 19, 20, 21, 22] in standard normed
spaces and [12, 29] in β-normed spaces.

We introduce some auxiliary facts and offer four new concepts of β-Ulam’s type
stability for (2) (see Definitions 2.3–2.6). This is our main original contribution of
this paper. As a result, existence and uniqueness and a generalized β-Ulam’s type
stability result on a compact interval are established.

2. Preliminaries

Definition 2.1. ([9]) Suppose E is a vector space over K. A function ∥ · ∥β (0 <
β ≤ 1) : E → [0,∞) is called a β-norm if and only if it satisfies (i) ∥x∥β = 0
if and only if x = 0; (ii) ∥λx∥β = |λ|β∥x∥β for all λ ∈ K and all x ∈ E; (iii)
∥x + y∥β ≤ ∥x∥β + ∥y∥β . The pair (E, ∥ · ∥β) is called a β-normed space. A
β-Banach space is a complete β-normed space.

Throughout this paper, let J = [0, T ], β ∈ (0, 1) be a fixed constant and C(J,X)
be the Banach space of all continuous functions from J into X with the new norm
∥x∥β := max{|x(t)|β : t ∈ J} for x ∈ C(J,X). We need the Pβ-Banach space
PC(J,X) := {x : J → R : x ∈ C((tk, tk+1],X), k = 0, 1, . . . ,m and there exist x(t−k )

and x(t+k ), k = 1, . . . ,m, with x(t−k ) = x(tk)} with the norm ∥x∥Pβ := sup{|x(t)|β :

t ∈ J}. Meanwhile, we set PC1(J,X) := {x ∈ PC(J,X) : x′ ∈ PC(J,X)} with
∥x∥Pβ1 := max{∥x∥β , ∥x′∥β}. Clearly, PC1(J,X) endowed with the norm ∥ · ∥Pβ1

is a Pβ-Banach space.
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Definition 2.2 ([16]). A function x ∈ PC1(J,X) is called a solution of the problem

u′(t) = Au(t) + f(t, u(t), T u(t),Su(t)), t ∈ (si, ti+1], i = 0, 1, 2, . . . ,m,

u(t) = ζi(t, u(t)), t ∈ (ti, si], i = 1, 2, . . . ,m,

u(0) + g(u) = u0, u0 ∈ X,
(3)

if u satisfies

u(0) = x0 − g(u);

u(t) = ζi(t, u(t)), t ∈ (ti, si], i = 1, 2, . . . ,m;

u(t) = S(t)[u0 − g(u)] +

∫ t

0

S(t− s)f(s, u(s), T u(s),Su(s))ds, t ∈ [0, t1];

u(t) = S(t)[ζi(si, u(si))− g(u)] +

∫ t

si

S(t− s)f(s, x(s), T u(s),Su(s))ds,

t ∈ (si, ti+1], i = 1, 2, . . . ,m.

In general, we do not expect to get a precise solution of (2.1). However, we can
try to get a function which satisfies some suitable approximation inequalities.

Let 0 < β < 1, ϵ > 0, ψ ≥ 0 and φ ∈ PC(J,R+). We consider the following
inequalities:

|v′(t)−Av(t)− f(t, v(t), T v(t),Sv(t))| ≤ ϵ, t ∈ (si, ti+1], i = 0, 1, 2, . . . ,m,

|v(t)− ζi(t, v(t)) + g(t)| ≤ ϵ, t ∈ (ti, si], i = 1, 2, . . . ,m,
(4)

and

|v′(t)−Av(t)− f(t, v(t), T v(t),Sv(t))| ≤ φ(t), t ∈ (si, ti+1], i = 0, 1, 2, . . . ,m,

|v(t)− ζi(t, v(t)) + g(t)| ≤ ψ, t ∈ (ti, si], i = 1, 2, . . . ,m,

(5)
and

|v′(t)−Av(t)− f(t, v(t), T v(t),Sv(t))| ≤ ϵφ(t), t ∈ (si, ti+1], i = 0, 1, 2, . . . ,m,

|v(t)− ζi(t, v(t)) + g(t)| ≤ ϵψ, t ∈ (ti, si], i = 1, 2, . . . ,m.

(6)
Next, our aim is to find a solution v(·) close to the measured output u(·) and

whose closeness is defined in the sense of β-Ulam’s type stabilities.

Definition 2.3. Equation (2) is β-Ulam-Hyers stable if there exists a real num-
ber cfj ,M,G,β, ζi,φ > 0 such that for each ϵ > 0 and for each solution y ∈ PC1(J,X)
of (4) there exists a solution x ∈ PC1(J,X) of (2) with

|v(t)− u(t)|β ≤ cfj ,M,G,β,ζi,φϵ
β , t ∈ J.

Definition 2.4. Equation (2) is generalized β-Ulam-Hyers stable if there
exists θfj , M, G, β, ζi, φ ∈ C(R+,R+), θfj ,M,G,β,ζi,φ(0) = 0 such that for each solu-

tion y ∈ PC1(J,X) of (4) there exists a solution x ∈ PC1(J,X) of (2) with

|v(t)− u(t)|β ≤ θfj ,M,G,β,ζi,φ(ϵ
β), t ∈ J.

Definition 2.5. Equation (2) is β-Ulam-Hyers-Rassias stable with respect to (φ,ψ)
if there exists cfj ,M,G,β,ζi,φ > 0 such that for each ϵ > 0 and for each solution

y ∈ PC1(J,X) of (6) there exists a solution x ∈ PC1(J,X) of (2) with
|v(t)− u(t)|β ≤ cfj ,M,G,β,ζi,φϵ

β(ψβ + φβ(t)), t ∈ J.
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Definition 2.6. Equation (2) is generalized β-Ulam-Hyers-Rassias stable with
respect to (φ,ψ) if there exists cfj ,M,G,β,ζi,φ > 0 such that for each solution

y ∈ PC1(J,X) of (5) there exists a solution x ∈ PC1(J,X) of (2) with

|v(t)− u(t)|β ≤ cfj ,M,G,β,ζi,φ(ψ
β + φβ(t)), t ∈ J.

Obviously, (i) Definition 2.3 implies Definition 2.4; (ii) Definition 2.5 implies
Definition 2.6; (iii) Definition 2.5 for φ(·) = ψ = 1 implies Definition 2.3; (iv)
Definitions 2.3-2.6 become to Ulam’s stability concepts in Wang et al. [28] when
β = 1 and si = ti.

Remark 2.1. A function v ∈ PC1(J,R) is a solution of (5) if and only if there is
G ∈ PC(J,R) and a sequence Gi, i = 1, 2, . . . ,m (which depend on y) such that

(i) |G(t)| ≤ φ(t), t ∈ J and |Gi| ≤ ψ, i = 1, 2, . . . ,m;
(ii) v′(t) = Av(t) + f(t, v(t)) +G(t), t ∈ (si, ti+1], i = 0, 1, 2, . . . ,m;
(iii) v(t) = gi(t, v(t)) +Gi, t ∈ (ti, si], i = 1, 2, . . . ,m.

By remark 2.1 we get the following results.

Remark 2.2. If v ∈ PC1(J,X) is a solution of (5) then v is a solution of the
integral inequality

|v(t)− S(t− s)[ζi(t, v(t))− g(t)]| ≤ Mψ, t ∈ (ti, si], i = 1, 2, . . . ,m;∣∣v(t)− S(t− s)[v(0)− g(x)]

∫ t

0

S(t− s)f(s, v(s), T v(s),Sv(s))ds
∣∣

≤
∫ t

0

∥S(t− s)∥φ(s)ds, t ∈ [0, t1];

(7)

∣∣v(t)− S(t− s)[ζi(si, v(si))− g(x)]−
∫ t

si

S(t− s)f(s, v(s)T v(s),Sv(s))ds
∣∣

≤ ∥S(t− s)∥ψ +

∫ t

si

∥S(t− s)∥φ(s)ds, t ∈ [si, ti+1], i = 1, 2, . . . ,m.

We can give similar remarks for the solutions of the inequalities (4) and (6). To
study Ulam’s type stability, we need the following integral inequality results (see
[10, Theorem 16.4]).

Lemma 2.1. (i) Let the following inequality holds

u(t) ≤ a(t) +

∫ t

0

b(s)u(s)ds, t ≥ 0,

where u, a,∈ PC(R+,R+), a is nondecreasing and b(t) > 0. Then, for t ∈ R+,

u(t) ≤ a(t) exp
(∫ t

0

b(s)ds
)
.

(ii) Assume

u(t) ≤ a(t) + δu(t) +

∫ t

0

b(s)u(s)ds+
∑

0<tk<t

βku(t
−
k ), t ≥ 0,
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where u, δ, a, b ∈ PC(R+,R+), a, δ is nondecreasing and b(t) > 0, βk > 0,
k ∈ {1, . . . ,m}. Then, for t ∈ R+,

u(t) ≤ a(t)(1 + β + δ)k exp
(∫ t

0

b(s)ds
)
, t ∈ (tk, tk+1], k ∈ {1, . . . ,m},

where β = supk∈{1,...,m}{βk}.

3. Main results

We use the following assumptions:

(H1) A is the infinitesimal generator of a strongly continuous semigroup S(t),
whose domain D(A) is dense in H such that ∥S(t)∥ ≤ M, for all t ∈ J .

(H2) f ∈ C(J×X×X×X → X), g :→ X and there exists constants Lf1 ,Lf2 ,Lf3 ≥
0, G ≥ 0 such that

|f(t, x1, x2, x3)− f(t, y1, y2, y3)| ≤ Lf1 |x1 − y1|+ Lf2 |x2 − y2|+ Lf3 |x3 − y3|,

t ∈ J , xj , yj ∈ X, j = 1, 2, 3.

|g(η1)− g(η2) ≤ G|η1 − η2|, η1, η2 ∈ PC(J,X).

(H3) Denote Mf = max{Mf1 ,Mf2 ,Mf2}, K∗ = sup
t∈J

∫ t

0

|K(t, s)|dt ≤ ∞ ,

H∗ = sup
t∈J

∫ t

0

|H(t, s)|dt ≤ ∞.

(H4) ζi ∈ C([ti, si] × X,X) and there are positive constants Lζi , i = 1, 2, . . . ,m
such that

|ζi(t, u1)− ζi(t, u2)| ≤ Lζi |u1 − u2|,

for each t ∈ [ti, si] and all u1, u2 ∈ R.
(H5) : Let φ ∈ C(J,R+) be a nondecreasing function. There exists cφ > 0 such

that ∫ t

0

φ(s)ds ≤ cφφ(t),

for each t ∈ J .

Concerning the existence and uniqueness result for the solutions to (3), we give
the following theorem.

Theorem 3.1. Assume that (H1)–(H4) are satisfied. Then (3) has a unique solu-
tion x provided that

Ω := max

{
M

[
Gβ + Lβ

ζi
+ Lβ

f1
(ti+1 − si) + Lβ

f2
(ti+1 − si)K∗ + Lβ

f3
(ti+1 − si)H∗],

[
MGβ +MLβ

f1
tβ1 +MK∗Lβ

f2
tβ1 +MH∗Lβ

f3
tβ1
]
: i = 1, 2, . . . ,m

}
< 1.

(8)
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Proof. Consider a mapping F : PC(J,R) → PC(J,R) defined by

(Fu)(0) = u0 − g(u);

(Fu)(t) = ζi(t, u(t)), t ∈ (ti, si], i = 1, 2, . . . ,m;

(Fu)(t) = S(t− s)[u0 − g(u)] +

∫ t

0

S(t− s)f(s, x(s), T u(s),Su(s))ds, t ∈ [0, t1];

(Fu)(t) = S(t− s)[ζi(si, u(si))− g(u)] +

∫ t

si

S(t− s)f(s, u(s), T u(s),Su(s))ds,

t ∈ (si, ti+1], i = 1, 2, . . . ,m.

Obviously, F is well defined.
For any u, v ∈ PC(J,R) and t ∈ (si, ti+1], i = 1, 2, . . . ,m, we have

|(Fu)(t)− (Fv)(t)| ≤ MG|u(s)− v(s)|+MLζi |u(si)− v(si)|+MLf1

∫ t

si

|u(s)− v(s)|ds

+MLf2

∫ t

si

|Tu(s)− Tv(s)|ds+MLf3

∫ t

si

|Su(s)− Sv(s)|ds.

Now,

Lf2

∫ t

si

|Tu(s)− Tv(s)|ds ≤ Lf2

∫ t

si

∫ s

0

|K(s, τ)||u(τ)− v(τ)|dτds

≤Lf2

∫ t

si

|u(τ)− v(τ)|
∫ t

0

|K(s, τ)|dτds

≤Lf2

∫ t

si

max
t∈[si,ti+1]

|u(τ)− v(τ)|
∫ t

0

|K(s, τ)|dτds

≤Lf2(ti+1 − si)∥u− v∥PCK∗.

Similarly,

Lf3

∫ t

si

|Su(s)− Sv(s)|ds ≤ Lf3(ti+1 − si)∥u− v∥PCH∗.

Substitute the equation (2.3) and (2.4) into equation (2.2), we have

|(Fu)(t)− (Fv)(t)|

≤ MG|u− v|C +MLζi∥u− v∥C +MLf1

∫ t

si

max
t∈[si,ti+1]

|u(s)− v(s)|ds

+MLf2

∫ t

si

max
t∈[si,ti+1]

|Tu(s)− Tv(s)|ds+MLf3

∫ t

si

max
t∈[si,ti+1]

|Su(s)− Sv(s)|ds

≤ MG|u− v|C +MLζi∥u− v∥C +MLf1(ti+1 − si)∥u− v∥PC

+MLf2(ti+1 − si)∥u− v∥PCK∗ +MLf3(ti+1 − si)∥u− v∥PCH∗

≤ M
[
G|u− v|C + Lζi∥u− v∥C

]
+MLf1(ti+1 − si)∥u− v∥PC

+MLf2(ti+1 − si)∥u− v∥PCK∗ +MLf3(ti+1 − si)∥u− v∥PCH∗

≤ M
[
Gβ + Lβ

ζi

]∥∥u− v∥C +M
[
Lβ
f1
(ti+1 − si) + Lβ

f2
(ti+1 − si)K∗

+ Lβ
f3
(ti+1 − si)H∗]∥u− v∥PC .
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which implies

|(Fu)(t)− (Fv)(t)|β ≤ M
[
Gβ + Lβ

ζi

]∥∥u− v∥Pβ +M
[
Lβ
f1
(ti+1 − si) + Lβ

f2
(ti+1 − si)K∗

+Lβ
f3
(ti+1 − si)H∗]∥u− v∥Pβ .

This reduces to

∥Fu−Fv∥Pβ ≤ M
[
Gβ + Lβ

ζi
+ Lβ

f1
(ti+1 − si) + Lβ

f2
(ti+1 − si)K∗

+ Lβ
f3
(ti+1 − si)H∗]∥u− v∥Pβ , t ∈ (si, ti+1].

Proceeding as above, we obtain that

∥Fu−Fv∥Pβ ≤
[
MGβ +MLβ

f1
tβ1 +MK∗Lβ

f2
tβ1 +MH∗Lβ

f3
tβ1
]
∥u− v∥Pβ , t ∈ [0, t1],

∥Fu−Fv∥Pβ ≤ MGβ +MLβ
ζi
∥u− v∥Pβ , t ∈ (ti, si], i = 1, 2, . . . ,m.

From the above facts, we have

∥Fu−Fv∥Pβ ≤ Ω∥u− v∥Pβ ,

where Ω is defined in (8). Finally, we can deduce that F is a contraction mapping.
Then, one can derive the result immediately. �

Next, we discuss hte stability of (2) by using the concept of generalized β-Ulam-
Hyers-Rassias in the above section.

Theorem 3.2. Assume that (H1)-(H5) and (8) are satisfied. Then (2) is general-
ized β-Ulam-Hyers-Rassias stable with respect to (φ,ψ).

Proof. Let v ∈ PC1(J,R) be a solution of (5). Denote by u the unique solution of
the impulsive Cauchy problem

u′(t) = f(t, u(t), Tu(t), Su(t)), t ∈ (si, ti+1], i = 0, 1, 2, . . . ,m,

u(t) = ζi(t, u(t)), t ∈ (ti, si], i = 1, 2, . . . ,m,

u(0) = u0 − g(u).

(9)

Then we obtain

u(t) =



S(t− s)[ζi(t, u(t))− g(t)], t ∈ (ti, si], i = 1, 2, . . . ,m;

S(t− s)[u(0)− g(u)] +

∫ t

0

S(t− s)f(s, u(s), T u(s),Su(s))ds, t ∈ [0, t1];

S(t− s)[ζi(si, y(si))− g(x)] +

∫ t

si

S(t− s)f(s, y(s)T u(s),Su(s))ds,

t ∈ [si, ti+1], i = 1, 2, . . . ,m.

Keeping in mind (7), for each t ∈ (si, ti+1], i = 1, 2, . . . ,m, we have∣∣v(t)− S(t− s)[ζi(si, v(si))− g(v)]−
∫ t

si

S(t− s)f(s, v(s)T v(s),Sv(s))ds
∣∣

≤ ∥S(t− s)∥ψ +

∫ t

si

∥S(t− s)∥φ(s)ds

≤ Mψ +Mcφφ(t),

and for t ∈ (ti, si], i = 1, 2, . . . ,m, we have

|v(t)− S(t− s)[ζi(t, v(t))− g(v)]| ≤ Mψ,
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and for t ∈ [0, t1], we have∣∣v(t)− S(t− s)[v(0)− g(v)]

∫ t

0

S(t− s)f(s, v(s), T v(s),Sv(s))ds
∣∣ ≤ Mcφφ(t).

Hence, for each t ∈ (si, ti+1], i = 1, 2, . . . ,m, we have

|v(t)− u(t)|

=
∣∣v(t)−Mζi(si, x(si)) +Mg(u)−M

∫ t

si

f(s, u(s), Tu(s), Su(s))ds
∣∣

≤
∣∣v(t)−Mζi(si, v(si)) +Mg(v)−M

∫ t

si

f(s, v(s), T v(s), Sv(s))ds
∣∣∣

+M|
[
g(v)− g(u)

]
|+M

∣∣ζi(si, v(si))− ζi(si, u(si))
∣∣∣

+M
([ ∫ t

si

|f(s, v(s), T v(s), Sv(s))− f(s, u(s), Tu(s), Su(s))|ds
])

≤ M(1 + cφ)[ψ + φ(t)] +MG|v(s)− u(s)|+MLζi |v(si)− u(si)|

+M
∫ t

si

[
Lf1 |v(s)− u(s)|+ Lf2 |Tv(s)− Tu(s)|ds+ Lf3 |Sv(s)− Su(s)|

]
ds

≤ M(1 + cφ)[ψ + φ(t)] +MG|v(s)− u(s)|+M
∑

0<si<t

Lζi |v(si)− u(si)|

+M
∫ t

0

[
Lf1 |v(s)− u(s)|+ Lf2K∗|v(s)− u(s)|ds+ Lf3H∗|v(s)− u(s)|

]
ds

≤ M(1 + cφ)[ψ + φ(t)] + G|v(s)− u(s)|+M
∑

0<si<t

Lζi |v(si)− u(si)|

+M
∫ t

0

[
Lfj

(
1 +K∗ +H∗)]|v(s)− u(s)|ds.

Clearly, a(t) := M(1 + cφ)[ψ + φ(t)], t ∈ (si, ti+1], is nondecreasing and a ∈
PC(R+,R+). By Lemma 2.1 (ii), we obtain

|v(t)− u(t)| ≤ M(1 + cφ)[ψ + φ(t)](1 + G + Lζ)
i exp

(∫ t

0

Lfj

(
1 +K∗ +H∗)ds)

≤ M(1 + cφ)[ψ + φ(t)](1 + G + Lζ)
i exp

(
Lfj

(
1 +K∗ +H∗)ti+1

)
,

where Lζ = max{Lζ1 , Lgζ2 , . . . , Lζm}. Thus,

|v(t)− u(t)|β ≤
[
M(1 + cφ)[ψ + φ(t)](1 + G + Lg)

i exp
(
Lfj

(
1 +K∗ +H∗)ti+1

)]β
≤

[
M(1 + cφ)(1 + GLη)

i exp
(
Lfj

(
1 +K∗ +H∗)ti+1

)]β
[ψ + φ(t)]β

≤
[
M(1 + cφ)(1 + G + Lζ)

i exp
(
Lfj

(
1 +K∗ +H∗)ti+1

)]β
(ψβ + φ(t)β),

(10)
for t ∈ (si, ti+1], i = 1, 2, . . . ,m.

Further, for t ∈ (ti, si], i = 1, 2, . . . ,m, we have

|v(t)− u(t)|β ≤ M|v(t)− gi(t, u(t)) +Mg(u)|β

≤ M|v(t)− gi(t, v(t))|β +M|g(v)− g(u)|+M|gi(t, v(t))− gi(t, u(t))|β

≤ Mψβ +MGβ +MLβ
ζi
|v(t)− u(t)|β ,
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which yields

|v(t)− u(t)|β ≤ 1

1−MGβ −MLβ
ζi

ψβ . ((8) implies MLβ
ζi
+MGβ < 1) (11)

Moreover, for t ∈ [0, t1], we have

|v(t)− u(t)| =
∣∣v(t)− v(0) + g(u)−

∫ t

0

f(s, u(s), T u(s),Su(s))ds
∣∣

≤
∣∣v(t)− v(0) + g(v)−

∫ t

0

f(s, v(s), T v(s),Sv(s))ds
∣∣+M|g(v)− g(u)|

+
(∫ t

0

|f(s, v(s), T v(s),Sv(s))− f(s, x(s), T u(s),Su(s))|ds
)

≤ Mcφφ(t) +MG|g(v)− g(u)|+M
∫ t

0

Lfj (1 +K∗ +H∗)|v(s)− u(s)|ds.

By Lemma 2.1 (i), we obtain

|v(t)− u(t)| ≤ M(1 + G)cφφ(t) exp
(∫ t

0

Lfj (1 +K∗ +H∗)ds
)

≤ M(1 + G)cφφ(t) exp
(
Lfj (1 +K∗ +H∗)t1

)
.

Thus, we obtain

|v(t)− u(t)|β ≤
[
M(1 + G)cφφ(t) exp

(
Lfj (1 +K∗ +H∗)t1

)]β
≤

[
M(1 + G)cφ exp

(
Lfj (1 +K∗ +H∗)t1

)]β
φ(t)β , t ∈ [0, t1].

(12)
Summarizing, we combine (10), (11) and (12) and derive that

|v(t)− u(t)|β

≤
([

M(1 + cφ)(1 + G + Lζ)
i exp

(
Lfj

(
1 +K∗ +H∗)ti+1

)]β
+

1

1−MGβ −MLβ
ζi

ψβ +
[
M(1 + G)cφ exp

(
Lfj (1 +K∗ +H∗)t1

)]β
φ(t)β

)
(ψβ + φβ(t))

= cfj ,M,G,β,ζi,φ(ψ
β + φβ(t)), t ∈ J,

which implies that (2) is generalized β-Ulam-Hyers-Rassias stable with respect to
(φ,ψ). The proof is complete. �
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