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GLOBAL ANALYSIS OF A NON-AUTONOMOUS DIFFERENCE

EQUATION WITH BOUNDED COEFFICIENT

ÖZKAN ÖCALAN, MEHMET GÜMÜŞ

Abstract. In this paper, we investigate the boundedness character and the
global behavior of positive solutions of the following non-autonomous difference

equation.

xn+1 = An +
xn−k

xn
, n = 0, 1, · · · ,

where k ∈ N and {An} is a bounded sequence of non-negative real numbers
and the initial conditions x−k, · · · , x0 are arbitrary positive real numbers.

1. Introduction

Difference equations, also referred to recursive sequence, is a hot topic. There
has been an increasing interest in the study of qualitative analysis of difference
equations and systems of difference equations. For example, see [1 − 25] and the
references cited therein. Difference equations appear naturally as discrete analogues
and as numerical solutions of differential and delay differential equations having
applications in biology, ecology, economics, physics, computer sciences and so on.

This paper studies the boundedness character and the global asymptotic behavior
of positive solutions of the non-autonomous difference equation

xn+1 = An +
xn−k

xn
, n = 0, 1, · · · , (1.1)

where k ∈ N, the initial conditions x−k, · · · , x0 are arbitrary positive numbers and
{An} is a positive bounded sequence of non-negative real numbers with

lim inf
n→∞

An = p ≥ 0 and lim sup
n→∞

An = q < ∞. (1.2)

Eq.(1.1) was studied by many authors with k = 1.
In [15], [16] and [23] the authors independently studied the asymptotic behavior

of positive solutions of the following difference equation

xn+1 = pn +
xn−1

xn
, n = 0, 1, · · · , (1.3)
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where {pn} is a two-periodic sequence. For the boundedness results, Kulenović et
al. [16] and Stević [23] used nearly similar proofs. However, in order to obtain global
attracting results of Eq.(1.3) these authors used different techniques in proving their
results. For the proof by Kulenović et al. see [Theorem1, 16]. Stević, on the other
hand, used the monotonicity of the {x2n} and {x2n+1} in his proof.

In [21] Papaschinopoulos et al. obtained analogous results for the difference
equation (1.3), where {pn} is a three-periodic sequence and the initial conditions
are positive.

In [24] Stević studied Eq.(1.3), where {pn} is a sequence of non-negative real
numbers which converges to p ≥ 0; and in [4] Devault et al. studied Eq.(1.1), where
{pn} is a positive bounded sequence.

In [22] Papaschinopoulos et al. investigated the boundedness, the periodicity,
the attractivity and the global asymptotic stability of positive solutions of Eq.(1.1)
where k is an odd number, An is (k+1)-periodic sequence and the initial conditions
are positive.

Recently, in [17], the author has studied Eq.(1.1) for the case {pn} is a two-
periodic sequence.

Our goal in this paper is to extend some results obtained in [4] and improve the
conditions of the results concerning the boundedness and the global behavior of
positive solutions.

For the autonomous cases of Eq.(1.1) and Eq.(1.3), we can refer the reader to
[2, 3] and [1] respectively.

2. Boundedness Character of Eq. (1.1)

In this section, we investigate the boundedness character of Eq. (1.1), assuming
that Eq.(1.2) is satisfied.

The autonomous case of Eq.(1.1),

xn+1 = A+
xn−k

xn
, n = 0, 1, . . . .

where A > 0, has been thoroughly studied in [3].
The following lemma is given in [10] which will be useful in analysis of the

boundedness character of solutions of Eq.(1.1).

Lemma 1. Assume that all the roots of the polynomial

P (t) = tN − s1t
N−1, . . . , sN

where s1, s2, . . . , sN ≥ 0 for n = 0, 1, . . . , have absolute value less than 1. If {xn}
is a non-negative solution of the inequality

xn+N ≤ s1xn+N−1 + . . .+ sNxn + yn

where yn ≥ 0 for n = 0, 1, . . . , then the following statements are true:
(i) If

∑∞
n=0 yn coverges, then

∑∞
n=0 xn coverges.

(ii) If {yn} is bounded, then {xn} is bounded.
(iii) If limn→∞ yn = 0, then limn→∞ xn = 0.

We now present the following results about the boundedness character of Eq.(1.1).

Lemma 2. Consider Eq.(1.1) and suppose that k ∈ N. Assume that (1.2) is satisfied
and {xn} be a solution of Eq.(1.1). Then the following statements are true:
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(i) If p > 0, then {xn} persists.
(ii) If p > 1, then {xn} is bounded.

Proof. (i) Since xn+1 = An + xn−k

xn
> An, we have lim inf

n→∞
xn ≥ lim inf

n→∞
An = p > 0

which completes the proof of part (i).
(ii) Let ε > 0, such that p− ε > 1, then for sufficiently large n

xn ≥ An−1 ≥ p− ε and xn+1 ≤ An +
xn−k

p− ε
.

Since {An} is bounded and from Lemma 1, it follows that {xn} is also bounded.
�

The following result is essentially proved in [10] for k = 1. It is clear that the
result is satisfied when k is odd and its proof will be omitted.

Lemma 3. Consider Eq.(1.1) and suppose that k is odd. Then the following state-
ments are true.

(i) Suppose that there exists 0 < b < 1 such that 0 < A2n+1 ≤ b. Choose

x−k, x−k+2, ..., x−1 >
1

(1− b)

and

0 < x−k+1, x−k+3, ..., x0 < 1.

Then

x2n−1 >
1

(1− b)
and 0 < x2n < 1 for all n ≥ 0.

(ii) Suppose that there exists 0 < b < 1 such that 0 < A2n ≤ b. Choose

x−k+1, x−k+3, ..., x0 >
1

(1− b)

and

0 < x−k, x−k+2, ..., x−1 < 1.

Then

x2n >
1

(1− b)
and 0 < x2n−1 < 1 for all n ≥ 0.

The following result, when k is odd, demonstrates the existence of unbounded
solutions of Eq.(1.1).

Lemma 4. Consider Eq.(1.1) when k is odd. Suppose that either

0 < A2n+1 < 1 and lim
n→∞

A2n+1 = 0 or 0 < A2n < 1 and lim
n→∞

A2n = 0.

Then, there exists positive solutions of Eq. (1.1) that are unbounded.

Theorem 1. Consider Eq.(1.1) and suppose that k is odd. Suppose that 0 < A2n <
1 and there exists 0 < b < 1 such that either

A2n+1 ≤ b or A2n ≤ b.

Then, there exists positive solutions of Eq. (1.1) that are unbounded.
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3. Global Attractivity of Eq.(1.1)

In this section, we study the global attractivity of positive solutions of Eq.(1.1).
Let {xn} be an arbitrary positive solution of Eq.(1.1). We will find sufficient con-
ditions such that {xn} attracts all positive solutions of Eq.(1.1).

We define the sequence {yn} to be

yn =
xn

xn
, n = −k, ..., 0, 1, .... (3.1)

Then, Eq.(1.1) reduces

xn+1yn+1 = An +
xn−kyn−k

xnyn
or

yn+1 =
An + xn−kyn−k

xnyn

An + xn−k

xn

. (3.2)

To prove the global attractivity result of Eq.(1.1), we need the following lemmas.

Lemma 5. We assume that lim inf
n→∞

An = p > 1. Let {xn} be a solution of Eq.(1.1),

if
λ = lim inf

n→∞
xn and µ = lim sup

n→∞
xn, (3.3)

then
µ

λ
≤ (q − 1)

(p− 1)
. (3.4)

Proof. Using (1.2), (3.3) and Eq.(1.1) we obtain

λ ≥ p+
λ

µ
and µ ≤ q +

µ

λ

and
λµ ≥ pµ+ λ and µλ ≤ qλ+ µ.

So, we have
pµ+ λ ≤ qλ+ µ,

thus,
µ(p− 1) ≤ λ(q − 1)

and so relation (3.4) is true. �

Lemma 6. Let {xn} be a positive solution of Eq.(1.1). The following statements
are true.

(i) Eq.(3.2) has a positive equilibrium solution y = 1.
(ii) If yn−k < yn for some n, then yn+1 < 1. Similarly, if yn−k ≥ yn for some

n, then yn+1 ≥ 1.
(iii) Let {yn} be a solution to Eq.(3.2). Then, either {yn} consists of a single

semicycle or {yn} oscillates about the equilibrium y = 1 with semicycles having at
most k terms.

Proof. (i) It is clear from the equilibrium definition.
(ii) Let be yn−k < yn. Then, (yn−k)/yn < 1 and

yn+1 =
An + xn−kyn−k

xnyn

An + xn−k

xn

<
An + xn−k

xn

An + xn−k

xn

= 1.
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The other case is similar and will be omitted.
(iii) Let {yn} be an eventually oscillatory solution of Eq.(3.2) such that the

positive semicycle beginning with the term yn+1 has k terms. Then, yn < 1 ≤ yn+k

and so, from part (ii) it follows that yn+k+1 < 1. Therefore, the positive semicycle
has exactly at most k terms. The proof for the negative semicycle is similar and
will be omitted. �

Theorem 2. Every non-oscillatory solution of Eq.(3.2) converges to 1.

Proof. Let {yn} be a non-oscillatory solution of Eq.(3.2). Without loss of generality,
we may assume that yn < 1 for n ≥ N0. Thus, we have yn+1 > yn+1−k for n ≥
N. Otherwise, there exists l > N such that yl ≤ yl−k, and by Lemma 6 (ii), it
follows that yl+1 ≥ 1, which is impossible. Hence, limm→∞ ymk+i exists for each
i ∈ {0, 1, ..., k − 1}. Let

lim
m→∞

ymk+i = αi for i = 0, 1, ..., k − 1.

Clearly, 0 < αi ≤ 1 for i = 0, 1, ..., k − 1. We must show that αi = 1 for i =
0, 1, ..., k − 1. Without lossing of generality, since for i = 0

lim
m→∞

ymk−1

y(m+1)k−1
= 1

for ε > 0 and m sufficiently large, we have∣∣∣∣ ymk−1

y(m+1)k−1
− 1

∣∣∣∣ < ε.

Thus,

∣∣y(m+1)k − 1
∣∣ =

∣∣∣∣∣∣
A(m+1)k−1 +

xmk−1ymk−1

x(m+1)k−1y(m+1)k−1

A(m+1)k−1 +
xmk−1

x(m+1)k−1

− 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
xmk−1

x(m+1)k−1

A(m+1)k−1 +
xmk−1

x(m+1)k−1

∣∣∣∣∣∣
∣∣∣∣ ymk−1

y(m+1)k−1
− 1

∣∣∣∣
<

∣∣∣∣ ymk−1

y(m+1)k−1
− 1

∣∣∣∣
< ε.

It is clear that limm→∞ ymk = 1. This completes the proof. �

Theorem 3. Consider Eq.(1.1) when k ∈ N. Suppose that

p > 1 and q < p(p− 1) + 1 (3.5)

and let {xn} be a particular positive solution of Eq.(1.1). Then for all positive
solutions {xn} of Eq.(1.1),

xn ∼ xn. (3.6)

Proof. Since (3.6) is equivalent to

lim
n→∞

yn = 1 (3.7)
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where {yn} satisfies Eq.(3.2), it suffices to show that (3.7) holds. In Theorem 2, it
was shown that (3.7) holds for all non-oscillatory solutions {yn} of Eq.(3.2). So,
we will assume that {yn} oscillates about the equilibrium 1. Consider the function

F (a, b, c) =
a+ bc

a+ b
, (3.8)

for a, b, c > 0. Therefore, we have
(i) For c > 1, F (a, b, c) is decreasing in a and increasing in b.
(ii) For c < 1, F (a, b, c) is increasing in a and decreasing in b.
Since all semicycles, except for perhaps the first, having at most k terms, we

may assume, without lossing generality, that there exists an integer m such that

y2n < 1 and y2n−1, y2n−2, ..., y2n−k ≥ 1 for n ≥ m. (3.9)

Let

s = lim inf
n→∞

yn and S = lim sup
n→∞

yn. (3.10)

From Eq.(3.2) and (3.8) we have

y2n+1 = F

(
A2n,

x2n−k

x2n
,
y2n−k

y2n

)
,

y2n+2 = F

(
A2n+1,

x2n−k+1

x2n+1
,
y2n−k+1

y2n+1

)
. (3.11)

Since (3.9) holds, by Lemma 5, we obtain y2n−k+1 < 1 and y2n+1 > 1, and so we
have

y2n−k

y2n
≥ 1,

y2n−k+1

y2n+1
< 1.

Using (3.7), (3.9), (3.10), (3.11) and monotonicity properties of F , we have

S ≤ F

(
p,

µ

λ
,
S

s

)
=

p+ µ
λ

S
s

p+ µ
λ

,

s ≥ F
(
p,

µ

λ
,
s

S

)
=

p+ µ
λ

s
S

p+ µ
λ

.

or

Ss ≤
ps+ µ

λS

p+ µ
λ

and Ss ≥
pS + µ

λs

p+ µ
λ

.

Then we get
pS + µ

λs

p+ µ
λ

≤ Ss ≤
ps+ µ

λS

p+ µ
λ

.

Hence, we obtain

pS +
µ

λ
s ≤ ps+

µ

λ
S

and so

p(S − s) ≤ µ

λ
(S − s).

Thus from (3.4), we have

p(S − s) ≤ µ

λ
(S − s) ≤ (q − 1)

(p− 1)
(S − s).

and

[p(p− 1)− (q − 1)](S − s) ≤ 0.
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Therefore, from (3.5) we obtain

S = s.

Hence limn→∞ yn = 1, and the proof is complete. �
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