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SOME NONLINEAR EVOLUTION EQUATIONS

SALWA EL-MORSY

Abstract. This paper is concerned with the application of the composite

finite difference scheme (CFDS) to some classes of evolution equations. Three
models of evolution equations are studied. The first model is the nonlinear
reaction-diffusions equation (NRD) with a reaction term, while the second is
modified Korteweg de Vries equation (mKdV) and the third is the Fitzhugh–

Nagumo equation (FN). Numerical examples showed that the CFDS give high
accuracy.

1. Introduction

Nonlinear evolution equations are widely used to describe many important phe-
nomena and dynamic processes in physics, mechanics, chemistry, biology, etc. The
study of nonlinear partial differential equations is very important. Many methods,
exact, approximate and purely numerical are available for solution of nonlinear
partial differential equations [1]-[30]. Reaction-diffusion equations (RD) are math-
ematical models which explain how the concentration of one or more substances
distributed in space changes under the influence of two processes: local chemical
reactions in which the substances are transformed into each other, and diffusion
which causes the substances to spread out over a surface in space. A great deal of
research work has been published on the development of numerical and analytical
solutions of NRD equations [1]-[10]. In recent years, many physicists and mathe-
maticians have paid much attention to the Fitzhugh– Nagumo (FN) equation due
to its importance in mathematical physics. The Fitzhugh–Nagumo equation has
various applications in the fields of flame propagation, logistic population growth,
neurophysiology, branching Brownian motion process, autocatalytic chemical reac-
tion and nuclear reactor theory; see, e.g. [11]-[16]. This equation is an important
nonlinear reaction diffusion equation and usually used to model the transmission
of nerve impulses [16]. Numerical schemes for FN equations [17]-[19] by colloca-
tion method and the “Hopscotch’ finite difference scheme first proposed by Gordon
[19], and further developed by Gourlay [20]-[21]. A great deal of research work has
been invested during the past decades in the study of the mKdV equation [22]-[30].
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The main goal of these studies was its analyticalzz and numerical solutions. Sev-
eral different approaches, such as Backland transformation, a bilinear form, and
a Lax pair, have been used independently, by which Anjan et al. [22]-[25] obtain
soliton and multi-soliton solutions for this equation. The aim of this paper is to
apply the CFDS to obtain the solutions for the three different types of nonlinear
partial differential equations such as, nonlinear Reaction–diffusion equation (NRD),
Fitzhugh– Nagumo (FN) and modified Kortewege de Vries equation (mKdV) which
are important equations.

2. The nonlinear reaction-diffusion equation with reaction term

An example of practical interest is known as the nonlinear reaction-diffusions
equation (NRD) with a reaction term [7, 8].this equation takes the form [8].

ut − u2
xx = pu− qu2, (x, t) ∋ QT (1)

Here QT = Ω × I,Ω ≡ (a, b), I = (0, T ), a and b are real positive constants. We
consider equation (1) associated with initial condition u(x, 0) = u0(x). In Finite
difference method (FDM) the domain is discretized to a finite number of points
forming a mesh with horizontal step size h = b−a

N , N is the number of intervals,
0 ≺ i ≼ Nand k is the time step such that T = k∗j, 0 ≼ j ≼ M . The derivatives are
replaced by difference formulas [31]-[32] as follows, for i = 1, 2 we use the forward
formula
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while for i = 3, N − 2 we use the central formulas
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and for i = N − 1, N we use the backward formulas
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3. Application of CFDS to the nonlinear reaction-diffusion equation

Consider the nonlinear PDE (1), we can rewrite

ut = u2
xx + pu− qu2. (5)

Multiply both sides of (5) by∂F
∂u , we have

∂F
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∂u
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(u2
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or
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(u2
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where F , is any continuous and differentiable function. If we choose F (u) = lnu,
we obtain the Exponential finite difference method (Exp. FDM) [33]-[36]. The
Logarithmic finite difference method (Log. FDM) [32] is obtained when we set
F (u) = expu.

3.1. Exponential finite difference method applied to the nonlinear reaction-
diffusion equation. In this sub-section we will apply the Exponential finite dif-
ference method to (7). The usual forward difference formula leads to, ∂F
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F (uj+1

i )−F (uj
i )

k is the time step. Substitute in (7)), we have
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Applying the difference formulas (2)-(4) to (11), we have the following recurrence
relations:
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3.2. Logarithmic finite difference method applied to the nonlinear reaction-
diffusion equation. In (Log. FDM) we assume F (u) = expu, equation (9) trans-
formed to
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i ) + k exp(uj
i )((u
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Similarly applying the difference formulas (2)-(4) to (16), we have the following
recurrence relations
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4. Fitzhugh–Nagumo equation

The classical Fitzhugh–Nagumo equation [16]-[17],is given by

ut = uxx + u(1− u)(p− u) (20)

where 0 ≼ p ≼ 1 and u(x, t) is the unknown function depending on the temporal
variable t and the spatial variable x. This equation combines diffusion, and nonlin-
earity which is controlled by the term u(1 − u)(p − u). When p = 1, (20) reduces
to the real Newell–Whitehead equation. To apply CFDS, we reset (20) as follows
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4.1. Exp. FDM method applied to FN equation. Replacing the derivatives
in (22) by the difference formulas (2)-(4), we obtain
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4.2. Log. FDM method applied to FN equation. For the Log. FDM, we
have the following iterative formulas
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5. Application of CFDS to the modified KdV equation

Consider the modified Korteweg–de Vries equation (mKdV), which takes the
form

ut + 6u2ux + uxxx = 0 (29)

Similarly, we obtain
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5.2. Log. FDM method applied to mKdV equation. In case of Log. FDM
equation (30) transformed to
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Table 1. Numerical results of solving NRD equation at different
times,absolute errors for CFDS

x t = 0.01 t = 0.1 t = 0.5
2 0.0001351 0.0011230 0.0304806
3 0.0000716 0.0008931 0.0159891
4 0.0000363 0.0002172 0.0016654
5 0.0000695 0.0006197 0.0016458
6 0.0000416 0.0003921 0.0014175
7 0.0000249 0.0002358 0.0009075
8 0.0000150 0.0001420 0.0005527
9 0.0000091 0.0000857 0.0003337
10 0.0000055 0.0000516 0.0001966
11 0.0000028 0.0000258 0.0000844
12 0.0000017 0.0000184 0.0001753

Table 2. Numerical results of solving mKdV equation at different times

x t = 0.01 t = 0.1 t = 0.5
10 4.7 ∗ 10−7 5.2 ∗ 10−6 0.00009056
11 1.7 ∗ 10−7 1.6 ∗ 10−6 0.00001313
12 6.4 ∗ 10−8 4.9 ∗ 10−7 0.00001414
13 1.2 ∗ 10−8 1.3 ∗ 10−7 2.8 ∗ 10−6

14 4.4 ∗ 10−9 2.5 ∗ 10−8 1.1 ∗ 10−6

15 1.7 ∗ 10−9 2.0 ∗ 10−8 3.9 ∗ 10−7

16 6.3 ∗ 10−10 6.5 ∗ 10−9 5.6 ∗ 10−8

17 2.3 ∗ 10−10 2.8 ∗ 10−9 5.3 ∗ 10−8

18 8.1 ∗ 10−11 5.8 ∗ 10−10 1.6 ∗ 10−8

19 1.0 ∗ 10−9 9.8 ∗ 10−9 1.8 ∗ 10−7

20 4.7 ∗ 10−10 7.5 ∗ 10−9 1.3 ∗ 10−7

and

uj+1
i = uj

i+ln(1−k(6(uj
i )

2 3u
j
i − 4uj

i−1 + uj
i−2

2h
+
5uj

i − 18uj
i−1 + 24uj

i−2 − 14uj
i−3 + 3uj

i−4

2h3
)), i = N−1, N

(37)

6. Numerical examples

In this section, we apply preceding algorithm to three numerical examples asso-
ciated with the appropriate initial conditions Example. 1 consider the reaction-
diffusions equation (1), when 2 ≼ x ≼ 12 in case of p = 1, q = 1, at h = 1and k =

0.00001, we start with the initial approximation, u(x, 0) = 1
3 (3 + e

−x
2 ). The exact

solution is u(x, t) = 1
3 (3 + e

x+t
2 ). Example. 2 consider the mKdV equation (29),

when 10 ≼ x ≼ 20 in case of h = 1and k = 0.00001, we start with the initial approxi-
mation, u(x, 0) = sech(x). The exact solution is u(x, t) = sech(x−t). Example. 3
consider the Fitzhugh–Nagumo equation (20), when 0 ≼ x ≼ 10 in case of h = 1and
k = 0.00001, we start with the initial approximation, u(x, 0) = 1

2 (1 + tanh x
2
√
2
).
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Table 3. Numerical results of solving FN equation at different times

x t = 0.01 t = 0.1 t = 0.5
0 0.0002393 0.0022600 0.0045646
1 0.0001758 0.0018887 0.0126318
2 0.0000301 0.0003588 0.0032443
3 0.0000025 0.0000086 0.0004057
4 0.0000034 0.0000312 0.0001697
5 0.0000036 0.0000350 0.0001613
6 0.0000024 0.0000237 0.0001158
7 0.0000013 0.0000133 0.0000565
8 0.0000007 0.0000027 0.0000676
9 0.0000086 0.0000931 0.0006180
10 0.0000042 0.0000238 0.0005093

The exact solution is u(x, t) = 1
2 (1 + tanh( x

2
√
2
− 2p−1

4 )), p = 0.75. Tables (1- 3)

illustrate the numerical results of solving RD equation, mKdV equation and FN
equation using CFDS at different times.

7. Conclusion

The CFDS is effective for solving linear and nonlinear partial differential equa-
tions especially for small time intervals. The numerical results show that the so-
lution using CFDS give high accuracy and no more conditions or restrictions are
needed.
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