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FINITENESS PROPERTY OF DEFORMED REVOLUTION SURFACES IN E3

(PART I)

M. A. SOLIMAN, H. N. ABD-ELLAH, S. A. HASSAN, S. Q. SALEH

ABSTRACT. The main goal of this paper, is to study the finiteness property of the mean
curvature flow for the revolution surfaces inE3. Also, general example for such property
is presented.

1. INTRODUCTION

Algebraic geometry studies varieties which are defined locally as the common zero
sets of polynomials. Also, one can define the degree of an algebraic variety by its alge-
braic structure, where the concept of degree plays a fundamental role. On the other hand,
according to Nash’s embedding theorem, every Riemannian manifold can be realized as a
Riemannian submanifold in some Euclidean space with sufficiently higher codimension.
However, one lacks the notion of the degree for Riemannian submanifolds in Euclidean
spaces [1].

Inspired by the above simple observation, Bang-Yen Chen introduced in the late
1970’s the notions of ”order” and ”type” for submanifolds ofEuclidean spaces and used
them to introduce the notion of finite type submanifolds. Just like minimal submanifolds,
submanifolds of finite type can be characterized by a spectral variational principle; namely,
as critical points of directional deformations [2].

On one hand, the notion of finite type submanifolds provides avery natural way to
apply spectral geometry to study submanifolds. On the otherhand, one can also apply the
theory of finite type submanifolds to investigate the spectral geometry of submanifolds.
The first results on submanifolds of finite type were collected in [3, 4]. A list of twelve
open problems and three conjectures on submanifolds of finite type was published in [5].
Furthermore, a detailed report of the progress on this theory was presented in [6]. Recently,
[7] studied frenet surfaces with pointwise 1−type Gauss map. Also, the study of finite type
submanifolds, in particular, of biharmonic submanifolds,have received a growing atten-
tion with many progresses since the beginning of this century. In [1], is provided a detailed
account of recent development on the problems and conjectures listed in [5].
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One of the most interesting and profound aspects of classical differential geometry is
its interplay with the calculus of variations. The calculusof variations have their roots in
the very origins of subject, such as, for instance, in the theory of minimal surfaces. More
recently, the variational principles which give rise to thefield equations of the general
theory of relativity have suggested the systematic investigation of a seemingly new type
of variational problem. In the case of the earlier applications one is, at least implicitly,
concerned with a multiple integral in the calculus of variations. In additional, the normal
variational problem on general surfaces and hyperruled surfaces were studied by some ge-
ometers, specifically one may cite [8]-[19].

The mean curvature flow has many physical problems in the nature, starting from the
well-known Poisson-Laplace theorem which relates, the pressure and the mean curvature
flow of a surface immersed in a liquid until the capillary theory [20].

The main aim in this paper is to study the effectiveness of thenormal variation in
deferent directions of revolution surfaces in Euclidean 3−spaceE3 for finiteness prop-
erty. This aim determine whether the property of finiteness for surfaces inE3 remains the
same or not. And we find that the deformation depends on theφ function where we deal
with some revolution surfaces. Finally, we prove that the variation of surfaces preserves
the property of finiteness for some surfaces and does not preserve that property for other
surfaces.

2. BASIC CONCEPTS

In this section, we review some basic definitions and relations. Let a surfaceM : X =
X(u,v) in an Euclidean 3−spaceE3. The mapG : M →S2(1)⊂E3 which sends each point
of M to the unit normal vector toM at the point is called the Gauss map of a surfaceM;
whereS2(1) denotes the unit sphere ofE3. The standard unit normal vector fieldG on the
surfaceM can be defined by:

G =
Xu×Xv

| Xu×Xv |
, (1)

whereXu andXv are the first partial derivatives with respect to the parameters of X.

Definition 2.1. [21, 22] Let M be an n−dimensional surface. Then the Laplacian∆
operator (or Laplacian-Beitrami operator) associated with the induced metric on M is a
mapping which sends any differentiable function f to the function∆ f of the form

∆ =− 1√
g ∑

i, j

∂
∂xi

(
√

ggi j ∂
∂x j

). (2)

wherexi is the local coordinate onM, (gi j ) is the matrix of the Riemannian metricg onM
where(g i j ) = (gi j )

−1 andg= det(gi j ).

The mean curvatureH of the surface is defined by

H =
1
2

2

∑
i, j=1

gi j Li j , (3)

whereLi j are the coefficients of the second fundamental form.
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An isometric immersionX : M → E3 of a submanifoldM in E3 is said to be of finite
type if X identified with the position vector field ofM in E3 can be expressed as a finite
sum of eigen vectors of the Laplacian∆ of M, that is,

X = X0 +
j

∑
i=1

Xi , (4)

whereX0 is a constant map andX1, X2, · · · , Xj non-constant maps such that

∆Xi = λi Xi , λi ∈ R, 1 ≤ i ≤ j. (5)

If λ1, λ2, ... , λ j are different eigen values, thenM is said to be ofj−type. If in particular,
one ofλi is zero thenM is said to be of nullj−type. If all coordinate function ofE3,

restricted toM, are of finite type, thenM is said to be of finite type. Otherwise,M is said to
be of infinite type. Similarly, a smooth mapφ of an 2−dimensional Riemannian manifold
M of E3 is said to be of finite type ifφ is a finite sum ofE3−valued eigen functions of∆
[3, 4].
Let M be a connected surface inE3. Then the position vectorX and the mean curvature
vectorH of M in E3 satisfy [4]

∆ X =−2H, (6)

whereH = H G. This formula yields the following well-known result: A surfaceM in
E3 is minimal if and only if all coordinate functions ofE3, restricted toM, are harmonic
functions, that is,

∆ X = 0. (7)

We recall theorem of T.Takahashi [23] and [6] which states that a submanifoldM of a
Euclidean space is of 1−type, i.e., the position vector field of the submanifold in the Eu-
clidean space satisfies the differential equation

∆X = λX, (8)

for some real numberλ , if and only if either the submanifold is a minimal submanifold
of the Euclidean space(λ = 0) or it is a minimal submanifold of a hypersphere of the
Euclidean space centered at the origin(λ 6= 0).

We will mention the following known result for later use.

Proposition 2.1. [1, 4, 24, 25]Let M be a j−type( j = 1, 2, ...) surfaces whose spectral
decomposition is given by Eq.(4). If we put[24]

P(T) =
j

∏
i=1

(T −λi), (9)

then
P(∆) (X − X0) = 0. (10)

We can rewrite the previous equation as follows

∆ j+1 X +d1 ∆ j X + · · · + d j ∆ X = 0, (11)

whered1, d2, ... , d j are constants for somej ≥ 1.
And the monic polynomialP is called the minimal polynomial which plays a very impor-
tant role to find out whether or nor a surface is of finite type.
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Let M be a connected revolution surface which is generated by a plane curveα(u)
when it is rotated around a straight line in the same plane. Let the plane bexzand the line
bez−axis. Then, the parametrization of the plane curve takes thefollowing form [26]:

α(u) = { f (u) , h(u)}. (12)

Hence the parametrization ofM is usually given by [27]

X(u,v) = { f (u) cosv , f (u) sin v , h(u)}. (13)

Definition 2.2. [8, 9, 14]LetX : U → Rn+1 be a parameterized n−surface in Rn+1. A
variation of X is a smooth mapX : U × [0, 1] → Rn+1 with the property thatX(u i ,0) =
X(u i) for all u i ∈U. Thus a variation surrounds the n−surfaceX with a family of singular
n−surfaceXt : U → Rn+1 defined by

M : Xt(u
i) = X (u i

, t) = X(u i) + t φ(u i)G(u i), i = 1, 2, u i = (u, v). (14)

whereφ is a smooth function alongX andG is the Gauss map ofX, is called a normal
variation of X, where t is a parameter where t∈ [0 , 1]. The family of revolution surfaces
represented byX(ui , t) is called a deformable revolution surfaces resulting fromX(ui) by
the normal variation.

3. FINITENESS PROPERTY OF THE MEAN CURVATURE FLOW

In the following, we deal with two cases of revolution surfaces which have worked
under the effect of normal variation where mean curvature flow is a term that is used to
describe the variation of this surfaces whose functionφ is given by the mean curvature
[20]. Thus, in view of Eq. (14) one can see that∂X

∂ t = H G. Then the finiteness property is
studied before and after the deformation and it is noticed that the finiteness property is not
affected by the deformation.

Case 4.1. If we put f (u) = a u andh(u) = b u. Then the parametrization of revolution
surface in Eq. (13) takes the form

X(u,v) = {a ucosv , a usinv , b u}, (15)

which is represented a revolution cone anda, b are constants. Hence the unite normal
vector field ofM is given by

G =
−1√

c1
{b cosv , b sin v , −a}, (16)

wherec1 = a2 + b2
.

The metric
(
gi j

)
and the contravariant metric

(
g i j

)
can be written as

(
gi j

)
= diag

(
c1 , a2 u2)

,
(
g i j )= diag

(
1
c1

,
1

a2 u2

)
, g= c1 a2 u2

. (17)

Hence, the Laplacian∆ of M can be given as follows

∆ =
−1

c1 a2 u2

(
a2 u

∂
∂u

+ a2 u2 ∂ 2

∂ u2 + c1
∂ 2

∂ v2

)
. (18)

Then, the mean curvature function is given by

H =
b

2a
√

c1 u
. (19)
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Let X1, X2, andX3 be the three components functions ofX. Then, we takeX3, where

X3 = b u. (20)

Hence,

∆ X3 =− b
c1 u

. (21)

Therefore,

∆2 X3 =
b

c1
2 u3 , (22)

and,

∆3 X3 =− 9b
c1

3 u5 . (23)

Using mathematical induction, we get that

∆ j X3 = (−1) j 12 32 52 ... (2 j −3)2b
c1

j u2 j−1 j ≥ 1. (24)

Substituting in the decomposition (11). Then one get

b

(
(−1) j+1 12 32 52 ... (2 j −1)2

c1
j+1 u2 j+1 +d1 (−1) j 12 32 52 ... (2 j −3)2

c1
j u2 j−1 + · · · −d j

1
c1 u

)
= 0.

(25)
But b 6= 0, and inside the brackets dose not equal zero. Then the cone surface is infinite
type. See [26].

Now, we research what happen for finiteness property after deformation. LetM be the
surface after variation by mean curvature, i.e.,φ = H in the parametrization (14). Then it
can be parameterized by

X(u,v, t) =
1
δ
{(aδ u − b2 t)cosv , (aδ u − b2 t) sin v , (δ u+a t)b}, (26)

where,δ = 2a c1u 6= 0. Then, the unite normal vector field ofM is given by

G =
1

2a u
√

δ1
{b(t−2a2 u2)cosv ,b(t−2a2u2)sin v , 2a3 u2}, (27)

whereδ1 = c1 a2 u2− b2 t. Therefore, we have

(gi j ) = diag

(
c1 ,

δ1

c1

)
, (g i j ) = diag

(
1
c1

,
c1

δ1

)
, g= δ1. (28)

Direct computations, we can find the Laplacian∆ of the deformationX as the following

∆ =− 1
c1 δ1

(
c1 a2 u

∂
∂u

− δ1
∂ 2

∂u2 + c1
2 ∂ 2

∂v2

)
. (29)

Let X1, X2, andX3 be the three components functions ofX. Then, we take

X3 =
b
δ
(δ u+a t). (30)

Hence,

∆ X3 = − a2 b
2c1 uδ1

(2c1 u2+ t). (31)

Therefore,

∆2
X3 =

a4 b u
2δ1

3

(
2c1 a2 u2+(9a2+10b2) t

)
, (32)
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and

∆3 X3 =− a8 b c1 u3

2δ1
5

(
18c1 a2 u2+(225a2+304b2) t

)
. (33)

The following lemma can be proved by mathematical induction. Here and in the sequel,
for convenient, replace deg instead of degree.

Lemma 3.1. If η is a polynomial in u, t anddegη = r. Then, we get

∆
(

η (u, t)

δ q
1

)
=

η̂ (u, t)

2δ q+2
1

, (34)

whereη̂ is a polynomial in u, t.

Applying the above Lemma, we get

∆ j
X3 =

η j (u, t)

2δ 2 j−1
1

. (35)

Then if j goes up by one, the degree of the numerator of∆ j
X3 goes up by at most 2, while

the degree of the denominator goes up by 4. Hence the decomposition (11) can never be
zero. Therefore,M is infinite type. And this result agree with the results in paper [24].
From the above result we can easily deduce the following consequence:

Corollary 3.1. The mean curvature flow of the deformed cone preserves the property of
infiniteness.

See Figure 1.

(A) Cone surfaceM, t = 0 (B) The deformed coneM, t = 0.3

(C) The deformed coneM, t = 0.7 (D) The deformed coneM, t = 0.9

FIGURE 1. The deformed cone :u∈ [0, 2π], v∈ [−π,π], a= 1, b= 3
f (u) = au, h(u) = bu, φ = H

Also, we obtain the following result:
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Corollary 3.2. The effect of the mean curvature flow of the deformed cone is very weak
∀ t > 0.

Case 4.2. If we put f (u) = acosu andh(u) = a sin u wherea is a constant. Then the
parametrization of revolution surface in Eq. (13) gives sphere as the following

X(u,v) = {a cosu cosv , a cosu sinv , a sin u}. (36)

The unite normal vector field ofM is

G =−{cosu cosv , cosu sinv , sin u}. (37)

Therefore, one can obtain

(gi j ) = a2 diag
(
1 , cos2 u

)
, (g i j ) =

1
a2 diag

(
1 , sec2 u

)
, g= a4 cos2 u. (38)

Thus, we use Eq. (2) to get the Laplacian∆ of M as the following

∆ = − secu
a2 (cosu

∂ 2

∂u2 − sin u
∂

∂u
+ secu

∂ 2

∂v2 ). (39)

Then, the mean curvature function is given byH = 1
a . Therefore,

∆X =
2
a2 X. (40)

As we know the sphere is 1−type [26]. We ask what happens to the finiteness property
after variation of sphere by mean curvature flow.

Let M be the surface after deformation whereφ = H in Eq. (14). ThereforeM is
parameterized as follows

X(u,v, t) =
(a2− t)

a
{cosu cosv , cosu sin v , sin u}. (41)

The unit normal vector field is given as

G = G. (42)

Then, we have

(gi j ) = (a2−2t) diag
(
1 , cos2 u

)
, g= a2 ξ2 cos2 u,

(g i j ) =
(a2−2t)

a2 ξ2
diag

(
1 , sec2 u

)
, ξ2 = a2−4t. (43)

Thus, we can get the Laplacian∆ of M as follows

∆ =− (a2−2t)
a2 ξ2

(
∂ 2

∂u2 − tanu
∂

∂u
+ sec2 u

∂ 2

∂v2

)
. (44)

The mean curvature function ofX is given by

H =
a2−3t

aξ2
. (45)

Solving the following equation forλ .

∆ X− λ X = 0. (46)

We get

λ =
2(a2−3t)
a2 (a2−5t)

. (47)
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Then, we conclude that the sphere is 1−type after variation∀ t.

Corollary 3.3. If we put t= 0, in (47) we haveλ = 2
a2 , which gives the same result of

paper[26], for original sphere.

Corollary 3.4. The mean curvature flow of the deformed sphere preserves the property
of finiteness.

See Figure 2.

t=0.8

t=0

FIGURE 2. The deformed sphere in the original sphere:u∈ [−2, 2], v∈ [0,2π]
f (u) = a cosu, h(u) = a sinu, a = 2, φ = H

Corollary 3.5. The effect of the mean curvature flow of the deformed sphere isvery
weak∀ t > 0, where the deformed sphere is still having some geometric properties which
were before the deformation.

4. FINITENESS PROPERTY OF ISOTHERMAL REVOLUTION SURFACE

In this section, we focus on the isothermal revolution surface for finiteness property
for the mean curvature flow.

Case 5.1. If we put f (u) = u andh= h(u) in Eq. (13) and forM be isothermal surface
(g11= g22 andg12 = 0) then we get

1+h′ 2(u) = u2
. (48)

Solving the above differential equation gives

h(u) =∓1
2

u
√

ω ± 1
2

log(u+
√

ω) + c, ω = u2−1, c= constant. (49)

Now, we can rewrite the parametrization of revolution surface in Eq. (13) as the following

X(u,v) = {u cosv , u sin v ,
1
2

(
u
√

ω − log(u+
√

ω)
)
+ c}, (50)

The unite normal vector field ofM is

G = − 1
u
{
√

ω cosv ,
√

ω sin v , −1}. (51)

Therefore, we have

(gi j ) = u2 diag (1 , 1) , (g i j ) =
1
u2 diag (1 , 1) , g = u4

. (52)
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In this case the Laplacian∆ takes the formula

∆ = − 1
u2 (

∂ 2

∂ u2 +
∂ 2

∂ v2 ). (53)

Then, the mean curvature function is given by

H =
1

2
√

ω
. (54)

Similarly as in the previous cases, we take the first component X1 of M. Then,

X1 = u cosv. (55)

Hence,

∆ X1 =
1
u

cosv. (56)

Therefore,

∆2 X1 =
1
u5 (u

2−2) cosv, (57)

and

∆3 X1 =
1
u9 (u

4−14u2+60) cosv. (58)

Lemma 4.1. If R is a polynomial in u anddegR= r, then

∆
(

R
uq cosv

)
=

R̂
uq+4 cosv, (59)

whereR̂ is a polynomial in u anddegR̂≤ r + 2,

Applying the above Lemma, we get

∆ j X1 =
Rj

u4 j−3 cosv, (60)

Consequently, ifj goes up by one, the degree of the numerator of∆ j X1 goes up by at most
2, while the degree of the denominator goes up by 4. Hence the decomposition (11) can
never be zero. Therefore,M is infinite type.

Now, M is deformed by mean curvature flowφ = H. Let M be a surface after varia-
tion. Then, we get the locally parametrization ofM by

X(u,v, t) =
1

2u
√

ω
{(2u2− t)

√
ω cosv, (2u2− t)

√
ω sinv, t +u(uω +2c

√
ω)

−u
√

ω log(u+
√

ω)}. (61)

Consequently,

G=
1

2uω
√

ω − t

{(
(4+t)u2−2u4−2

)
cosv,

(
(4+t)u2−2u4−2

)
sinv, 2ω

3
2
}
. (62)

Therefore, we get

(gi j ) =− 1
ω

diag
(
t − u2 ω , (t − u2)ω

)
, g=

u4

ω
(ω − t),

(gi j ) =
1

u4(ω − t)
diag

(
ω (u2− t) , u2 ω − t

)
. (63)
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Direct computations, we can find the Laplacian∆ of M is given by

∆ =
(t −u2)ω
u4(ω − t)

∂ 2

∂u2 − t(2−4u2+u4)

u5(ω − t)2

∂
∂u

− u2 ω − t
u4(ω − t)

∂ 2

∂v2 . (64)

Let X1, X2, andX3 be the three components functions ofX. If we takeX3, then

∆ X3 =
ω

−1
2

2u5(t −ω)2 (p1(u)+ t q1(u)), (65)

where,p1(u) andq1(u) are functions ofu of degree 8 and 6, respectively. Therefore,

∆2
X3 =

ω
1
2

2u9(t −ω)5 (p2(u)+ t q2(u)), (66)

wherep2(u) andq2(u) are functions ofu of degree 12 and 10, respectively.

Using mathematical induction, we see

∆ j
X3 =

ω
2 j−3

2

2u4 j+1(t −ω)3 j−1 (p j(u)+ t q j(u)), (67)

wherep j(u) andq j(u) are functions ofu of degree 4j+4 and 4j+2, respectively. We note
that degree of denominator is larger than degree of numerator. Therefore the decomposition
(11) can never be zero. ThenM is infinite type.

Corollary 4.1. The mean curvature flow of the deformed isothermal surface preserves
the property of infiniteness.

See Figure 3.

(A) SurfaceM, t = 0 (B) The deformed surfaceM, t = 0.1

(C) The deformed surfaceM, t = 0.4 (D) The deformed surfaceM, t = 0.9

FIGURE 3. The deformed isothermal surface :u∈ [1, π] , v∈ [0,2π] , c = 3

f (u) = u, h(u) = 1
2

(
u
√

u2−1− log(u+
√

u2−1)
)
+c, φ = H

Corollary 4.2. The effectiveness of the mean curvature flow of the deformed isothermal
surface is very strong∀ t > 0, i.e., the geometric properties are not hereditary properties.
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Corollary 4.3. After little computations one can see that the deformed isothermal sur-
face is isothermal if and only if u=±

√
2. In other words, the deformed isothermal surface

is an isothermal surface at two parametric curves on the surface.

5. GENERAL EXAMPLE

Finally in this section, we study the normal variation underthe effect of general func-
tion.

Case 6.1. If we put f (u)= aandh(u)= cuwherea, care constants. Then the parametriza-
tion of revolution surface in Eq. (13) gives revolution cylinder as the following

X(u,v) = {a cosv , a sin v , c u}, a, c 6= 0. (68)

The unite normal vector field ofM is

G =−{cosv , sin v ,0}. (69)

Thus, we get

(gi j ) = diag
(
c2

, a2)
, (g i j ) = diag

(
1
c2 ,

1
a2

)
, g= a2 c2

. (70)

Then, the mean curvature function is given byH = 1
2a . Therefore,

∆ X =−(
1
c2

∂ 2

∂u2 +
1
a2

∂ 2

∂v2 ). (71)

Solving the following equation forλ
∆ X −λ X = 0, (72)

Then, the eigen values of∆ take the following values.

λ1 = λ2 =
1
a2 , λ3 = 0. (73)

That is, the revolution cylinder is null 2−type as well know, see [7, 25].
Here, we show the effect of the finiteness property for the deformed revolution cylinder by
mean curvature flow.

Let M be the surface after variation under the assumptionφ = sin(u+ v). ThenM
has a parametrization as the following

X(u,v, t) = {cosv(a− t sin θ ), sin v(a− t sin θ ), c u}, (74)

whereθ = u + v. The unit normal vector field is given by

G=− 1

c
√

a(a−2t sin θ )
{c

(
a cosv− t sin(u+2v)

)
,c
(
a sinv+t cos(u+2v)

)
, at cosθ}.

(75)
Thus, we have

(gi j ) = diag
(
c2

, a(a−2t sinθ )
)
, g= a c2 (a−2t sin θ ) ,

(g i j ) = diag

(
1
c2 ,

1
a(a−2t sinθ )

)
. (76)

Direct computations, we can find the Laplacian∆ of M is given by

∆ =− 1

c2 a θ 2
1

(
c2 t cosθ

∂
∂v

− a2 t cosθ
∂

∂u
+a θ 2

1
∂ 2

∂u2 + c2 θ1
∂ 2

∂v2

)
, (77)
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whereθ1 = a−2t sin θ .

The mean curvature function ofM is given by

H =
1

2c2
√

a θ
3
2

1

(
c2 a −

(
3c2+a2) t sin θ

)
. (78)

Let X1, X2, andX3 be the three components functions ofX. Then, we takeX3 = u, where

∆ X3 =
t cosθ

c θ1
. (79)

Therefore

∆2
X3 =

1

c3 θ 4
1

a(a2+ c2) t cosθ , (80)

and

∆3
X3 =

1

c5 θ 7
1

a2 (a2+ c2)2 t cosθ . (81)

Using mathematical induction we obtain formula

∆ j
X3 =

a j−1 (a2+ c2) j−1 t cosθ
c2 j−1 θ 3 j−2

1

. (82)

Suppose that the deformed circular cylinder is of finite type. Thus, by applying the decom-
position (11), we see

t cosθ
( a j (a2+ c2) j

c2 j+1 θ 3 j+1
1

+
a j−1 (a2+ c2) j−1 d1

c2 j−1 θ 3 j−2
1

+ · · ·+ a(a2+ c2)d j−1

c3 θ 4
1

+
d j

cθ1

)
= 0.

(83)
This meanst = 0 or cosθ = 0 and it is a contradiction. Then the deformation surface by
φ is infinite type.

Corollary 5.1. The deformed revolution cylinder does not preserve the property of finite
type.

See Figure 4.
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(A) The revolution cylinderM, t = 0 (B) The deformed cylinderM, t = 0.2

(C) The deformed cylinderM, t = 0.5 (D) The deformed cylinderM, t = 0.9

FIGURE 4. The deformed revolution cylinderu∈ [0, 2π], v∈ [−π,π]
f (u) = a, h(u) = cu, φ = sin(u+v), a= 3, c= 2

Corollary 5.2. The effect of the normal variation for the revolution cylinder is very
strong∀ t > 0.2, i.e., the geometric properties are not hereditary properties.

6. CONCLUSION

It is important to remark that the effect of the normal variation in deferent directions
of the revolution surfaces of finiteness property is very weak in some cases. In other words,
the deformed surfaces are still having some geometric properties which were before the
deformation. In other cases, the effect of the normal variation is strong. In other words,
the geometric properties of the deformed revolution surfaces are not hereditary properties.
In the following, we give a summary of the studied cases previously:

(1) f (u) = a u, h(u) = b u andφ = H. Hence,M (cone) and its deformed surfaceM
are infinite type.

(2) f (u) = a cosu, h(u) = a sin u andφ = H. Then,M (sphere) and its deformed
surfaceM are 1−type.

(3) f (u) = u, h(u) = 1
2

(
u
√

u2−1− log(u+
√

u2−1)
)
+ c andφ = H. Therefore,

M and its deformed surfaceM are infinite type.
(4) f (u) = a, h(u) = c u andφ = sin(u+ v) wherec is constant. Hence,M (circular

cylinder) is null 2−type and the deformed surfaceM is infinite type.

The above four cases are translated to the Figures [1 - 4].
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