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FINITENESS PROPERTY OF DEFORMED REVOLUTION SURFACES IN E3
(PART 1)

M. A. SOLIMAN, H. N. ABD-ELLAH, S. A. HASSAN, S. Q. SALEH

ABSTRACT. The main goal of this paper, is to study the finiteness ptgp#rthe mean
curvature flow for the revolution surfaces B?¥. Also, general example for such property
is presented.

1. INTRODUCTION

Algebraic geometry studies varieties which are definedllipes the common zero
sets of polynomials. Also, one can define the degree of arbed@gevariety by its alge-
braic structure, where the concept of degree plays a fundiim®le. On the other hand,
according to Nash'’s embedding theorem, every Riemannianifolé can be realized as a
Riemannian submanifold in some Euclidean space with seiffii higher codimension.
However, one lacks the notion of the degree for Riemannidamsamifolds in Euclidean
spaces[i].

Inspired by the above simple observation, Bang-Yen Chawduted in the late
1970’s the notions of "order” and "type” for submanifoldsBiiclidean spaces and used
them to introduce the notion of finite type submanifolds.t Jike minimal submanifolds,
submanifolds of finite type can be characterized by a spgeetrational principle; namely,
as critical points of directional deformations [2].

On one hand, the notion of finite type submanifolds providesrg natural way to
apply spectral geometry to study submanifolds. On the dthad, one can also apply the
theory of finite type submanifolds to investigate the sp#adeometry of submanifolds.
The first results on submanifolds of finite type were collddte[3,[4]. A list of twelve
open problems and three conjectures on submanifolds of fipite was published in[5].
Furthermore, a detailed report of the progress on this yheas presented in[6]. Recently,
[7] studied frenet surfaces with pointwise ype Gauss map. Also, the study of finite type
submanifolds, in particular, of biharmonic submanifoldaye received a growing atten-
tion with many progresses since the beginning of this cgntar1], is provided a detailed
account of recent development on the problems and congcligted in[[5].
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One of the most interesting and profound aspects of cldstifterential geometry is
its interplay with the calculus of variations. The calcutfs/ariations have their roots in
the very origins of subject, such as, for instance, in themphef minimal surfaces. More
recently, the variational principles which give rise to firdd equations of the general
theory of relativity have suggested the systematic ingatitn of a seemingly new type
of variational problem. In the case of the earlier applimagi one is, at least implicitly,
concerned with a multiple integral in the calculus of vadas. In additional, the normal
variational problem on general surfaces and hyperruledces were studied by some ge-
ometers, specifically one may cite [8]-[19].

The mean curvature flow has many physical problems in theeagtarting from the
well-known Poisson-Laplace theorem which relates, thequnee and the mean curvature
flow of a surface immersed in a liquid until the capillary thef2Q].

The main aim in this paper is to study the effectiveness ofnitrenal variation in
deferent directions of revolution surfaces in EuclidearspaceE? for finiteness prop-
erty. This aim determine whether the property of finitenesstrfaces ire® remains the
same or not. And we find that the deformation depends omthmction where we deal
with some revolution surfaces. Finally, we prove that theaten of surfaces preserves
the property of finiteness for some surfaces and does notqeethat property for other
surfaces.

2. BASIC CONCEPTS

In this section, we review some basic definitions and ratatihet a surfac® : X =
X(u,v) in an Euclidean 3-spaceE®. The mapG : M — S?(1) ¢ E® which sends each point
of M to the unit normal vector tM at the point is called the Gauss map of a surflice
whereS?(1) denotes the unit sphere BF. The standard unit normal vector fie@lon the
surfaceM can be defined by:

Xu X Xy
[ Xux Xy |’
whereX, andXy are the first partial derivatives with respect to the paransetf X.

(1)

Definition 2.1. [21),[22] Let M be an r-dimensional surface. Then the Laplacian
operator (or Laplacian-Beitrami operator) associated wihe induced metric on M is a
mapping which sends any differentiable function f to thefion Af of the form

1 0 i 0
A=——"7Y — R— 2
\/gga)q&/@g axj) )
wherey; is the local coordinate oM, (gij) is the matrix of the Riemannian metigaon M
where(g") = (gij)~! andg = det(g;j).
The mean curvaturd of the surface is defined by
12
H=3 % g'Lij, 3)
2,2,

wherelLj are the coefficients of the second fundamental form.



EJMAA-2016/4(1) FINITENESS PROPERTY OF DEFORMED REVOLWDN SURFACES INE® 213

An isometric immersiorX : M — E2 of a submanifold in E2 is said to be of finite
type if X identified with the position vector field & in E2 can be expressed as a finite
sum of eigen vectors of the Laplaciarof M, that is,

j
X=X+ )X, (4)
2
whereXg is a constant map ari, X, - - , Xj non-constant maps such that

If A1, Ao, ..., Aj are different eigen values, théfis said to be of—type. If in particular,
one of A; is zero thenM is said to be of nullj—type. If all coordinate function oE2,
restricted taM, are of finite type, theM is said to be of finite type. Otherwiskl, is said to
be of infinite type. Similarly, a smooth magpof an 2-dimensional Riemannian manifold
M of E2 is said to be of finite type ifp is a finite sum ofE3—valued eigen functions dk
[3,14].

Let M be a connected surface E?. Then the position vectoX and the mean curvature
vectorH of M in E2 satisfy [4]

AX =-2H, (6)
whereH = H G. This formula yields the following well-known result: A sadeM in
E® is minimal if and only if all coordinate functions &?2, restricted toM, are harmonic
functions, that is,

AX = 0. (7)
We recall theorem of T.Takahashi [23] and [6] which statest #h submanifoldV of a
Euclidean space is of-dtype, i.e., the position vector field of the submanifold ie tu-
clidean space satisfies the differential equation

AX = AX, (8)

for some real numbek, if and only if either the submanifold is a minimal submandfol
of the Euclidean spacél = 0) or it is a minimal submanifold of a hypersphere of the
Euclidean space centered at the origin 0).

We will mention the following known result for later use.

Proposition 2.1. [1}[4,[24[25]Let M be a j-type(j =1, 2, ...) surfaces whose spectral
decomposition is given by E). If we put[24]
j

P(T) =[] (T =4, (©)

then
P(A) (X —Xp) = 0. (10)
We can rewrite the previous equation as follows
APIX AV X + -+ djAX = 0, (11)

wheredy, do, ..., dj are constants for sonmje> 1.
And the monic polynomiaP is called the minimal polynomial which plays a very impor-
tant role to find out whether or nor a surface is of finite type.
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Let M be a connected revolution surface which is generated byre mglarvea (u)
when it is rotated around a straight line in the same planetheeplane bexzand the line
bez—axis. Then, the parametrization of the plane curve takefottmving form [26]:

a(u) = {f(u), h(w}. (12)
Hence the parametrization bf is usually given by [27]
X(u,v) = {f(u) cosv, f(u) sinv, h(u)}. (13)

Definition 2.2. [8,[9,14]LetX : U — R™1 be a parameterized-asurface in R*+1. A
variation of X is a smooth magX : U x [0, 1] — R™! with the property thaX (u',0) =
X(u')forallu' € U. Thus a variation surrounds the-rsurfaceX with a family of singular
n—surfaceX; : U — R"*1 defined by

M: X (u)=X@U',t) = Xu) +teu) G, i=1,2,u'=(u,v). (14)

where@ is a smooth function along and G is the Gauss map oX, is called a normal
variation of X, where t is a parameter whered [0, 1]. The family of revolution surfaces
represented byX(u',t) is called a deformable revolution surfaces resulting frsigu') by
the normal variation.

3. FINITENESS PROPERTY OF THE MEAN CURVATURE FLOW

In the following, we deal with two cases of revolution sudaavhich have worked
under the effect of normal variation where mean curvatune ffoa term that is used to
describe the variation of this surfaces whose functois given by the mean curvature

[20]. Thus, in view of Eq.[(14) one can see tl%%it = H G. Then the finiteness property is
studied before and after the deformation and it is noticatlttre finiteness property is not
affected by the deformation.

Case 4.1. If we put f(u) = au andh(u) = bu. Then the parametrization of revolution
surface in Eq.[(T3) takes the form
X(u,v) = {aucosv, ausinv, bu}, (15)

which is represented a revolution cone amd are constants. Hence the unite normal
vector field ofM is given by

-1
G=—{bcosv, bsinv, —a}, 16
\/C_l{ } (16)

wherec; = a2 + b2 )
The metric(gij) and the contravariant metr{g'!) can be written as

. y /11
(gij) = diag (c1, a?u?), (g”)dlag<c—l,m), g=cia?u2  (17)

Hence, the Laplaciaf of M can be given as follows

= azui_i_azuzd_z_i_c 0_2 (18)
" c1a2u? Jdu auz ' tovz)
Then, the mean curvature function is given by
b

H=savan (19)
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Let X1, Xo, andX3 be the three components functionsxafThen, we takez, where

Xz3=bu (20)
Hence,
b
AXg=———. 21
3 T (21)
Therefore,
A2Xg— 2 22)
3 = C12U37
and, b
9
N3Xg=———. 23
3 TS (23)

Using mathematical induction, we get that
;123252...(2j—3)%b

A Xg = (~1) NITE j>1 (24)
Substituting in the decompositidn {11). Then one get
.1 123252 (2j—1)? 123252, (2j-3)2 1
_1)i+1 1)} oo —di —/— | =
b <( 1) METEE! +di(-1) cylu2i-1 + d; clu> =
(25)

But b # 0, and inside the brackets dose not equal zero. Then the cofaeesis infinite
type. See [26].

Now, we research what happen for finiteness property affercation. LetM be the
surface after variation by mean curvature, i@= H in the parametrization (14). Then it
can be parameterized by

X(u,v,t) = %{(aéu — b2t)cosv, (adu — b?t) sinv, (Ju+at)b}, (26)

where,d = 2aciu # 0. Then, the unite normal vector field bf is given by

— 1
G=——{b(t—2a%u?cosv,b(t—2a%u?)sinv, 2a%u?}, 27
saus b Jcosv.b( ) L@
whered; = ciau?— b2t. Therefore, we have
- . O i : 1 ¢ ~
) — it = - = =0. 2
@) =dig (e, ). @) -deg(5.3). v-a @@
Direct computations, we can find the Laplaci&of the deformatiorX as the following
— 1 0 92 92
A=——_ 2y = — & ——+C12— ). 2
10 (Cla Uu gz T aVZ) (29)
Let X1, X,, andX3 be the three components functionsfThen, we take
X3 = % (Su+at). (30)
Hence,
2
— a“b 2
AX3= — 2 . 1
3 261U51( Cru”+t) (31)
Therefore,
4
A X5 = 25?;1 (2cia?u?+ (9a2+10b?)t), (32)
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and

a®bcyud
Tllﬁ (18c1a2u?+ (225a%+ 304b?)t). (33)
The following lemma can be proved by mathematical inductidere and in the sequel,
for convenient, replace deg instead of degree.

A3X3=—

Lemma 3.1. If 7 is a polynomial in ut anddegn =r. Then, we get

~ (MU0 At
A( 3] ) 2502 (349

Whereﬁ is a polynomial in ut.

Applying the above Lemma, we get

~is ﬁ] (U, t)
Then if j goes up by one, the degree of the numeratal_kjo_(g goes up by at most 2, while
the degree of the denominator goes up by 4. Hence the deciiopd&l) can never be
zero. Thereforeyl is infinite type. And this result agree with the results in @aj24].
From the above result we can easily deduce the followingexqumsnce:

Corollary 3.1. The mean curvature flow of the deformed cone preserves theyof

infiniteness.
See Figuré]l.
(A) Cone surfacé/, t = 0 (B) The deformed conBl, t = 0.3
(C) The deformed conBl, t = 0.7 (D) The deformed conBf, t = 0.9

FIGURE 1. The deformed coneue [0, 2m],ve [-m,,a=1,b=3
f(uy =au h(u)y=bu ¢=H

Also, we obtain the following result:
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Corollary 3.2. The effect of the mean curvature flow of the deformed coneyiswesak
vt > 0.

Case 4.2. If we put f(u) = acosu andh(u) = a sinu wherea is a constant. Then the
parametrization of revolution surface in EQ.(13) givesesptas the following

X(u,v) = {acosucosv, acosusinv, asinu}. (36)
The unite normal vector field ol is
G = —{cosu cosv, cosusinv, sinu}. (37)
Therefore, one can obtain

(gij) =a?diag (1,cod u), (g")= a—lz diag (1,secu), g=a*codu.  (38)
Thus, we use Eq[2) to get the Laplacianf M as the following

seau 9? .0 9?
A= —?(cosum 7smu%+secuw). (39)
Then, the mean curvature function is givenHby= % . Therefore,
2
AX = 2 X. (40)

As we know the sphere is-dtype [26]. We ask what happens to the finiteness property
after variation of sphere by mean curvature flow.

Let M be the surface after deformation whege= H in Eq. (I3). TherefordV is
parameterized as follows

X(u,vt) = @

{cosu cosv, cosusinv, sinu}. (41)
The unit normal vector field is given as

G =0G. (42)
Then, we have

(Gj) = (a®—2t) diag(1, cod u), g= a®&; cos u,

_ (@®2-2t) . 2
( ”):T&dlag(l,se@u), & = a’—4t. (43)
Thus, we can get the Laplacianof M as follows
g__@- o .9 92
A= e tanugquseéuav2 . (44)
The mean curvature function &fis given by
. a?-3t
H= 45
Y (45)
Solving the following equation fok .
AX—-2AX = 0. (46)
We get
— 2_
yo 2@ =3) (47)
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Then, we conclude that the sphere ist{pe after variatiorv't.

Corollary 3.3. If we putt= 0, in @7)we have = 5, which gives the same result of
paper[26], for original sphere.

Corollary 3.4. The mean curvature flow of the deformed sphere preservesdherpy
of finiteness.

See Figurg€l2.

t=0

FIGURE 2. The deformed sphere in the original sphares [—2, 2], v € (0,271
f(u) = acosu, h(u) = asinu,a=2,¢=H

Corollary 3.5. The effect of the mean curvature flow of the deformed sphererys
weakvt > 0, where the deformed sphere is still having some geometrjogpties which
were before the deformation.

4. FANITENESS PROPERTY OF ISOTHERMAL REVOLUTION SURFACE

In this section, we focus on the isothermal revolution steftor finiteness property
for the mean curvature flow.

Case 5.1. Ifwe put f(u) = uandh= h(u) in Eq. (I3) and foM be isothermal surface
(911 = 922 andg; 2 = 0) then we get

1+h'?(u) = u? (48)
Solving the above differential equation gives
h(u) = ;%umi % log(u++vw) +¢c, w= u?—1, c=constant (49)
Now, we can rewrite the parametrization of revolution stefan Eq. [IB) as the following
X(u,v) = {ucosv, usinv,%(u\/a_)—log(qu Vw))+c}, (50)
The unite normal vector field ol is
G= —é{\/a)cosv, wsinv, —1}. (51)

Therefore, we have

(ay) = wdiag (1,1), (g)= ;diag(1,1), g=u* 52
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In this case the Laplaciahtakes the formula
1, 02 92

A=-52Gut e (53)
Then, the mean curvature function is given by
1
H=_—. 54
NG (54)
Similarly as in the previous cases, we take the first compioXgeof M. Then,
X1 =UCOSV. (55)
Hence,
1
AXy = " COSV. (56)
Therefore,
1
N2Xq = 05 (u2—2) cosy, (57)
and
1
A3X; = 0 (u*—14u®+ 60) cosv. (58)
Lemma 4.1. If R is a polynomial in u andegR = r, then
R R
A (ﬁ cosv> = jara CosV, (59)
whereR is a polynomial in u andegR < r + 2,
Applying the above Lemma, we get
. Rj
A X = M cosy, (60)

Consequently, if goes up by one, the degree of the numeratdyof; goes up by at most
2, while the degree of the denominator goes up by 4. Hencedabendposition[(11) can
never be zero. Therefork] is infinite type.

Now, M is deformed by mean curvature flagw= H. LetM be a surface after varia-
tion. Then, we get the locally parametrization\dfoy

- 1

X(u,v,t) =m{(2u27t) Vwcosv, (2u% —t) Vwsinv, t+u(uw +2cv/w)
—u+vwlog(u+ vw)}. (61)
Consequently,
=__ 1 2 o4 2 od o) i 3
G= 2uw\/ﬁ{((4+t)u 2u®—2) cosv, ((4+t)u“—2u*—2) sinv,2w?2 }. (62)

Therefore, we get
g1) = — — diag (t— W@, (t— u? _7u4t
(gij)**a |ag(—u w, (t—u )w), 9*6(0)* )s

@) = W{Udiag(w(uz—t),uzw—t). (63)
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Direct computations, we can find the Laplaci&of M is given by

A (t-udw % t2-4u4+uh) 9  vPw-t 9% (64)
~ud(w—t) du? u(w—1)2 du  u4(w—t) gv?’

Let X1, X,, andX3 be the three components functionsaflf we takeXs, then

2

AX3= Ul ) (pa(u) +taa(u)), (65)

where,p;(u) andgz(u) are functions ofi of degree 8 and 6, respectively. Therefore,
A X 2 t 66
3= m(pZ(U)JF O2(u)), (66)

wherep,(u) andgy(u) are functions ofi of degree 12 and 10, respectively.

Using mathematical induction, we see

~i ngi—s
A Xs= 2udi+I(t — )3i-1 (pj(u) +ta;(u)), (67)

wherep; (u) andgj(u) are functions oti of degree 4+ 4 and 4 + 2, respectively. We note
that degree of denominator is larger than degree of nunrefidterefore the decomposition
(1) can never be zero. Thahis infinite type.

Corollary 4.1. The mean curvature flow of the deformed isothermal surfaesgoves
the property of infiniteness.

See Figurél3.
(A) surfaceM, t =0 (B) The deformed surfadd, t = 0.1
(C) The deformed surfadd, t = 0.4 (D) The deformed surfadd, t = 0.9

FIGURE 3. The deformed isothermal surfaaes [1, i, ve [0,2m],c = 3
f(u) = u, h(u) = %( u2—1—log(u+ \/u2—1)>+c, p=H

Corollary 4.2. The effectiveness of the mean curvature flow of the defoisoéteirmal
surface is very strongt > 0, i.e., the geometric properties are not hereditary propesti
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Corollary 4.3. After little computations one can see that the deformedhéeotal sur-
face is isothermal if and only if & ++/2. In other words, the deformed isothermal surface
is an isothermal surface at two parametric curves on theasaf

5. GENERAL EXAMPLE
Finally in this section, we study the normal variation unithereffect of general func-
tion.

Case 6.1. Ifwe putf(u) = aandh(u) = cuwherea, care constants. Then the parametriza-
tion of revolution surface in EqL(13) gives revolution ayer as the following

X(u,v) ={acosv,asinv,cu}, ac#0. (68)
The unite normal vector field dfl is
G = —{cosv, sinv,0}. (69)
Thus, we get
. 1 1
; 2 2 ; 2.2
(@) —ding (c%, %) (@) =diag (3. 33 ). a—a%ch (O
Then, the mean curvature function is givenHby= 2—13 . Therefore,
1 0% 1 92
AX="(z puz * a2 av?) (71)
Solving the following equation fok
AX—-AX =0, (72)
Then, the eigen values dftake the following values.
1
AL = A = 22 Az = 0. (73)

That is, the revolution cylinder is null-2type as well know, seé& |7, 25].
Here, we show the effect of the finiteness property for thewheéd revolution cylinder by
mean curvature flow.

Let M be the surface after variation under the assumpgica sin(u+v). ThenM
has a parametrization as the following

X(u,v,t) = {cosv(a—t sin ), sinv(a—tsinB), cu}, (74)
wheref = u + v. The unit normal vector field is given by
1

G—_

{c(acosv—tsin(u+2v)),c(asinv-+t cosu+2v)), atcose}.
(75)

cy/ala—2tsin0)

Thus, we have
(g;) = diag (c*, a(a—2tsinf)), g=ac®(a—2tsind),

(') = diag ( : ;> (76)

c2’ a(a—2tsinb)
Direct computations, we can find the Laplaci&of M is given by

0 0 9? 92
2 Y 52 i 2 Y 2 s
c“t cos6 5y @ t cos@ au+a9 +c°6; ), (77)

A=- 1 9u2 ov2

Zae (
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wheref; = a— 2t sin6.

The mean curvature function & is given by

H-— %(cza_(sczjtaz)tsin 9). (78)
2c?\/a6?

Let X1, X, andX3 be the three components functionsofThen, we také&z = u, where

— t cos@
AX3z= . 79
3 6 (79)
Therefore
XA 2, -2
A" X3= a(a“+c“)tcoso, 80
3 C39f ( + ) ( )
and
A2 2002 | ~2\2
A X3= a“(a“+c“)“t coshb. 81
Using mathematical induction we obtain formula
L 1792 ~2yj-1
A%, — al=*(a“+c9) tcosG. (82)

2j—-1g3i—2
ca-i6;

Suppose that the deformed circular cylinder is of finite typleus, by applying the decom-
position [11), we see

(oosp (LELA] A Ny a@ P, by,
c2i+1 g3t c2i-19372 cio} ch;
(83)
This meansg = 0 or cosf = 0 and itis a contradiction. Then the deformation surface by
@is infinite type.

Corollary 5.1. The deformed revolution cylinder does not preserve thegrtgpf finite
type.

See Figureld.
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(A) The revolution cylindeM, t = 0 (B) The deformed cylindeM, t = 0.2
(C) The deformed cylindeM, t = 0.5 (D) The deformed cylindeM, t = 0.9

FIGURE 4. The deformed revolution cylindere [0, 271, v € [—, 7
f(u) = a h(u) =cu ¢=sin(u+v),a=3,c=2

Corollary 5.2. The effect of the normal variation for the revolution cykmds very
strongvt > 0.2, i.e., the geometric properties are not hereditary propesti

6. CONCLUSION

It is important to remark that the effect of the normal vadatn deferent directions
of the revolution surfaces of finiteness property is verykiaaome cases. In other words,
the deformed surfaces are still having some geometric ptiepavhich were before the
deformation. In other cases, the effect of the normal Viariais strong. In other words,
the geometric properties of the deformed revolution sedare not hereditary properties.
In the following, we give a summary of the studied cases prgsly:

(1) f(u)= au, h(u)= buandg= H. HenceM (cone) and its deformed surfabe
are infinite type.

(2) f(u) = acosu, h(u)= asinuandg = H. Then,M (sphere) and its deformed
surfaceM are 1-type.

(3) f(uy=uh(u) =3 (u Vu2—1—log(u+vu?— 1)) + cand@ = H. Therefore,
M and its deformed surfadd are infinite type.

(4) f(u) = a, h(u) = cuandg = sin(u+v) wherec is constant. Hencé\l (circular
cylinder) is null 2-type and the deformed surfabkis infinite type.

The above four cases are translated to the Figures [1 - 4].
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