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BOUNDEDNESS AND COMPACTNESS OF CERTAIN CLASSES

OF GENERALIZED INTEGRAL OPERATORS

RABHA W. IBRAHIM, JAY M. JAHANGIRI

Abstract. Integral operators in general and the Cesàro integral operator in
particular have long been used in the study of the various branches of analysis

such as geometric function theory. We consider certain classes of generalized
integral operators of Cesàro type and investigate their topological properties
such as boundedness and compactness. We conclude our paper with the ex-

tension of two results on the Cesàro integral operators.

1. Introduction

Integral operators in general and the Cesàro integral operator

Cµf(z) =
1

z

∫ z

0

f(ξ)ξµ−1(1− ξ)−1dξ,

in particular have long been used in the study of the various branches of analysis
such as geometric function theory. Dahlner [5] provided a study of the Cesàro
integral operator on Hardy and Bergman spaces. Persson [9] imposed a complete
spectral feature in Hp, p ≥ 1 as well as Lp,ρ

a , p ≥ 1, ρ ≥ 1. Ballamoole, Miller and
Miller [3] introduced instructions regarding spectral properties of the Cesàro-like
operators on weighted Bergman spaces. Alemann and Persson [2] extended the
Cesàro integral operator in the form

Cgf(z) =
1

z

∫ z

0

f(ξ)g′(ξ)dξ,

where g′ is defined in the Banach space of analytic functions.

The Cesáro operator C expansion of the power series f(z) =
∑∞

n=0 an(f)z
n may be

written as

Cf(z) =
∞∑

n=0

( 1

n+ 1

n∑
k=0

ak(f)
)
zn.

The history of the Cesáro operator can be traced back to Hardy (e.g. see Rudin
[10]), who was amidst the first to show that C is bounded on H2. The fact that
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the Cesáro operator is bounded follows from the work of Siskakis [11],[12]. The
boundedness of C on H1 was proved by utilizing a result of Hardy and Littlewood
by Miao [8] who showed that C is bounded on Hp, p ∈ (0, 1). Further studies can
be found in [6]. We note that the Cesáro operator is unbounded on H∞ (e.g. see
[10]) so that it is reasonable to work in a larger space of analytic functions. Miao
in [8] determined the coefficient inequalities for concave Cesáro operators on non-
concave analytic functions in the unit disk and a generalization of Cesáro operators
has recently appeared in the work of Albert and Miller [1] and Ballamoole, Miller
and Miller [4].

In the present paper, we consider certain classes of generalized integral operators of
Cesàro type and investigate their topological properties such as boundedness and

compactness in the space Blog and its extension Bβ
log, β ∈ (0, 1). We conclude the

paper with two results that extend the Cesàro integral operator Cgf to the space
L2(U ;H).

2. Boundedness and Compactness

Let A be a class of functions f which are analytic and normalized by f(0) −
f ′(0)− 1 = 0 in the open unit disk U = {z : |z| < 1}. For the functions f and g in
A, we consider the boundedness and compactness of the operator Cgf(z) and the
space Blog of all functions f ∈ A which satisfy the condition

∥f∥Blog
= sup

z∈U
(1− |z|2)|f

′(z)

f(z)
| ln 1

(1− |z|2)
< ∞, (z ∈ U).

A function f ∈ A is said to be in the class Σ if and only if it has the norm

∥f∥ = sup
z∈U

(1− |z|2)|f
′′(z)

f ′(z)
| < ∞, (z ∈ U).

Note that the fraction Tf := f ′′(z)
f ′(z) is called pre-Schwarzian derivative which is

usually used to discuss the univalency of analytic functions (e.g. see [7, 13, 14, 15]).
Now we are ready to state and prove our first theorem

Theorem 2.1. Let the functions f and g be in A so that f ∈ Blog. Then the
integral operator Cgf is bounded in Σ if and only if g ∈ Σ.

Proof. First, assume that Cgf is bounded. If f(z) = 1 then g ∈ Σ by the
maximum principle theorem. Conversely, assume that. Then we have

(Cgf)
′′(z)

(Cgf)′(z)
=

f(z)g′′(z)

f(z)g′(z)− Cgf
+

f ′(z)g′(z)

f(z)g′(z)− Cgf
− 2

z
.

Consequently, by the maximum principle, we obtain

| (Cgf)
′′(z)

(Cgf)′(z)
| ≤ |f(z)g′′(z)|

|f(z)g′(z)| − |
∫ z

0
f(ξ)g′(ξ)dξ|

+
|f ′(z)g′(z)|

|f(z)g′(z)| − |
∫ z

0
f(ξ)g′(ξ)dξ|

+ 2.

Now, by using the inequality∣∣∣ ∫ x

0

h(x)
∣∣∣ ≤ 2

8
max
x∈[0,1]

|h′′|, h(1) = 0
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and taking in account that f vanishes on ∂U, we obtain

| (Cgf)
′′(z)

(Cgf)′(z)
| ≤ |f(z)g′′(z)|

|f(z)g′(z)| − 2
8 maxz∈U |(fg′)′′(z)|

+
|f ′(z)g′(z)|

|f(z)g′(z)| − 2
8 maxz∈U |(fg′)′′(z)|

+2.

Thus, by utilizing the Gagliardo-Nirenberg-Sobolev inequality, for the second
derivative and taking the maximum value, we conclude that there is a constant
ϵ > 0 such that

(1− |z|2)| (Cgf)
′′(z)

(Cgf)′(z)
| ≤ ϵ(1− |z|2)|f(z)g

′′(z) + f ′(z)g′(z)

f(z)g′(z)
|+ 2

= ϵ(1− |z|2)[|g
′′(z)

g′(z)
+

f ′(z)

f(z)
|] + 2

≤ ϵ
(
∥g∥+

(1− |z|2)| f
′(z)
f(z) | ln[

1
1−|z|2 ]

ln[ 1
1−|z|2 ]

+
2

ϵ

)
≤ ϵ

(
∥g∥+

∥f∥Blog

ln[ 1
1−|z|2 ]

+
2

ϵ

)
≤ ϵ

(
∥g∥+

∥f∥Blog

ln[ 1
1−|z|2 ](1− |z|2)

+
2

ϵ

)
.

Now the boundedness of the operator Cgf follows upon taking the supremum
for the last assertion over U and using the finiteness of the quantity

sup
a∈(0,1]

a(ln
1

a
).

This completes the proof.

In our second theorem, we determine a sufficient condition for functions to be in
the class Blog.

Theorem 2.2. If g ∈ A and Cgf : Σ → Σ is bounded, then f ∈ Blog.

Proof. Assume that Cg : Σ → Σ is bounded. Then there is a positive constant C
such that

∥Cgf∥ ≤ C∥f∥
for every f ∈ Σ. Set

hω(z) =
(ωz − 1)

ω
[(1 + ln

1

1− ωz
)2 + 1][ln

1

1− |ω|2
]−1,

for ω ∈ U such that
√

1− 1
e < |ω| < 1. Then we have

h′
ω(z) = (ln

1

1− ωz
)2[ln

1

1− |ω|2
]−1

and

h′′
ω(z) =

2ω

1− ωz
(ln

1

1− ωz
)[ln

1

1− |ω|2
]−1.
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Thus

h′′
ω(z)

h′
ω(z)

=
2ω

1− ωz
[ln

1

1− ωz
]−1 (1)

and then

h′′
ω(ω)

h′
ω(ω)

=
2ω

1− |ω|2
[ln

1

1− |ω|2
]−1.

It is clear that the relation (1) is finite when |z| < 1 and hence ∥hω(z)∥ < ∞.
Setting

M := sup√
1− 1

e<|ω|<1

∥hω(z)∥ < ∞

we have

∞ > ∥Chωf∥

≥ sup
z∈U

(1− |z|2)|h
′′
ω(z)

h′
ω(z)

+
f ′(z)

f(z)
|

≥ (1− |ω|2)|h
′′
ω(ω)

h′
ω(ω)

+
f ′(ω)

f(ω)
|

≥ | 2ω

ln 1
1−|ω|2

+ (1− |ω|2)f
′(ω)

f(ω)
|

≥
−2|ω|+ (1− |ω|2)| f

′(ω)
f(ω) | ln

1
1−|ω|2

ln 1
1−|ω|2

.

(2)

Now let

gω(z) := 2
(ωz − 1)

ω
[(1 + ln

1

1− ωz
)2 + 1][ln

1

1− |ω|2
]−1 −

∫ z

0

ln
1

1− ωx
dx

for a ∈ U such that
√
1− 1

e < |ω| < 1. Then we obtain

g′ω(z) = 2(ln
1

1− ωz
)2[ln

1

1− |ω|2
]−1 − ln

1

1− ωz

and

g′′ω(z) =
4ω

1− ωz
(ln

1

1− ωz
)[ln

1

1− |ω|2
]−1 − ω

1− ωz
.

Thus, we conclude that

g′′ω(ω)

g′ω(ω)
=

3|ω|
1−|ω|2

ln 1
1−|ω|2

.

Similarly, we have

N := sup√
1− 1

e<|ω|<1

∥fa∥ < ∞.

Consequently
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∞ > ∥Cgωf∥

≥ sup
z∈U

(1− |z|2)|g
′′
ω(z)

g′ω(z)
+

f ′(z)

f(z)
|

≥ (1− |ω|2)|g
′′
ω(ω)

g′ω(ω)
+

f ′(ω)

f(ω)
|

≥ (1− |ω|2)|
3|ω|

1−|ω|2

ln 1
1−|ω|2

+
f ′(ω)

f(ω)
|

≥
−3|ω|+ (1− |ω|2)| f

′(ω)
f(ω) | ln

1
1−|ω|2

ln 1
1−|ω|2

.

(3)

From (2) and (3) it follows that

(1− |ω|2)|f
′(ω)

f(ω)
| ln 1

(1− |ω|2)
< ∞ (4)

for all
√
1− 1

e < |ω| < 1. Also, we have

sup
|ω|≤

√
1− 1

e

(1−|ω|2)|f
′(ω)

f(ω)
| ln 1

(1− |ω|2)
≤ sup√

1− 1
e≤|ω|<1

(1−|ω|2)|f
′(ω)

f(ω)
| ln 1

(1− |ω|2)
.

(5)
Now from (4) and (5) we conclude that f ∈ Blog, as desired.

Our next two theorems are on the compactness of the integral operator Cg in U .

Theorem 2.3. Assume that g is an analytic function on U . Then for f ∈ Blog,
the integral operator Cgf is compact if and only if g ∈ Σ.

Proof. If Cgf is compact, then it is bounded, and by Theorem 2.1 it follows that
g ∈ Σ. Now assume that g ∈ Σ and that (fn)n∈N is a sequence in Blog such that

maxz∈U (fng
′)′′(z) = 0 and that fn → 0 uniformly on U as n → ∞. For every ε > 0

there is δ ∈ (0, 1) such that

1

1− |z|2
< ε,

where δ < |z| < 1. Since δ is arbitrary, we chose ln 1
1−|z|2 > 1 for δ < |z| < 1 and

∥Cgfn∥ = sup
z∈U

(1− |z|2)| (Cgfn)
′′(z)

(Cgfn)′(z)
|

≤ sup
z∈U

(1− |z|2)|fn(z)g
′′(z) + f ′

n(z)g
′(z)

fn(z)g′(z)
|

≤ sup
z∈U

(1− |z|2)|g
′′(z)

g′(z)
|+ sup

z∈U
(1− |z|2)|f

′
n(z)

fn(z)
|(ln 1

1− |z|2
)

≤ ∥g∥
1− |z|2

+ ∥fn∥Blog

< ε∥g∥+ ∥fn∥Blog
.
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Since for fn → 0 on U we have ∥fn∥Blog
→ 0, and that ε is an arbitrary positive

number, by letting n → ∞ in the last inequality, we obtain that limn→∞∥Cgfn∥ =
0. Therefore, the operator Cg is compact.

Theorem 2.4. Assume that g is an analytic function on U . Then the integral
operator Cg : Σ → Σ is compact if and only if f is a non-zero constant.

Proof. Without loss of generality, we assume that g(z) = z. Then it is clear that
Cgf is compact. Conversely, assume that Cg : Σ → Σ is compact. Let (zn)n∈N be
a sequence in U such that |zn| → 1 as n → ∞. We aim to show that f ′(zn) → 0
as n → ∞. Therefore, by the maximum modulus theorem, we have f is a constant.
In fact, setting

gn(z) = 2
(znz − 1)

zn
[(1 + ln

1

1− znz
)2 + 1][ln

1

1− |z|2
]−1 − 4

∫ z

0

ln
1

1− znw
dw,

we obtain

g′n(z) = 2(ln
1

1− znz
)2[ln

1

1− |z|2
]−1 − 4[ln

1

1− znz
]

and

g′′n(z) =
4zn

1− znz
(ln

1

1− znz
)[ln

1

1− |z|2
]−1 − 4zn

1− znz
.

Consequently, we have
g′′n(zn)

g′n(zn)
= 0.

Similar to the proof of Theorem 2.2, we see that gn → 0 uniformly on U. Since
Cg : Σ → Σ is compact then we get

∥Cgfn∥ → 0, n → ∞.

Thus

|f
′(zn)

f(zn)
| ≤ sup

z∈U
|f

′(z)

f(z)
|+ sup

z∈U
|g

′′
n(z)

g′n(z)
|

≤ ∥Cgfn∥ → 0

implies that f ′
n(z) → 0 and so f is a constant as desired.

Let H be a complex Hilbert space and B(H,H) be a bounded space on H. Recall
that the operator P is called an accretive if ℜ(Pu, u)H ≥ 0, ∀u ∈ H. Moreover, the
space L2(U ;H) is a Hilbert space with the inner product

(f, g)L2(U ;H) =

∫ 1

0

(f(z), g(z))Hdz, z ∈ U.

We proceed to extend the Cesàro integral operator Cgf to the space L2(U ;H).
We are now ready to state and prove the following:

Theorem 2.5. Let f ∈ L2(U ;H). Then Cgf ∈ B(L2(U ;H)).Moreover, if ℜ(g′(z)) >
0, z ∈ U then Cgf is an accretive operator.
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Proof. By making use the Young inequality, it follows that

∥Cgf∥L2(U ;H) ≤ ∥g′∥L1(U)∥u∥L2(U ;H) ≤ C∥u∥L2(U ;H).

To prove that Cgf is an accretive operator, it suffices to show that

ℜ
(∫ z

0

f(ξ)g′(ξ)dξ, f
)
L2(U ;H)

≥ 0,

where f is in the domain of Cg. By the assumption ℜ(g′(z)) > 0, z ∈ U , we have

ℜ
(∫ z

0

f(ξ)g′(ξ)dξ, f
)
L2(U ;H)

= ℜ
(∫ 1

0

( ∫ z

0

f(ξ)g′(ξ)dξ, f
)
H
dz

)
= ℜ

(∫ 1

0

( ∫ z

0

f2(ξ)g′(ξ)dξ
)
dz

)
≥ 0

where f is analytic and non-negative in the domain of Cg. Therefore Cgf is an
accretive operator.

For β > 0, we consider the space Bβ
log of all functions f ∈ H, f(0) = 0 so that

∥f∥Bβ
log

= sup
z∈U

(1− |z|2)β |f
′(z)

f(z)
| ln 1

(1− |z|2)β
< ∞, (z ∈ U).

Obviously, for 0 < β1 < 1 < β2 < ∞, we obtain

Bβ1

log & Blog & Bβ2

log.

Theorem 2.6. Let 0 < β < 1 and f, g ∈ H(U), g ∈ Bβ
log. Then the integral

operator Cg is bounded on Bβ
log if and only if f ∈ H∞. Moreover,

∥Cg∥ = ∥f∥H∞ .

Proof. Without loss of generality, we let

∥g∥Bβ
log

= sup
z∈U

(1− |z|2)β |g
′(z)

g(z)
| ln 1

(1− |z|2)β
= 1.

The maximum principle and the Cauchy-Schwarz inequality for integral imply that

∥Cgf∥Bβ
log

= sup
z∈U

(1− |z|2)β | (Cgf)
′(z)

(Cgf)(z)
| ln 1

(1− |z|2)β

≤ sup
z∈U

(1− |z|2)β
(
| (fg′)(z)∫ z

0
(fg′)(z)dζ

|+ 1
)
ln

1

(1− |z|2)β

≤ sup
z∈U

(1− |z|2)β
(
| (fg′)(z)∫ z

0
(fg′)(z)dζ

|
)
ln

1

(1− |z|2)β
+ sup

z∈U
(1− |z|2)β × ln

1

(1− |z|2)β

≤ ∥f∥Bβ
log

+ ρ, ρ → 0.

Define κ := supz∈U |f |. Given ϵ >, there exists z1 ∈ U such that |f(z1)| > κ − ϵ.
Set

F (z) =

∫ z

0

(1− |z1|2)β

(1− z1ζ)2β
dζ.
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By [15, Theorem 13.11 ], F is analytic in U with

F ′(z) =
(1− |z1|2)β

(1− z1z)2β
.

Now, we have

∥F∥Bβ
log

= sup
z∈U

(1− |z|2)β |F
′(z)

F (z)
| ln 1

(1− |z|2)β

= sup
z∈U

(1− |z|2)β
(∣∣∣ (1−|z1|2)β

(1−z1z)2β∫ z

0
(1−|z1|2)β
(1−z1ζ)2β

dζ

∣∣∣) ln
1

(1− |z|2)β
≤ 1.

On the other hand

∥F∥Bβ
log

= sup
z∈U

(1− |z|2)β |F
′(z)

F (z)
| ln 1

(1− |z|2)β

= sup
z∈U

(1− |z|2)β
(∣∣∣ (1−|z1|2)β

(1−z1z)2β∫ z

0
(1−|z1|2)β
(1−z1ζ)2β

dζ

∣∣∣) ln
1

(1− |z|2)β

≥ (1− |z|2)β
(∣∣∣ (1−|z1|2)β

(1−|z1|2)2β∫ z

0
(1−|z1|2)β
(1−|z1|2)2β dζ

∣∣∣) ln
1

(1− |z|2)β

≥ (1− |z|2)β ln 1

(1− |z|2)β
≥ 1,

for sufficient small 0 < β < 1 and |z| < 1. Thus ∥F∥Bβ
log

= 1. Now the proof is

complete since for F (z) ≡ g(z) in Cgf and for arbitrary small ϵ we obtain

∥Cg∥ ≥ ∥Cgf∥Bβ
log

= sup
z∈U

(1− |z|2)β | (Cgf)
′(z)

(Cgf)(z)
| ln 1

(1− |z|2)β

= sup
z∈U

(1− |z|2)β
(
| (fg′)(z)∫ z

0
(fg′)(z)dz

|+ 1
)
ln

1

(1− |z|2)β

≥ (1− |z1|2)β
(
|

f(z1)
(1−|z1|2)α
(1−z1z)2β∫ z

0
f(z1)

(1−|z1|2)β
(1−z1z)2β

dz
|
)
ln

1

(1− |z1|2)β
+ (1− |z1|2)β

× ln
1

(1− |z1|2)β
> |f(z1)| > κ− ϵ.
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eralized Cesàro operators, J. Func. Anal. Vol. 285, 67-98, 2010.

[3] S. Ballamoole, T.L Miller, V.G. Miller, Spectral properties of Cesàro-like operators
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the Cesàro operator on the weighted Bergman spaces and Bishop,s property. Doctoral
thesis in Mathematical Sciences Centre for Mathematical Sciences, Lund University,
2003.
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[12] A. G. Siskakis, The Cesáro operator is bounded on H1, Proc. Amer. Math. Soc. Vol.

1102, 461-462, 1990.
[13] S. Stevic̀, Norm of weighted composition operators from α-Bloch spaces to weighted-

type spaces. Appl. Math. Comput. Vol. 215, 818-820, 2009.
[14] S. Stevic̀, Norms of some operators on bounded symmetric domains. Appl. Math.

Comput. Vol. 215, 187-191, 2010.
[15] S. Stevic̀, Norm of an integral-type operator from Dirichlet to Bloch space on the unit

disk. Util. Math. Vol. 83, 301-303, 2010.

Rabha W. Ibrahim
Institute of Mathematical Sciences, University Malaya, 50603, Malaysia

E-mail address: rabhaibrahim@yahoo.com

Jay M. Jahangiri
Mathematical Sciences, Kent State University, Kent, Ohio, U.S.A.

E-mail address: jjahangi@kent.edu


