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STABILITY BY CONTRACTION MAPPING IN NONLINEAR

NEUTRAL DIFFERENTIAL EQUATIONS WITH VARIABLE

DELAY

ABDELOUAHEB ARDJOUNI, AHCENE DJOUDI

Abstract. The nonlinear neutral differential equation

x′ (t) = −a (t) g (x (t− τ (t))) + c (t)x′ (t− τ (t)) ,

with variable delay τ (t) ≥ 0 is investigated. We find suitable conditions for τ ,
a, c and g so that for a given continuous initial function ψ a mapping P for the
above equation can be defined on a carefully chosen complete metric space S0

ψ

in which P possesses a unique fixed point. The final result is an asymptotic
stability theorem for the zero solution with a necessary and sufficient condition.
The obtained theorem improves and generalizes previous results due to Becker

and Burton [6]. We end this work by giving an illustrative example.

1. Introduction

In 1892 Lyapunov published a major work on stability of ordinary differential
equations based on positive definite functions and the chain rule. Lyapunov’s work
has been the foundation of stability and instability theory as we know today for
a wide variety of ordinary, functional, partial differential and integro-differential
equations. Nevertheless, the application of this method to problems of stability in
differential and integro-differential equations with delays has encountered serious
obstacles if the delays are unbounded or if the equation has unbounded terms
[8]–[10]. Maybe this is due to the pointwise aspect of the method while real world-
problems asks for averaging conditions. So, it does seem that the times are ripe
to try other avenues. In recent years, several investigators in this field have tried
stability by using a new technique. Particularly, Burton, Furumochi, Becker, Zhang
and others began a study in which they noticed that some of these difficulties
vanish or might be overcome by means of fixed point theory (see [1]–[21], [23]–
[25]). The fixed point theory does not only solve the problem on stability but
has other significant advantage over Lyapunov’s. The conditions of the former are
often averages but those of the latter are usually pointwise (see [8]). Moreover,
recent works have shown that the fixed point technique can be applied to problems
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perturbed by stochastic terms and still yielding stability (see for example [20]).
This is another important feature for applications to real-world problems.

In this paper we consider the nonlinear neutral differential equation with variable
delay

x′ (t) = −a (t) g(x (t− τ (t))) + c (t)x′ (t− τ (t)) , (1)

with the initial condition

x (t) = ψ (t) for t ∈ [m (0) , 0] ,

such that ψ ∈ C ([m (0) , 0] ,R) where m (0) = inf {t− τ (t) , t ≥ 0}.
Here C (S1, S2) denotes the set of all continuous functions φ : S1 → S2 with the
supremum norm ∥·∥. Throughout this paper we assume that a ∈ C (R+,R) , c :
R+ → R is differentiable and τ : R+ → R+ is differentiable with t − τ (t) → ∞ as
t→ ∞.

Special cases of (1) have been considered and investigated by many authors. For
example the equation

x′ (t) = −a (t) g(x (t− τ (t))), (2)

is of historical importance and has significant applications. The study of (2) go
back to 1951 (cf. [23] and the references therein) and it has drawn the attention
of a large number of investigators who have discussed in an enormous number of
papers. To our knowledge, the most recent work about this equation is that of
Becker and Burton in [6] who have studied this equation and have established and
proved the following theorem.

Theorem 1 (Becker and Burton [6]). Suppose a constant l > 0 exists such that g
satisfies a Lipschitz condition on [−l, l]. Assume, further, that

(i) the function t− τ (t) : [0,∞) → [m (0) ,∞) is strictly increasing;
(ii) g is odd and strictly increasing on [−l, l];
(iii) x− g(x) is non-decreasing on [0, l];

(iv) there is an α ∈ (0, 1) such that 2
∫ t
t−τ(t) a (u) du ≤ α for t ≥ t1, where t1 is

the unique solution of t − τ (t) = 0, and if a continuous function ã : [0,∞) → R
exists such that a (t) = ã (t) (1− τ ′ (t)) on [0,∞). Then a δ ∈ (0, l) exists such that,
for each continuous function ψ : [m (0) , 0] → (−δ, δ), there is a unique continuous
function x : [m (0) ,∞) → R with x (t) = ψ (t) on [m (0) , 0] that satisfies (2) on
[0,∞). Moreover, x is bounded by l on [m (0) ,∞). Furthermore, the zero solution
of (2) is stable at t = 0. If, in addition, g is continuously differentiable, g′ (0) ̸= 0
and ∫ t

0

a (v) dv → ∞ as t→ ∞, (3)

then the zero solution is asymptotically stable.

Our purpose here is to improve Theorem 1 and extend it to investigate a wide
class of nonlinear differential equation with variable delay of neutral type presented
in (1). We point out here that the present work do not require that t − τ (t) be
strictly increasing. Such an assumption has been at the heart of the methods used
in the previous papers and here we propose a way free of further hypotheses on the
inverse of delay t−τ (t), so that for a given continuous initial function ψ a mapping
P for (1) is constructed in such a way to map a, carefully chosen, complete metric
space S0

ψ into itself on which P is a contraction mapping possessing a fixed point.
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This procedure will enable us to establish and prove by means of the contraction
mapping theorem an asymptotic stability theorem for the zero solution of (1) with
less restrictive conditions. The end results improve and generalize the main results
in [6]. We also provide an example to illustrate our claim.

2. Main results

For each ψ ∈ C ([m (0) , 0] ,R), a solution of (1) through (0, ψ) is a continuous
function x : [m (0) , T ) → R for some positive constant T > 0 such that x satisfies (1)
on [0, T ) and x = ψ on [m (0) , 0]. We denote such a solution by x (t) = x (t, 0, ψ).
From the existence theory we can conclude that for each ψ ∈ C ([m (0) , 0] ,R),
there exists a unique solution x (t) = x (t, 0, ψ) of (1) defined on [0,∞). We define
∥ψ∥ = max {|ψ (t)| : m (0) ≤ t ≤ 0}. Stability definitions may be found in [8], for
example. In our investigation we need that τ is twice differentiable and

τ ′ (t) ̸= 1 for all t ∈ R+. (4)

The absence of linear terms in (1) makes it difficult to obtain a fixed point mapping.
So, to make equation (1) more tractable, we have to transform it.

Generally, the investigation of the stability of an equation using fixed point
technic involves the construction of a suitable fixed point mapping. This can, in
so many cases, be a difficult task. So, to construct our mapping, we begin by
transforming (1) to a more tractable, but equivalent, equation, which we then
invert to obtain an equivalent integral equation from which we derive a fixed point
mapping. After then, we define prudently a suitable complete space, depending
on the initial condition, so that the mapping is a contraction. Using Banach’s
contraction mapping principle [22], we obtain a solution for this mapping, and
hence a solution for (1), which is asymptotically stable.

First, we have to transform (1) into an equivalent equation that possesses the
same basic structure and properties to which we apply the variation of parameters
to define a fixed point mapping.

Lemma 1. Let ψ : [m(0), 0] → R be a given continuous initial function. If x is a
solution of (1) on an interval [0, T ) with x = ψ on [m(0), 0], then x is a solution of
the integral equation

x(t) =

{
ψ(0)− c(0)

1− τ ′(0)
ψ(−τ(0))−

∫ 0

−τ(0)
H(s)g (ψ(s)) ds

}
e−

∫ t
0
H(v)dv

+
c(t)

1− τ ′(t)
x(t− τ(t)) +

∫ t

t−τ(t)
H(s)g (x(s)) ds

−
∫ t

0

e−
∫ t
s
H(v)dvH(s)

(∫ s

s−τ(s)
H(u)g (x(u)) du

)
ds

+

∫ t

0

e−
∫ t
s
H(v)dv {[−a (s) +H(s− τ(s))(1− τ ′(s))] g (x(s− τ(s)))

−µ(s)x(s− τ(s))} ds

+

∫ t

0

e−
∫ t
s
H(v)dvH(s) [x(s)− g(x(s))] ds, (5)
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where

µ(s) =
[c′(s) +H(s)c(s)](1− τ ′(s)) + τ ′′(s)c(s)

(1− τ ′(s))2
,

and H : [m(0),∞) → R is an arbitrary continuous function. Conversely, if a
continuous function x is equal to ψ on [m(0), 0] and is a solution of (5) on an
interval [0, T ), then x is a solution of (1) on [0, T ).

Proof. Let x be a solution of (1). Rewrite (1) as

x′ (t) = −H (t)x (t) +
d

dt

∫ t

t−τ(t)
H (s) g (x (s)) ds+ c (t)x′(t− τ(t))

+ [−a (t) +H(t− τ(t))(1− τ ′(t))] g (x(t− τ(t))) +H (t) [x(t)− g (x(t))] .
(6)

Multiplying both sides of (6) by the factor e
∫ t
0
H(v)dv and integrating from 0 to

any t ∈ [0, T ), we obtain

x(t) = e−
∫ t
0
H(v)dvψ(0) +

∫ t

0

e−
∫ t
s
H(v)dvH(s)g (x(s)) ds

+

∫ t

0

e−
∫ t
s
H(v)dv d

ds

∫ s

s−τ(s)
H(u)g (x(u)) duds

+

∫ t

0

e−
∫ t
s
H(v)dvc(s)x′(s− τ(s))ds

+

∫ t

0

e−
∫ t
s
H(v)dv {−a (s) +H(s− τ(s))(1− τ ′(s))} g (x(s− τ(s))) ds

+

∫ t

0

e−
∫ t
s
H(v)dvH (s) [x(s)− g (x(s))] ds.

Then an integration by parts yields (5). Conversely, suppose that a continuous
function x is equal to ψ on [m(0), 0] and satisfies (5) on an interval [0, T ). Then, x
is differentiable on [0, T ). Differentiating x with the aid of Leibniz’s rule, we obtain
(1). �

From equation (5) we shall derive a fixed point mapping P for (1). But the
challenge here is to choose a suitable metric space of functions on which the map P
can be defined. Below a weighted metric on a specific space is defined. Let C be the
set of real-valued bounded continuous functions on [m(0),∞) with the supremum
norm ∥·∥, that is, for ϕ ∈ C,

∥ϕ∥ := sup {|ϕ (t)| : t ∈ [m(0),∞)} .

In other words, we carry out our investigations in the complete metric space (C, d)
where d denotes the supremum metric d (ϕ1, ϕ2) = ∥ϕ1 − ϕ2∥ for ϕ1, ϕ2 ∈ C. For a
given initial function ψ : [m(0), 0] → [−l, l], l > 0, define the set

Sψ := {ϕ : [m(0),∞) → R | ϕ ∈ C, ϕ(t) = ψ(t) for t ∈ [m(0), 0], |ϕ(t)| ≤ l}.

Since Sψ is a closed subset of C, the metric space (Sψ, d) is complete.
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Theorem 2. Let H : [m(0),∞) → R be a continuous function and define a mapping
P on Sψ as follows, for ϕ ∈ Sψ (Pϕ) (t) = ψ(t) if t ∈ [m(0), 0]; while, for t > 0

(Pϕ) (t) =

{
ψ(0)− c(0)

1− τ ′(0)
ψ(−τ(0))−

∫ 0

−τ(0)
H(s)g (ψ(s)) ds

}
e−

∫ t
0
H(v)dv

+
c(t)

1− τ ′(t)
ϕ(t− τ(t)) +

∫ t

t−τ(t)
H(s)g (ϕ(s)) ds

−
∫ t

0

e−
∫ t
s
H(v)dvH(s)

(∫ s

s−τ(s)
H(u)g (ϕ(u)) du

)
ds

+

∫ t

0

e−
∫ t
s
H(v)dv {[−a (s) +H(s− τ(s))(1− τ ′(s))] g (ϕ(s− τ(s)))

−µ(s)ϕ(s− τ(s))} ds

+

∫ t

0

e−
∫ t
s
H(v)dvH(s) [ϕ(s)− g(ϕ(s))] ds. (7)

Suppose that the following conditions are satisfied,
(i) there exists a constant l > 0 such that g satisfies a Lipschitz condition on

[−l, l] and let L be the Lipschitz constant for both g(x) and x− g(x) on [−l, l];
(ii) H(t) ≥ 0 for t ≥ m (0).

Assume, further, that the following condition is satisfied for some constant k > 5

k

∣∣∣∣ c(t)

1− τ ′(t)

∣∣∣∣ ≤ 1. (8)

Then there is a metric dh for Sψ such that (Sψ, dh) is complete and P is a contrac-
tion on (Sψ, dh) if P maps Sψ into itself.

Proof. It is clear that Pϕ is continuous when ϕ is such. Now, for t ∈ [m(0),∞) and
a constant k > 5, define

h(t) = kL

∫ t

0

[H(v) + ω(v)]dv,

where

ω(v) =

{
0, if v ∈ [m(0), 0]

|−a (v) +H(v − τ(v))(1− τ ′(v))|+ |µ(v)|
L , if v ∈ [0,∞).

(9)

Let S be the space of all continuous functions ϕ : [m(0),∞) → R such that

|ϕ|h := sup
{
|ϕ(t)| e−h(t) : t ∈ [m(0),∞)

}
<∞.

Then (S, |·|h) is a Banach space, which can be checked with Cauchy criterion for
uniform convergence. Thus, (S, dh) is a complete metric space where dh denotes the
induced metric dh(ϕ, η) = |ϕ− η|h for ϕ−η ∈ S. Being closed in S with this metric,
the space (Sψ, |·|h) is also complete. Suppose now, that P : Sψ → Sψ. We need to
show that P defined by (7) is a contraction. Toward this end. Let ϕ, η ∈ Sψ, since,
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by hypothesis (i), g satisfies a Lipschitz condition on [−l, l], it follows that

|(Pϕ)(t)− (Pη)(t)| e−h(t)

≤
∣∣∣∣ c(t)

1− τ ′(t)

∣∣∣∣ |ϕ(t− τ(t))− η(t− τ(t))| e−h(t)−h(t−τ(t))+h(t−τ(t))

+

∫ t

t−τ(t)
H(s)L |ϕ(s)− η(s)| e−h(t)+h(s)−h(s)ds

+

∫ t

o

e−
∫ t
s
H(v)dvH(s)

∫ s

s−τ(s)
H(u)L |ϕ(u)− η(u)| e−h(t)+h(u)−h(u)duds

+

∫ t

0

e−
∫ t
s
H(v)dv {L |−a (s) +H(s− τ(s)) (1− τ ′(s))|+ |µ(s)|}

× |ϕ(s− τ(s))− η(s− τ(s))| e−h(t)+h(s−τ(s))−h(s−τ(s))ds

+

∫ t

0

e−
∫ t
s
H(v)dvH(s)L |ϕ(s)− η(s)| e−h(t)+h(s)−h(s)ds, (10)

for t > 0. There are five terms on the right hand side of inequality (10), denote
them respectively by Ii, i = 1, 2, ..., 5. For t− τ(t) ≤ s ≤ v ≤ t, we have

−h(t) + h(s) = −kL
∫ t

s

[H(v) + ω(v)]dv ≤ −kL
∫ t

s

H(v)dv.

Consequently,

I2 ≤
∫ t

t−τ(t)
e−kL

∫ t
s
H(v)dvH(s) |ϕ(s)− η(s)| e−h(s)ds.

For s− τ(s) ≤ u ≤ v ≤ s, we have

−h(t) + h(u) = −kL
∫ t

u

[H(v) + ω(v)]dv ≤ −kL
∫ s

u

H(v)dv.

So

I3 ≤
∫ t

0

e−
∫ t
s
H(v)dvH(s)

∫ s

s−τ(s)
e−kL

∫ s
u
H(v)dvH(u)L |ϕ(u)− η(u)| e−h(u)duds

Similarly, using (9), we obtain for s− τ (s) ≤ v ≤ t

−h (t) + h (s− τ(s)) = −kL
∫ t

s−τ(s)
[H(v) + ω(v)]dv ≤ −kL

∫ t

s

ω(v)dv

Thus

I4 ≤
∫ t

0

e−kL
∫ t
s
ω(v)dvω (s)L |ϕ(s− τ(s))− η(s− τ(s))| e−h(s−τ(s))ds
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Consequently, inequality (10), became

|(Pϕ)(t)− (Pη)(t)| e−h(t)

≤ e−kL
∫ t
t−τ(t)

[H(v)+ω(v)]dv

∣∣∣∣ c(t)

1− τ ′(t)

∣∣∣∣ |ϕ(t− τ(t))− η(t− τ(t))| e−h(t−τ(t))

+

∫ t

t−τ(t)
e−kL

∫ t
u
H(v)dvH (s)L |ϕ(s)− η(s)| e−h(s)ds

+

∫ t

0

e−
∫ t
s
H(v)dvH(s)

∫ s

s−τ(s)
e−kL

∫ s
u
H(v)dvH(u) |ϕ(u)− η(u)| e−h(u)duds

+

∫ t

0

e−kL
∫ t
s
ω(v)dvω(s) |ϕ(s− τ(s))− η(s− τ(s))| e−h(s−τ(s))ds

+

∫ t

0

e−(kL+1)
∫ t
s
H(v)dvH(s)L |ϕ(s)− η(s)| e−h(s)ds.

Consequently, by using (8), we obtain

|(Pϕ)(t)− (Pη)(t)| e−h(t) ≤
[
1

k
+

(
1

kL
+

1

kL
+

1

kL
+

1

kL+ 1

)
L

]
|ϕ− η|h ,

for all t > 0. Since Pϕ and Pη agree on [m (0) , 0], the last inequality holds for all
t ≥ m (0). Thus

|Pϕ− Pη|h ≤ 5

k
|ϕ− η|h .

Since k > 5, we conclude that P is a contraction on (Sψ, dh). �

Now, by choosing ∥ψ∥ sufficiently small, we establish the existence and unique-
ness of solutions by showing that P : Sψ → Sψ.

Definition 1. The zero solution of (1) is said to be stable at t = 0 if, for every
ε > 0, there exists a δ > 0 such that ψ : [m (0) , 0] → (−δ, δ) implies that |x (t)| < ε
for t ≥ m (0).

Theorem 3. Suppose g, H satisfy conditions (i)–(ii) in Theorem 2, (8) holds and
suppose further that

(i) g is odd and strictly increasing on [−l, l];
(ii) x− g(x) is non-decreasing on [0, l];
(iii) there exists an α ∈ (0, 1) such that, for t ≥ 0

l

(∣∣∣∣ c(t)

1− τ ′(t)

∣∣∣∣+ ∫ t

0

e−
∫ t
s
H(v)dv |µ(s)| ds

)
+ g (l)

(∫ t

t−τ(t)
H (s) ds+

∫ t

0

e−
∫ t
s
H(v)dvH(s)

∫ s

s−τ(s)
H(u)duds

+

∫ t

0

e−
∫ t
s
H(v)dv |−a (s) +H(s− τ(s)) (s− τ ′(s))| ds

)
≤ αg (l) .

Then a δ ∈ (0, l) exists such that for each initial continuous function ψ : [m(0), 0] →
(−δ, δ), there is a unique continuous function x : [m(0),∞) → R with x = ψ on
[m(0), 0], which is a solution of (1) on [0,∞). Moreover, x is bounded by l on
[m(0),∞). Furthermore, the zero solution of (1) is stable at t = 0.
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Proof. Since g is odd and satisfies the Lipschitz condition on [−l, l], g(0) = 0 and
g is uniformly continuous on [−l, l]. So we can choose a δ that satisfies

δ

(
1 +

∣∣∣∣ c(0)

1− τ ′(0)

∣∣∣∣)+ g (δ)

∫ 0

−τ(0)
H(s)ds ≤ (1− α) g (l) . (11)

Let ψ : [m(0), 0] → (−δ, δ) be a continuous function. Note that (11) implies δ < l
since g(l) ≤ l by condition (ii). Thus, |ψ (t)| ≤ l for m(0) ≤ t ≤ 0. Now we show
that for such a ψ the mapping P : Sψ → Sψ. Indeed, consider (7). For an arbitrary
ϕ ∈ Sψ, it follows from conditions (i) and (ii) that

|(Pϕ)(t)|

≤ δ

(
1 +

∣∣∣∣ c(0)

1− τ ′(0)

∣∣∣∣)+ g (δ)

∫ 0

−τ(0)
H(s)ds+ l

∣∣∣∣ c(t)

1− τ ′(t)

∣∣∣∣
+ g (l)

∫ t

t−τ(t)
H(s)ds+ g (l)

∫ t

o

e−
∫ t
s
H(v)dvH(s)

(∫ s

s−τ(s)
H(u)du

)
ds

+

∫ t

0

e−
∫ t
s
H(v)dv {g (l) |−a (s) +H(s− τ(s)) (1− τ ′(s))|+ l |µ(s)|} ds

+ (l − g(l))

∫ t

0

e−
∫ t
s
H(v)dvH(s)ds,

for t > 0. By applying (iii) and (11), we see that

|(Pϕ)(t)| ≤ δ

(
1 +

∣∣∣∣ c(0)

1− τ ′(0)

∣∣∣∣)+ g (δ)

∫ 0

−τ(0)
H(s)ds+ αg(l) + l − g(l)

≤ (1− α) g (l) + (α− 1) g(l) + l = l.

Hence, |(Pϕ)(t)| ≤ l for t ∈ [m(0),∞) because |(Pϕ)(t)| = |ψ (t)| ≤ l for t ∈
[m (0) , 0]. Therefore, Pϕ ∈ Sψ. By Theorem 2, P is a contraction on the complete
metric space (Sψ, dh). Then P has a unique fixed point x ∈ Sψ. Thus |x (t)| ≤ l
for all t ≥ m (0) and is a solution of (1) on [0,∞) by Lemma 1. Hence x is the only
continuous function satisfying (1) such that x(t) = ψ(t) for t ∈ [m(0), 0].
To prove the stability at t = 0, let ε > 0 be given and choose r > 0 such that
r < min {ε, l}. Replacing l with r beginning with (11), we see that there is a
δ > 0 such that ∥ψ∥ < δ implies that the unique continuous solution x agreeing on
[m (0) , 0] with ψ, satisfies |x(t)| ≤ r < ε for all t ≥ m(0). �

Supposing that the conditions in Theorem 2 and Theorem 3 hold for some l > 0,
we investigate asymptotic stability with a necessary and sufficient condition by
shifting our attention to the subset of functions in Sψ that are tend to zero as
t→ ∞, namely,

S0
ψ = {ϕ ∈ Sψ | ϕ (t) → 0 as t→ ∞} .

Since S0
ψ is a closed subset of Sψ, the metric space

(
S0
ψ, d
)
is complete. Under the

conditions of the next theorem, the zero solution of (1) is asymptotically stable.

Definition 2. The zero solution of (1) is asymptotically stable if it is stable at t = 0
and a δ > 0 exists such that for any continuous functions ψ : [m (0) , 0] → (−δ, δ),
the solution x with x = ψ on [m (0) , 0] tends to zero as t→ ∞.
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Recall here that B. Zhang was the first to establish necessary and sufficient
condition for the stability of solutions of functional differential equations by the
fixed point theory. The necessity of condition (12) below for the main stability
result is due to him (see [25]).

Theorem 4. Suppose all of the conditions in Theorem 2 and Theorem 3 hold.
Furthermore, suppose g is continuously differentiable on [−l, l] and g′ (0) ̸= 0. Then
the zero solution of (1) is asymptotically stable if and only if∫ t

0

H (v) dv → ∞ as t→ ∞. (12)

Proof. First, suppose that (1) holds. We set

K = sup
t≥0

{
e−

∫ t
0
H(v)dv

}
. (13)

We argue that P : S0
ψ → S0

ψ, the conditions of Theorems 2 and 3 hold, and ∥ψ∥
is sufficiently small. For δ > 0 satisfying (11), let ψ : [m (0) , 0] → (−δ, δ) be a
continuous function. Let ϕ ∈ S0

ψ. The proof of Theorem 3 shows that δ < l and

|(Pϕ) (t)| ≤ l for t ∈ [m(0),∞). Hence, (Pϕ) (t) → 0 would imply that P maps S0
ψ

into itself. To show that this is the case, consider |(Pϕ) (t)|. But first note for any
ϕ ∈ S0

ψ that

|g (ϕ (t))| ≤ L |ϕ (t)| and |ϕ (t)− g (ϕ (t))| ≤ L |ϕ (t)| ,

since g (x) and x − g (x) satisfy a Lipschitz condition on [−l, l] with a common
Lipschitz constant L and g (0) = 0. Because of this and (iii) of Theorem 3, it
follows from (7) that

|(Pϕ) (t)|

≤

{
|ψ(0)|+

∣∣∣∣ c(0)

1− τ ′(0)

∣∣∣∣ |ψ(−τ(0))|+ ∫ 0

−τ(0)
H(s) |ψ(s)| ds

}
e−

∫ t
0
H(v)dv

+

∣∣∣∣ c(t)

1− τ ′(t)

∣∣∣∣ |ϕ(t− τ(t))|+
∫ t

t−τ(t)
H(s) |ϕ(s)| ds

+

∫ t

0

e−
∫ t
s
H(v)dvH(s)

(∫ s

s−τ(s)
H(u) |ϕ(u)| du

)
ds

+

∫ t

0

e−
∫ t
s
H(v)dv {|−a (s) +H(s− τ(s)) (1− τ ′(s))| |g (ϕ(s− τ(s)))|

+ |µ(s)| |ϕ(s− τ(s))|} ds

+

∫ t

0

e−
∫ t
s
H(v)dvH(s) |ϕ(s)− g(ϕ(s))| ds. (14)

Denote the six terms on the right hand side of (14) by I1, I2, ..., I6, respectively. It
is obvious that the first term I1 tends to zero as t → ∞, by condition (12). Also,
due to the facts that ϕ (t) → 0 and t − τ (t) → ∞ as t → ∞, the second term I2
in (14) tends to zero as t→ ∞. What is left to show is that each of the remaining
terms in (14) tends to zero as t→ ∞.

Let ϕ ∈ S0
ψ be fixed. For a given ϵ > 0, we choose T0 > 0 large enough such that

t − τ (t) ≥ T0, implies |ϕ (s)| < ϵ if s ≥ t − τ (t). Therefore, the third term I3 in
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(14) satisfies

I3 ≤
∫ t

t−τ(t)
H(s)L |ϕ(s)| ds

≤ Lϵ

∫ t

t−τ(t)
H(s)ds ≤ Lαϵ.

Thus, I3 → 0 as t → ∞. Now consider I4. For the given ϵ > 0, there exists a
T1 > 0 such that s ≥ T1 implies |ϕ (s− τ (s))| < ϵ. Thus, for t ≥ T1, the term I4 in
(14) satisfies

I4 ≤
∫ T1

o

e−
∫ t
s
H(v)dvH(s)

(∫ s

s−τ(s)
H(u)L |ϕ(s)| du

)
ds

+

∫ t

T1

e−
∫ t
s
H(v)dvH(s)

(∫ s

s−τ(s)
H(u)L |ϕ(s)| du

)
ds

≤ sup
σ≥m(0)

|ϕ(σ)|L
∫ T1

o

e−
∫ t
s
H(v)dvH(s)

(∫ s

s−τ(s)
H(u)du

)
ds

+ Lϵ

∫ t

T1

e−
∫ t
s
H(v)dvH(s)

(∫ s

s−τ(s)
H(u)du

)
ds.

By (12), there exists T2 > T1 such that t ≥ T2 implies

sup
σ≥m(0)

|ϕ(σ)|L
∫ T1

o

e−
∫ t
s
H(v)dvH(s)

(∫ s

s−τ(s)
H(u)du

)
ds

= sup
σ≥m(0)

|ϕ(σ)|Le−
∫ t
T2
H(v)dv

∫ T1

o

e−
∫ T2
s

H(v)dvH(s)

(∫ s

s−τ(s)
H(u)du

)
ds

< Lϵ.

Now, apply condition (iii) in Theorem 3 to have I4 < Lϵ + Lαϵ < 2Lϵ. Thus,
I4 → 0 as t → ∞. Similarly, by using condition (iii) in Theorem 3, then, if t ≥ T2
then the terms I5 and I6 in (14) satisfy

I5 ≤ sup
σ≥m(0)

|ϕ(σ)| e−
∫ t
T2
H(v)dv

×
∫ T1

o

e−
∫ T2
s

H(v)dv {L |−a (s) +H(s− τ(s)) (1− τ ′(s))|+ |µ(s)|} ds

+ϵ

∫ t

T1

e−
∫ t
s
H(v)dv {L |−a (s) +H(s− τ(s)) (1− τ ′(s))|+ |µ(s)|} ds

< Lϵ+ Lαϵ+
g (l)

l
αϵ <

(
2L+

g (l)

l

)
ϵ,
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and

I6 ≤ sup
σ≥m(0)

|ϕ(σ)|Le−
∫ t
T2
H(v)dv

∫ T1

o

e−
∫ T2
s

H(v)dvH(s)ds

+ Lϵ

∫ t

T1

e−
∫ t
s
H(v)dvH(s)ds

< Lϵ+ Lϵ = 2Lϵ.

Thus, I5, I6 → 0 as t → ∞. In conclusion (Pϕ) (t) → 0 as t → ∞, as required.
Hence P maps S0

ψ into S0
ψ.

We verify that P is a contraction on
(
S0
ψ, d
)
. For ζ ∈ [0, l], define

q (ζ) := min {g′ (x) : |x| ≤ ζ} and Q (ζ) := max {g′ (x) : |x| ≤ ζ} .

As we shall see, the mapping P defined by (7) will be a contraction on
(
S0
ψ, d
)

provided

αQ (l) < q (l) , (15)

where α is given by condition (iii) in Theorem 3. We may assume (15) holds for if
it does not, we merely decrease the value of l > 0 until it does. To see this, first
notice from (iii) in Theorem 3 that α < 1, thus,

α = 1− ϵ, (16)

for some ϵ ∈ (0, 1). Clearly, lim
ζ→0

q (ζ) = lim
ζ→0

Q (ζ) = g′ (0). Since g is strictly

increasing, g′ (0) ̸= 0, and g′ is continuous, a neighborhood of x = 0 exists in which
g′ (x) > 0. Consequently, Q (ζ) > 0 for 0 ≤ ζ ≤ l. This and lim

ζ→0
Q (ζ) ̸= 0 imply

lim
ζ→0

q (ζ)

Q (ζ)
=

lim
ζ→0

q (ζ)

lim
ζ→0

Q (ζ)
= 1.

Hence, there is a ς ∈ (0, l] such that∣∣∣∣ q (ζ)Q (ζ)
− 1

∣∣∣∣ < ϵ,

for 0 < ζ < ς. Choosing a value for ζ from (0, ς), we have (1− ϵ)Q (ζ) < q (ζ).
This, along with (16), yields

αQ (ζ) = (1− ϵ)Q (ζ) < q (ζ) .

Replacing the original value of l with l = ζ, we obtain (15). Note that the conditions
in Theorems 2 and 3 will still hold with this smaller l.

In the ensuing argument, bounds on the derivatives of g (x) and b (x) := x−g (x)
on the interval [−l, l] are used. By (i) in Theorem 3 and the definition of Q,
0 ≤ g′ (x) ≤ Q (l). By (i) and (ii) in Theorem 3, b is non-decreasing on [−l, l]. This
and g′ (x) ≥ q (l) imply 0 ≤ b′ (x) ≤ 1− q (l). Let ϕ, η ∈ S0

ψ. By (7) and the Mean
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Value Theorem, we have

|(Pϕ) (t)− (Pη) (t)|

≤
∣∣∣∣ c(t)

1− τ ′(t)

∣∣∣∣ |ϕ(t− τ(t))− η(t− τ(t))|

+

∫ t

t−τ(t)
H(s) |g (ϕ(s))− g (η(s))| ds

+

∫ t

0

e−
∫ t
s
H(v)dvH(s)

(∫ s

s−τ(s)
H(u) |g (ϕ(u))− g (η(u))| du

)
ds

+

∫ t

0

e−
∫ t
s
H(v)dv {|−a (s) +H(s− τ(s)) (1− τ ′(s))|

× |g (ϕ(s− τ(s)))− g (η(s− τ(s)))|+ |µ(s)| |ϕ(s− τ(s))− η(s− τ(s))|} ds

+

∫ t

0

e−
∫ t
s
a(v)dva(s) |b (ϕ(s))− b (η(s))| ds

≤ [αQ (l) + (1− q (l))] ∥ϕ− η∥ = ρ ∥ϕ− η∥ ,

for all t > 0, where ρ = αQ (l) + (1− q (l)). This implies ∥Pϕ− Pη∥ ≤ ρ ∥ϕ− η∥.
Note ρ ∈ (0, 1). Consequently, for a continuous ψ : [m (0) , 0] → (−δ, δ), P has a
unique fixed point x ∈ S0

ψ. By Lemma 1, x is the unique continuous solution of (1)

with x (t) = ψ (t) on [m (0) , 0]. By virtue of x ∈ S0
ψ, x tends to 0 as t → ∞. By

Theorem 3, the zero solution is stable at t = 0. This shows that the zero solution
of (1) is asymptotically stable if (12) holds.

Conversely, suppose (12) fails. Then, there exists a sequence {tn}, tn → ∞ as

n → ∞ such that lim
n→∞

∫ tn
0
H (v) dv = β for some β ∈ R+. We may also choose a

positive constant J satisfying

−J ≤
∫ tn

0

H (v) dv ≤ J,

for all n ≥ 1. To simplify our expressions, we define

ω (s) = l |µ (s)|+ g (l) {|−a (s) +H (s− τ (s))| |1− τ ′ (s)|

+H (s)

(∫ s

s−τ(s)
H (u) du

)}
+ LH (s) ,

for all s ≥ 0. By by condition (iii) in Theorem 3, we have∫ tn

0

e−
∫ tn
s

H(v)dvω (s) ds ≤ αg (l) + L.

This yields∫ tn

0

e
∫ s
0
H(v)dvω (s) ds ≤ (αg (l) + L) e

∫ tn
0

H(v)dv ≤ (g (l) + L) eJ .

The sequence
{∫ tn

0
e
∫ s
0
H(v)dvω (s) ds

}
is bounded, so there exists a convergent sub-

sequence. For brevity of notation, we may assume that

lim
n→∞

∫ tn

0

e
∫ s
0
H(v)dvω (s) ds = γ,
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for some γ ∈ R+ and choose a positive integer m so large that∫ tn

tm

e
∫ s
0
H(v)dvω (s) ds < δ0/4K,

for all n ≥ m, where δ0 > 0 satisfies{
δ0

(
1 +

∣∣∣∣ c (tm)

1− τ ′ (tm)

∣∣∣∣)+ g(δ0)

∫ tm

tm−τ(tm)

H(s)ds

}
KeJ ≤ (1− α) g (l) .

If we replace l by 1 in the proof of Theorem 3, we have |x(t)| ≤ 1 for t ≥ tm. Now
we consider the solution x (t) = x (t, tm, ψ) of (1) with ψ (tm) = δ0 and |ψ (s)| ≤ δ0
for s ≤ tm. We may choose ψ so that

ψ (tm)− c (tm)

1− τ ′ (tm)
ψ (tm − τ (tm))−

∫ tm

tm−τ(tm)

H (s) g (ψ (s)) ds ≥ 1

2
δ0.

It follows from (7) with x (t) = (Px) (t) that for n ≥ m∣∣∣∣∣x (tn)− c (tn)

1− τ ′ (tn)
x (tn − τ (tn))−

∫ tn

tn−τ(tn)
H (s) g (x (s)) ds

∣∣∣∣∣
≥ 1

2
δ0e

−
∫ tn
tm

H(v)dv −
∫ tn

tm

e−
∫ tn
s

H(v)dvω (s) ds

=
1

2
δ0e

−
∫ tn
tm

H(v)dv − e−
∫ tn
0

H(v)dv

∫ tn

tm

e
∫ s
0
H(v)dvω (s) ds

= e−
∫ tn
tm

H(v)dv

(
1

2
δ0 − e−

∫ tm
0

H(v)dv

∫ tn

tm

e
∫ s
0
H(v)dvω (s) ds

)
≥ e−

∫ tn
tm

H(v)dv

(
1

2
δ0 −K

∫ tn

tm

e
∫ s
0
H(v)dvω (s) ds

)
≥ 1

4
δ0e

−
∫ tn
tm

H(v)dv ≥ 1

4
δ0e

−2J > 0. (17)

On the other hand, if the zero solution of (1) is asymptotically stable, then x (t) =
x (t, tm, ψ) → 0 as t → ∞. Since tn − τ (tn) → ∞ as n → ∞ and condition (iii) in
Theorem 3 holds, we have

x (tn)−
c (tn)

1− τ ′ (tn)
x (tn − τ (tn))−

∫ tn

tn−τ(tn)
H (s) g (x (s)) ds→ 0 as n→ ∞,

which contradicts (17). Hence condition (12) is necessary for the asymptotic sta-
bility of the zero solution of (1). The proof is complete. �
Remark 1. Obviously, if c(t) = 0, Theorem 4 extends Theorem C.

3. An example

In this section, we give an example to illustrate the application of Theorem 4.

Example 1. Consider the following nonlinear neutral differential equation with
variable delay

x′ (t) = −a (t) g (x (t− τ (t))) + c (t)x′ (t− τ (t)) , (18)

where τ (t) = 0.172t, a (t) = 0.391/ (0.828t+ 1) , g (x) = sinx, c (t) = 0.032. Then
the zero solution of (18) is asymptotically stable.
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Proof. Choosing l = π/3, k = 6 and H (t) = 1/ (t+ 1), clearly, condition (12)

holds. Furthermore, we have L = 2, g (0) = 0, g (l) =
√
3/2, g′ (0) = 1, g is odd

and strictly increasing on [−π/3, π/3], x− g (x) is non-decreasing on [0, π/3],∣∣∣∣ c(t)

1− τ ′(t)

∣∣∣∣ = 0.032

0.828
< 0.039,∫ t

0

e−
∫ t
s
H(v)dv |µ(s)| ds =

∫ t

0

e−
∫ t
s

1
1+v dv

0.032× 0.828

1 + s
ds < 0.027,∫ t

t−τ(t)
H (s) ds =

∫ t

0.828t

1

s+ 1
ds = ln

(
t+ 1

0.828t+ 1

)
< 0.189,

∫ t

0

e−
∫ t
s
H(v)dvH(s)

(∫ s

s−τ(s)
H(u)du

)
ds < 0.189,

and ∫ t

0

e−
∫ t
s
H(v)dv |−a (s) +H(s− τ(s)) (1− τ ′(s))| ds

=

∫ t

0

e−
∫ t
s

1
v+1dv

∣∣∣∣− 0.391

0.828s+ 1
+

0.828

0.828s+ 1

∣∣∣∣ ds
<

0.437

0.828

∫ t

0

e−
∫ t
s

1
v+1dv

1

s+ 1
ds < 0.528.

It is easy to see that all the conditions of Theorems 2, 3 and 4 hold for α =[
(π/3) /

(√
3/2
)]

(0.066) + 0.189 + 0.189 + 0.528 ≃ 0.986 < 1. Thus, Theorem 4
implies that the zero solution of (18) is asymptotically stable. �
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