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COMMON FIXED POINT RESULTS FOR INFINITE FAMILIES

IN PARTIALLY ORDERED b-METRIC SPACES AND

APPLICATIONS

K. ZARE, R. ARAB

Abstract. In this paper, we prove common fixed point results of sequence of
self mappings in b-metric spaces. The results presented in this paper generalize

some recent results announced by many authors. We demonstrate these facts
by some examples. Finally, an application to existence problem for an integral
equation is presented.

1. Introduction

During the last few decades, there have appeared a lot of papers on common
fixed points of metric spaces, b-metric spaces, G-metric spaces and partial metric
spaces with different methods(see for example [2, 4, 5, 6, 7, 15, 16, 20]. The family

of contraction mappings was introduced and studied by Ćirić [10] and Tasković
[21]. Also in the process, the study of existence of common fixed point for finite
and infinite family of self-mapping has been carried out by many authors. For
example, one may refer[1, 3, 9, 13, 14, 22, 23, 24]. In [11, 12], Czerwik introduced
the notion of a b-metric space, which is a generalization of the usual metric space,
and generalized the Banach contraction principle in the context of complete b-metric
spaces. Consistent with [12], the following definition and results will be needed in
the sequel.

Definition 1.1. [12] Let X be a (nonempty) set and s ≥ 1 be given a real number.
A function d : X × X −→ R+ is said to be a b-metric space if and only if for all
x, y, z ∈ X, the following conditions are satisfied:

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x);
(iii) d(x, y) ≤ s[d(x, z) + d(z, y)].

Then the triplet (X, d, s) is called a b−metric space with the parameter s. Clearly,
a (standard)metric space is also a b−metric space, but the converse is not always
true.
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Example 1.1. Let X = [0, 1] and d : X×X −→ R+ be defined by b(x, y) = |x−y|2
for all x, y ∈ X. Clearly, (X, d, s = 2) is a b−metric space that is not a metric
space.

Also, the following example of a b−metric space is given in [8].

Example 1.2. Let p ∈ (0, 1). Then the space Lp([0, 1]) of all real functions f :

[0, 1] −→ R such that
∫ 1

0
|f(x)|pdx <∞ endowed with the functional d : Lp([0, 1])×

Lp([0, 1]) −→ R given by

d(f, g) = (

∫ 1

0

|f(x)− g(x)|pdx)
1
p ,

for all f, g ∈ Lp([0, 1]) is a b−metric space with s = 2
1
p .

Definition 1.2. Let X be a nonempty set and let {Tn} be a family of self mappings
on X. A point x0 ∈ X is called a common fixed point for this family iff Tn(x0) = x0,
for each n ∈ N .

2. MAIN RESULTS

In this section, we will present common fixed point theorems for contractive
mappings in the setting of b-metric spaces. Furthermore, we will give examples to
support our main results. The first result in this paper is the following fixed point
theorem.
Throughout the paper, let Ψ be the family of all functions ψ,φ : [0,∞) −→ [0,∞)
satisfying the following conditions:

(a) φ(t) < ψ(t) for each t > 0, φ(0) = ψ(0) = 0;
(b) φ and ψ are continuous functions;
(c) ψ is increasing.

We denote by Θ the set of all functions θ : [0,∞)4 −→ [0,∞) satisfying the following
conditions:

(a) θ is continuous,
(b) θ(a, b, c, d) = 0 if and only if abcd = 0.

Example 2.1. The following functions belong to Θ:

• θ(t1, t2, t3, t4) = k min{t1, t2, t3, t4}+ t1 × t2 × t3 × t4, k > 0,
• θ(t1, t2, t3, t4) = ln(1 + t1t2t3t4).

Definition 2.1. Let X be a nonempty set. Then (X, d,≤) is called a partially
ordered b−metric space if d is a b−metric on a partially ordered set (X,≤). The
space (X, d,≤) is called regular if the following condition hold:

if a non-decreasing xn −→ x, then xn ≤ x for all n.

Theorem 2.2. Suppose that (X, d,≤) is a partially ordered complete b-metric space
and {Tn} be a nondecreasing sequence of self maps on X. If there exists a contin-
uous function α : X ×X −→ [0, 1) such that for all x, y ∈ X

α(Tix, Tjy) ≤ ai,jα(x, y)

and

ψ(s3d(Tix, Tjy)) ≤ α(x, y)φ(Mi,j(x, y))+θ(d(x, Tix), d(y, Tjy), d(x, Tjy), d(y, Tix)),
(1)
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for all x, y ∈ X with x ≤ y, where (ψ,φ) ∈ Ψ, θ ∈ Θ and

Mi,j(x, y) = max{d(x, y), d(x, Tix), d(y, Tjy),
d(x, Tjy) + d(y, Tix)

2s
},

and 0 ≤ ai,j (i, j = 1, 2, · · · ), satisfy

i) for each n, An =
n∏

i=1

ai,i+1 < 1,

ii) for each j, lim
i−→∞

ai,j < 1.

Suppose that

(i) T is continuous, or
(ii) X is regular.

If there exists x0 ∈ X such that x0 ≤ Tx0, then all Tn’s have a common fixed point
in X.

Proof. If x0 = Tx0, then we have the result. Suppose that x0 < Tx0. Then we
construct a sequence {xn} in X such that

xn = Tn(xn−1) ∀n ∈ N. (2)

Since T is a nondecreasing mapping, we obtain by induction that

x0 ≤ T1(x0) = x1 ≤ T2(x1) = x2 ≤ · · · ≤ Tn(xn−1) = xn ≤ Tn+1(xn) = xn+1 ≤ · · · . (3)

If there exists some k ∈ N such that xk+1 = xk, then from (2), xk+1 = Tk+1(xk) =
xk, that is, xk is a common fixed point of Tk and the proof is finished. So, we
suppose that xn+1 ̸= xn, for all n ∈ N. Since xn < xn+1, for all n ∈ N, we set
x = xn and y = xn+1 in (1), we have

ψ(d(xn, xn+1)) =ψ(d(Tn(xn−1), Tn+1(xn)))

≤ψ(s3d(Tn(xn−1), Tn+1(xn)))

≤α(xn−1, xn)φ(Mn,n+1(xn−1, xn))

+ θ(d(xn−1, Tn(xn−1)), d(xn, Tn+1(xn)), d(xn−1, Tn+1(xn)), d(xn, Tn(xn−1)))

=α(xn−1, xn)φ(Mn,n+1(xn−1, xn))

+ θ(d(xn−1, xn), d(xn, xn+1), d(xn−1, xn+1), d(xn, xn)).

Since

d(xn−1, xn+1)

2s
≤ d(xn−1, xn) + d(xn, xn+1)

2s
≤ max{d(xn−1, xn), d(xn, xn+1)},

then we get,

Mn,n+1(xn−1, xn) =max{d(xn−1, xn), d(xn−1, Tn(xn−1)), d(xn, Tn+1(xn)),

d(xn−1, Tn+1(xn)) + d(xn, Tn(xn−1))

2s
}

= max{d(xn−1, xn), d(xn−1, xn), d(xn, xn+1),

d(xn−1, xn+1) + d(xn, xn)

2s
}

= max{d(xn−1, xn), d(xn, xn+1),
1

2s
d(xn−1, xn+1)}

= max{d(xn−1, xn), d(xn, xn+1)},
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that is,

ψ(d(xn, xn+1)) ≤ α(xn−1, xn)φ(max{d(xn−1, xn), d(xn, xn+1)})
= α(Tn−1(xn−2), Tn(xn−1))φ(max{d(xn−1, xn), d(xn, xn+1)})
≤ an−1,n α(xn−2, xn−1)φ(max{d(xn−1, xn), d(xn, xn+1)})
...

≤
n−1∏
i=1

ai,i+1 α(x0, x1)φ(max{d(xn−1, xn), d(xn, xn+1)})

= An−1 α(x0, x1)φ(max{d(xn−1, xn), d(xn, xn+1)})

(4)

Consider the following cases:

Case 1. If Mn,n+1(xn−1, xn) = d(xn, xn+1), then by (4), we have

ψ(d(xn, xn+1)}) ≤An−1 α(x0, x1)φ(d(xn, xn+1))

<An−1 α(x0, x1)ψ(d(xn, xn+1))

<ψ(d(xn, xn+1)),

which is a contradiction.
Case 2. If Mn,n+1(xn−1, xn) = d(xn−1, xn), then by (4), we have

ψ(d(xn, xn+1)}) ≤An−1 α(x0, x1)φ(d(xn−1, xn))

<An−1 α(x0, x1)ψ(d(xn−1, xn))

<ψ(d(xn−1, xn)).

(5)

Using the properties of the function ψ, we get

Bn = d(xn, xn+1) ≤ d(xn−1, xn) = Bn−1.

Then the sequence {Bn} is non-increasing and bounded below, therefor there exists
B ≥ 0 such that,

lim
n−→∞

Bn = B. (6)

We show that B = 0. Suppose, on the contrary, that B > 0. Taking the limit as
n −→ ∞ in (5) and ψ and φ are continuous, we get

ψ(B) = φ(B),

and so B = 0, a contradiction. Thus

lim
n−→∞

d(xn, xn+1) = 0. (7)

Now, we claim that

lim
n,m−→∞

d(xn, xm) = 0. (8)

Assume on the contrary that there exists 0 < ϵ < 1 and subsequences {xm(k)}, {xn(k)}
of {xn} with m(k) > n(k) ≥ k such that

d(xn(k), xm(k)) ≥ ϵ. (9)

Additionally, corresponding to n(k), we may choosem(k) such that it is the smallest
integer satisfying (9) and m(k) > n(k) ≥ k. Thus,

d(xn(k), xm(k)−1) < ϵ. (10)
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Using the triangle inequality in b−metric space and (9) and (10), we obtain that

ϵ ≤ d(xm(k), xn(k)) ≤ s d(xm(k), xm(k)−1) + s d(xm(k)−1, xn(k))

< s d(xm(k), xm(k)−1) + sϵ.

Taking the upper limit as k −→ ∞ and using (7), we obtain

ϵ ≤ lim sup
k−→∞

d(xn(k), xm(k)) ≤ sϵ. (11)

Also

ϵ ≤ d(xn(k), xm(k)) ≤ s d(xn(k), xm(k)+1) + s d(xm(k)+1, xm(k))

≤ s2 d(xn(k), xm(k)) + s2 d(xm(k), xm(k)+1) + s d(xm(k)+1, xm(k))

≤ s2 d(xn(k), xm(k)) + (s2 + s) d(xm(k), xm(k)+1).

So from (7) and (11), we have

ϵ

s
≤ lim sup

k−→∞
d(xn(k), xm(k)+1) ≤ s2ϵ. (12)

Also

ϵ ≤ d(xm(k), xn(k)) ≤ s d(xm(k), xn(k)+1) + s d(xn(k)+1, xn(k))

≤ s2 d(xm(k), xn(k)) + s2 d(xn(k), xn(k)+1) + s d(gxn(k)+1, gxn(k))

≤ s2 d(xm(k), xn(k)) + (s2 + s) d(xn(k), xn(k)+1).

So from (7) and (11), we have

ϵ

s
≤ lim sup

k−→∞
d(xm(k), xn(k)+1) ≤ s2ϵ. (13)

Also

d(xn(k)+1, xm(k)) ≤ s d(xn(k)+1, xm(k)+1) + s d(xm(k)+1, xm(k)),

so from (7) and (12), we have

ϵ

s2
≤ lim sup

k−→∞
d(xn(k)+1, xm(k)+1). (14)

Linking (7),(11),(12) together with (13), we get

ϵ

s2
= min{ϵ, 0, 0,

ϵ
s + ϵ

s

2s
}

≤ max{lim sup
k−→∞

d(xn(k), xm(k)), lim sup
k−→∞

d(xn(k), xn(k)+1), lim sup
k−→∞

d(xm(k), xm(k)+1),

lim sup
k−→∞

d(xm(k), xn(k)+1) + d(xn(k), xm(k)+1)

2s

≤ max{sϵ, 0, 0, s
2ϵ+ s2ϵ

2s
} = sϵ.

So,

ϵ

s2
≤ lim sup

k−→∞
Mn(k)+1,m(k)+1(xn(k), xm(k)) ≤ ϵs. (15)

Similarly, we have

ϵ

s2
≤ lim inf

k−→∞
Mn(k)+1,m(k)+1(xn(k), xm(k)) ≤ ϵs. (16)
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Also, we have

lim
k−→∞

θ(d(xn(k), Tn(k)+1(xn(k))), d(xm(k), Tm(k)+1(xm(k))), d(xn(k), Tm(k)+1(xm(k))), d(xm(k), Tn(k)+1(xn(k))))

= lim
k−→∞

θ(d(xn(k), xn(k)+1), d(xm(k), xm(k)+1), d(xn(k), xm(k)+1), d(xm(k), xn(k)+1)) = 0.

Since m(k) > n(k) from (3), we have

xn(k) ≤ xm(k).

Thus,

ψ(s3d(xn(k)+1, xm(k)+1)) = ψ(s3 d(Tn(k)+1(xn(k)), Tm(k)+1(xm(k))))

≤ α(xn(k), xm(k))φ(Mn(k)+1,m(k)+1(xn(k), xm(k)))

= α(Tn(k)(xn(k)−1), Tm(k)(xm(k)−1))φ(Mn(k)+1,m(k)+1(xn(k), xm(k)))

≤ an(k),m(k) α(xn(k)−1, xm(k)−1)φ(Mn(k)+1,m(k)+1(xn(k), xm(k)))

...

≤ an(k),m(k) × an(k)−1,m(k)−1 × · · · a0,m(k)−n(k)+1 α(x0, xm(k)−n(k))

φ(Mn(k)+1,m(k)+1(xn(k), xm(k))),

Taking the upper limit as k −→ ∞, and using (14), (15) and (16), we get

ψ(s ϵ) ≤ ψ(s3 lim sup
k−→∞

d(xn(k)+1, xm(k)+1))

≤ lim sup
k−→∞

[an(k),m(k) × an(k)−1,m(k)−1 × · · · a0,m(k)−n(k)+1 α(x0, xm(k)−n(k))]

φ(lim sup
k−→∞

Mn(k)+1,m(k)+1(xn(k), xm(k)))

< lim sup
k−→∞

[an(k),m(k) × an(k)−1,m(k)−1 × · · · a0,m(k)−n(k)+1 α(x0, xm(k)−n(k))]

ψ(lim sup
k−→∞

Mn(k)+1,m(k)+1(xn(k), xm(k)))

< ψ(s ϵ),

this is contradiction. Therefore, (8) holds and we have

lim
n,m−→∞

d(xn, xm) = 0.

Since X is a complete b-metric space, there exist x ∈ X such that

lim
n−→∞

xn+1 = x. (17)

Case1. Suppose that the assumption (i) holds.
Letting n −→ ∞ in (18) and from the continuity of T , we get

x = lim
n−→∞

xn+1 = lim
n−→∞

T (xn) = T ( lim
n−→∞

xn) = T (x).

This implies that x is a fixed point of T .
Case2. Suppose that the assumption (ii) holds.

Since {xn} is a non-decreasing sequence and xn −→ x, hence we have
xn ≤ x for all n, then by the triangle inequality in b−metric space and (1)
and for any positive integer m, we get

d(x, Tmx) ≤ sd(x, xn) + sd(xn, Tmx) = sd(x, xn) + sd(Tnxn−1, Tmx).
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Taking lim as n −→ ∞, we get

d(x, Tmx) ≤ lim
n→∞

sd(Tnxn−1, Tmx).

Because

Mn,m(xn−1, x) = max{d(xn−1, x), d(xn−1, Tnxn−1), d(x, Tmx),
d(xn−1, Tmx) + d(x, Tnxn−1)

2s
}

= max{d(xn−1, x), d(xn−1, xn), d(x, Tmx),
d(xn−1, Tmx) + d(x, xn)

2s
},

and

θ(d(xn−1, Tn(xn−1), d(x, Tmx), d(xn−1, Tmx), d(x, Tn(xn−1)))

= θ(d(xn−1, xn), d(x, Tmx), d(xn−1, Tmx), d(x, xn)),

which,

lim
n−→∞

Mn,m(xn−1, x) = d(x, Tmx),

lim
n−→∞

θ(d(xn−1, xn), d(x, Tmx), d(xn−1, Tmx), d(x, xn)) = 0

So,

ψ(d(x, Tmx)) ≤ lim
n→∞

ψ(sd(Tnxn−1, Tmx)) ≤ lim
n→∞

ψ(s3d(Tnxn−1, Tmx))

≤ lim
n→∞

α(xn−1, x)φ(Mn,m(xn−1, x)) < α(x, x)ψ(d(x, Tmx))

< ψ(d(x, Tmx)),

this is contradiction. It follows that d(x, Tmx) = 0 gives x as a common
fixed point of {Tm}.

�

Example 2.3. Let X = [0, 1] with the usual order ≤. Define d(x, y) = |x − y|2.
Then d is a b−metric with s = 2. Also define ψ(t) = t, φ(t) =

1

2
t, α(x, y) =

xy

4
,

Tn(x) =

{
0, 0 ≤ x < 1,

1
n+24 , x = 1,

and θ ∈ Θ is arbitrary function. Let ai,j =
1

3
+

1

|i− j|+ 2
, then for each j, lim

i−→∞
ai,j <

1 and An = (
2

3
)n. Obviously,

α(?Tix, Tjy) ≤ ai,j α(x, y).

for all x ∈ [0, 1), y ∈ [0, 1) or x ∈ [0, 1), y = 1 or y ∈ [0, 1), x = 1. Also, if
x = y = 1, we have

α(?Tix, Tjy) =

1

i+ 24
.

1

j + 24

4
≤

1

25
.
1

25
4

≤

1

3
4

≤

1

3
+

1

|i− j|+ 2

4
= ai,j

1

4
= ai,j

xy

4
= ai,jα(x, y).

Now we prove that for each comparable x, y ∈ X,

ψ(s3d(Tix, Tjy)) ≤ α(x, y)φ(Mi,j(x, y)) + θ(d(x, Tix), d(y, Tjy), d(x, Tjy), d(y, Tix)), (18)
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Obviously, if x ∈ [0, 1), y ∈ [0, 1), then the condition (18) holds. If x ∈ [0, 1), y = 1,
then

ψ(s3d(Tix, Tjy)) =8|Tix− Tjy|2 = 8| 1

j + 24
|2 ≤ 8

625
≤ 1

4

1

2
(
24

25
)2

≤1

4

1

2
(1− 1

j + 24
)2 =

xy

4

1

2
d(y, Tjy)

≤α(x, y)1
2
Mi,j(x, y) = α(x, y)φ(Mi,j(x, y))

≤α(x, y)φ(Mi,j(x, y)) + θ(d(x, Tix), d(y, Tjy), d(x, Tjy), d(y, Tix)).

We assume that (18) holds for y ∈ [0, 1), x = 1. Now, if x = y = 1 , i < j, then

ψ(s3d(Tix, Tjy)) =8|Tix− Tjy|2 = 8| 1

i+ 24
− 1

j + 24
|2 ≤ 8

(i+ 24)2
≤ 8

252
≤ 1

8
(
24

25
)2

≤xy
4

1

2
(1− 1

i+ 24
)2 = α(x, y)

1

2
d(x, Tix) ≤ α(x, y)

1

2
Mi,j(x, y)

=α(x, y)φ(Mi,j(x, y))

≤α(x, y)φ(Mi,j(x, y)) + θ(d(x, Tix), d(y, Tjy), d(x, Tjy), d(y, Tix)).

Moreover, {Tn} are nondecreasing mappings with respect to the usual order ≤. So
all the conditions of Theorem 2.2 are satisfied and note that x = 0 is the only fixed
point for all Tn.

The following result is the immediate consequence of Theorem 2.2.

Theorem 2.4. Suppose that (X, d,≤) is a partially ordered complete b-metric space
and {Tn} be a nondecreasing sequence of self maps on X. If there exists a λ ∈ [0, 1)
such that for all x, y ∈ X with x ≤ y,

ψ(s3d(Tix, Tjy)) ≤ λφ(Mi,j(x, y)) + θ(d(x, Tix), d(y, Tjy), d(x, Tjy), d(y, Tix)),
(19)

where (ψ,φ) ∈ Ψ, θ ∈ Θ and

Mi,j(x, y) = max{d(x, y), d(x, Tix), d(y, Tjy),
d(x, Tjy) + d(y, Tix)

2s
}.

Suppose that

(i) T is continuous, or
(ii) X is regular.

If there exists x0 ∈ X such that x0 ≤ Tx0, then all Tn’s have a common fixed point
in X.

We can prove this result by applying Theorem 2.2 with α(x, y) = λ.

Example 2.5. Let X = [0, 1] with the usual order ≤. Define d(x, y) = |x − y|2.
Then d is a b−metric with s = 2. Also define ψ(t) = t, φ(t) =

1

2
t, λ =

1

4
,

Tn(x) =

{
1, 0 < x ≤ 1,
15
16 + 1

n+15 , x = 0,

and θ ∈ Θ is arbitrary function. Now we prove that for each comparable x, y ∈ X,

ψ(s3d(Tix, Tjy)) ≤ λφ(Mi,j(x, y)) + θ(d(x, Tix), d(y, Tjy), d(x, Tjy), d(y, Tix)),

There are three possible cases:
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(1) x ∈ (0, 1], y ∈ (0, 1]. Then

ψ(s3d(Tix, Tjy)) =8|Tix− Tjy|2 = 0 ≤ 1

8

|x− 1|2 + |y − 1|2

4
=

1

8

d(x, Tjy) + d(y, Tix)

2s

≤1

8
Mi,j(x, y) = λφ(Mi,j(x, y))

≤λφ(Mi,j(x, y)) + θ(d(x, Tix), d(y, Tjy), d(x, Tjy), d(y, Tix)).

(2) x ∈ (0, 1], y = 0. Then

ψ(s3d(Tix, Tjy)) =8|Tix− Tjy|2 = 8| 1
16

− 1

j + 15
|2 ≤ 1

32
≤ 1

4

1

2
(
15

16
)2

≤1

4

1

2
(
15

16
+

1

j + 15
)2 =

1

4

1

2
d(y, Tjy)

≤1

4

1

2
Mi,j(x, y) = λφ(Mi,j(x, y))

≤λφ(Mi,j(x, y)) + θ(d(x, Tix), d(y, Tjy), d(x, Tjy), d(y, Tix)).

(3) x = y = 0 , i < j. Then

ψ(s3d(Tix, Tjy)) =8|Tix− Tjy|2 = 8| 1

i+ 15
− 1

j + 15
|2 ≤ 8

(i+ 15)2
≤ 8

162

≤1

8
(
15

16
)2 ≤ 1

8
(
15

16
+

1

i+ 15
)2 =

1

8
d(x, Tix) ≤

1

4

1

2
Mi,j(x, y) = λφ(Mi,j(x, y))

≤λφ(Mi,j(x, y)) + θ(d(x, Tix), d(y, Tjy), d(x, Tjy), d(y, Tix)).

Moreover, {Tn} are nondecreasing mappings with respect to the usual order ≤. So
all the conditions of Theorem 2.4 are satisfied and note that x = 1 is the only fixed
point for all Tn.

Corollary 2.6. Suppose that (X, d,≤) is a partially ordered complete b-metric
space and {Tn} be a nondecreasing sequence of self maps on X. If there exists a
k ∈ [0, 1) such that for all x, y ∈ X with x ≤ y,

ψ(s3d(Tix, Tjy)) ≤ k ψ(Mi,j(x, y)) + θ(d(x, Tix), d(y, Tjy), d(x, Tjy), d(y, Tix)),

where φ, θ and Mi,j(x, y) satisfy in conditions theorem 2.4 and suppose that

(i) T is continuous, or
(ii) X is regular.

If there exists x0 ∈ X such that x0 ≤ Tx0, then all Tn’s have a common fixed point
in X.

Proof. We can prove this result by applying Theorem 2.4 with φ(t) = k ψ(t),
0 ≤ k < 1. �

Remark 2.7. Letting ψ(t) = t and φ(t) = k t with 0 ≤ k < 1 in Theorem 2.4, we
retrieve immediately the Banach contraction principle and we obtain a generalized
version of KhanNi, Ra.

Remark 2.8. Since a b-metric space is a metric space when s = 1, so our results
can be viewed as the generalization and the extension of several comparable results.
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3. Application to integral equations

Here, in this section, we wish to study the existence of a solution to a nonlin-
ear quadratic integral equation, as an application to the our common fixed point
theorem. Consider the integral equation

x(t) = h(t) + γ

∫ 1

0

k(t, s)fn(s, x(s))ds, t ∈ I = [0, 1], γ ≥ 0, n ∈ N. (20)

Let Φ denote the class of those non-decreasing functions φ : [0,+∞) −→ [0,+∞)
which φ(t) < t, t > 0, φ(0) = 0 and (φ(t))2 ≤ φ(t2).
For example, φ1(t) = kt, where 0 ≤ k < 1 and φ2(t) =

t
t+1 are in Φ.

We will analyze Eq. (20) under the following assumptions:

(a1) fn : I ×R −→ R is continuous monotone non-decreasing in x, fn(t, x) ≥ 0
and there exists constant 0 ≤ Li,j < 1 and φ ∈ Φ such that for all x, y ∈ R
and x ≥ y

|fi(t, x)− fj(t, y)| ≤ Li,jφ(x− y).

(a2) h : I −→ R is a continuous function.
(a3) k : I × I −→ R is continuous in t ∈ I for every s ∈ I and measurable in

s ∈ I for all t ∈ I such that∫ 1

0

k(t, s)ds ≤ K

and k(t, s) ≥ 0.
(a4) There exists α ∈ C(I) such that

α(t) ≤ h(t) + γ

∫ 1

0

k(t, s)fn(s, α(s))ds

(a5) 8L2
i,jγ

2K2 = λ < 1.

We consider the space X = C(I) of continuous functions defined on I = [0, 1] with
the standard metric given by

ρ(x, y) = sup
t∈I

|x(t)− y(t)|, for x, y ∈ C(I).

This space can also be equipped with a partial order given by

x, y ∈ C(I), x ≤ y ⇐⇒ x(t) ≤ y(t) for any t ∈ I.

Now, we define

d(x, y) = (ρ(x, y))2 = (sup
t∈I

|x(t)− y(t)|)2 = sup
t∈I

|x(t)− y(t)|2, for x, y ∈ C(I).

It is easy to see that (X, d) is a complete b−metric space. For any x, y ∈ X and
each t ∈ I, max{x(t), y(t)} and min{x(t), y(t)} belong to X and are upper and
lower bounds of x, y, respectively. Therefore, for every x, y ∈ X, one can take
max{x, y},min{x, y} ∈ X which are comparable to x, y. Now, we formulate the
main result of this section.

Theorem 3.1. Under assumptions (a1)− (a5), Eq. (20) has a solution in C(I).

Proof. We consider the operator Tn : X −→ X defined by

Tn(x)(t) = h(t) + γ

∫ 1

0

k(t, s)fn(s, x(s))ds, for t ∈ I, n ∈ N.
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By virtue of our assumptions, Tn is well defined (this means that if x ∈ X then
Tn(x) ∈ X). For x ≤ y, and t ∈ I we have

Tn(x)(t)− Tn(y)(t) = h(t) + γ

∫ 1

0

k(t, s)fn(s, x(s))ds− h(t)− γ

∫ 1

0

k(t, s)fn(s, y(s))ds

= γ

∫ 1

0

k(t, s)[fn(s, x(s))− fn(s, y(s))]ds ≤ 0.

Therefore, Tn has the monotone nondecreasing property. Also, for x ≤ y, we have

|Ti(x)(t)− Tj(y)(t)| = |h(t) + γ

∫ 1

0

k(t, s)fi(s, x(s))ds− h(t)− γ

∫ 1

0

k(t, s)fj(s, y(s))ds|

≤ γ

∫ 1

0

k(t, s)|fi(s, x(s))− fj(s, y(s))|ds

≤ γ

∫ 1

0

k(t, s)Li,jφ(y(s)− x(s))ds.

Since the function φ is non-decreasing and x ≤ y, we have

φ(y(s)− x(s)) ≤ φ(sup
t∈I

|x(s)− y(s)|) = φ(ρ(x, y)),

hence

|Ti(x)(t)− Tj(y)(t)| ≤ γ

∫ 1

0

k(t, s)Li,jφ(ρ(x, y)ds ≤ λKLi,jφ(ρ(x, y).

Then, we can obtain

ψ(s3d(Ti(x), Tj(y))) =8d(Ti(x), Tj(y)) = 8 sup
t∈I

|Ti(x)(t)− Tj(y)(t)|2

≤8{γKLi,jφ(ρ(x, y))}2 = 8γ2K2L2
i,jφ(ρ(x, y))

2

≤λφ(ρ(x, y)2) = λφ(d(x, y))

≤λφ(Mi,j(x, y)) + θ(d(x, Tix), d(y, Tjy), d(x, Tjy), d(y, Tix)).

This proves that the operator Tn satisfies the contractive condition (19) appearing
in Theorem 2.4. Also, let α be the function appearing in assumption (a4); then,
by (a4), we get α ≤ Tn(α). So, the Eq. (20) has a solution and the proof is complete.
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