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HIGHER ORDER DUALITY IN NON-DIFFERENTIABLE

MULTIPLICATIVE PROGRAMMING WITH GENERALIZED

CONVEX FUNCTIONS OVER CONES

A. K. TRIPATHY

Abstract. In this paper, we consider a new class of generalized higher or-
der (F, α, ρ, d)-convex and (F, α, ρ, d)-pseudo convex functions with examples.

Mond-Weir type higher order duality is proposed for the non-differentiable mul-
tiobjective problem involving cone constraints, where every component of the
objective function contains square root term of positive semidefinite quadratic
form. For this problem, duality results are established for efficient solution

under suitable higher order (F, α, ρ, d)-convexity conditions.

1. Introduction

In recent years, several extension and generalization have been considered for
classical convexity. Hanson and Mond [14] introduced the concept of F-convexity.
The concept of generalized (F, ρ) convexity is introduced by Preda [15]. Based on
the various generalized convex functions, Liang et al.[8] introduced a unified for-
mulation of generalized convex function, called (F, α, ρ, d)-convex function. Ahmad
and Husain [2] generalized (F, α, ρ, d)-convex functions to second order (F, α, ρ, d)-
convex functions and discussed duality theorems for second order Mond-Weir type
multiobjective dual model under (F, α, ρ, d)-convexity/pseudo convexity assump-
tion. Ahmad et al.[1] introduced a new generalized higher order (F, α, ρ, d)-type 1
function and proposed a general Mond-Weir type higher order dual and established
the duality results under higher order (F, α, ρ, d)-type 1 function .

Higher order duality in non-linear programming has been studied in last few years
by many researchers. One practical advantage of second order and higher order
duality is that it provides tighter bounds for the value of the objective function of
the primal problem when approximations are used because there are more param-
eters involved. Mangasarian [9] first formulated a class of second order and higher
order for non-linear programming problem involving twice differentiable functions.
Higher order duality has been studied by many researchers like Chen [3], Mond and
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Zhang [14], Yang et al. [19, 20], Zhang [21], Kim and Lee [7], Mishra and Rueda
[10, 11].

Mishra and Rueda [11] considered higher order duality for non-differentiable mathe-
matical programming problem. They formulated a number of higher order duals to
a non-differentiable programming problem and established duality under the higher
order generalized invexity conditions introduced in Mishra and Rueda [10]. Zhang
[21] introduced higher-order ((F, ρ)-convexity and established higher-order duality
for multi-objective programming problems, there by extending the results of Gulati
and Islam [4], Mangasarian [9], Preda [15], Mishra and Rueda [11] and Mond and
Weir [12].

In this paper, the concept of higher order (F, α, ρ, d)-convexity and higher order
(F, α, ρ, d)-pseudoconvexity are introduced with examples. A pair of Mond-Weir
type higher order dual programs is considered for the non-differentiable multiob-
jective problems involving cone constraints, where every component of objective
functions contain a square root term of positive semidefinite quadratic form and
established the duality results under suitable higher order (F, α, ρ, d)-convexity con-
ditions.

2. Preliminaries and Definitions

The following conventions for vectors in Rn will be followed throughout this pa-
per: x < y ⇔ xi < yi, for i = 1, 2, ..., n, x ≤ y ⇔ xi ≤ yi, i = 1, 2, ..., n, x ̸= y,

Definition 2.1 A set C is called a cone, if for each x ∈ C and λ ∈ R, λ ≥ 0,
we have λx ∈ C. Moreover, if C is convex, then it is a convex cone.

Definition 2.2 The positive polar cone C∗ of a cone C is defined by

C∗ = {z : xT z ≥ 0,∀x ∈ C}
Let C1 ⊂ Rn and C2 ⊂ Rm be closed convex cones with nonempty interior having
positive polars C∗

1 and C∗
2 respectively. Let S1 ⊆ Rn and S2 ⊆ Rm be open and

C1 ⊆ S1 and C2 ⊆ S2.
We now introduced higher order (F, α, ρ, d) convex function and pseudo convex
function.

Definition 2.3 A function F : S1 × S1 × Rn → R is sublinear in its third
component if for all (x, u) ∈ S1 × S1,
(i) F (x, u; a1 + a2) ≤ F (x, u; a1) + F (x, u; a2),∀a1, a2 ∈ Rn and
(ii)F (x, u;αa) = αF (x, u; a), α ≥ 0,∀a ∈ Rn.
For simplicity, we denote F (x, u; a) = Fx,u(a)

Definition 2.4 A twice differentiable function fi : S1 → R is called higher
order (F, α, ρ, d)-convex function at u ∈ S1 with respect to a differentiable function
hi : S1 × S1 → R if for all x ∈ S1 there exist real valued function α : S1 × S1 →
R+\{0}, d : S1 × S1 → R and ρ ∈ R such that
fi(x) − fi(u) − hi(u, p) + pT∇phi(u, p) ≥ F (x, u;α(x, u)(∇fi(u) + ∇phi(u, p)) +
ρd2(x, u).

Definition 2.5 A twice differentiable function fi : S1 → R is called higher
order (F, α, ρ, d)-pseudo convex function at u ∈ S1 with respect to a differentiable
function hi : S1 × S1 → R if for all x ∈ S1 there exist real valued function α :
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S1 × S1 → R+\{0}, d : S1 × S1 → R and ρ ∈ R such that
F (x, u;α(x, u)(∇fi(u) +∇phi(u, p)) + ρd2(x, u) ≥ 0
⇒ fi(x)− fi(u)− hi(u, p) + pT∇phi(u, p) ≥ 0.

Example 2.1 Let S ⊆ R,S = {x : x ≥ 1, f : S → R,F : S × S × R → R,
h : S ×R → R and d : S × S → R defined as follows;

f(x) = x+ 2
x+1 , F (x, u; a) = |a|(x− u)2, h(u, p) = p

u+1 , d(x, u) = x− u.

And let u = 1, ρ = −1, α(x, u) = 3
4 . Then for all (x, p) ∈ S ×R,

f(x)− f(u) = x2−x
x+1 ≥ F (x, u;α(x, u)[∇xf(u) +∇p(h(u, p))])

+h(u, p)− pT∇ph(u, p) + ρd2(x, u) = −1
4 (x− 1)2.

This implies that f is higher order (F, α, ρ, d)-convex function at u = 1 with respect
to h(u, p).

But when we take x = 2, p = 3 and x = 6, p = 3 respectively, we have

f(2)− f(1) = 2
3 < F (x, u; (∇xf(u) +∇ph(u, p))) + h(u, p)− pT∇ph(u, p) =

3
4

and f(6)− f(1) + 1
2p

T∇uuf(u)p = 1488
343 = 4.39

< F (x, u; (∇xf(u) +∇xxf(u)p)) + ρd2(x, u) = 475
16 = 29.6.

Hence f is neither a higher order F-convex function as in [3] nor a second order
(F, α, ρ, d)-convex function as in [2]. So higher order (F, α, ρ, d)-convex function is
more generalized than higher order F-convex function as in [3] nor a second order
(F, α, ρ, d)-convex function as in [2].

Example 2.2 Let S ⊆ R,S = {x : x ≥ 1}, f : S → R,F : S × S × R → R,
h : S ×R → R and d : S × S → R defined as follows;

f(x) = 1+x2

x+1 ,F (x, u; a) = |a|(x− u)2, h(u, p) = p
u+1 , d(x, u) = x− u.

And let u = 1, ρ = 1
2 , α(x, u) =

2
3 .

Then for all (x, p) ∈ S ×R,

F (x, u;α(x, u)[∇xf(u) +∇p(h(u, p))]) + h(u, p)− pT∇ph(u, p) + ρd2(x, u)

= 1
2 (x− 1)2 ≥ 0

⇒ f(x)− f(u) = x2−x
x+1 ≥ 0,∀x ∈ S.

This implies that f is higher order (F, α, ρ, d)-pseudo convex function at u = 1
with respect to h(u, p).
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But when we take x = 3 we have

f(3)− f(1) = 3
2 < F (x, u;α(x, u)(∇xf(u) +∇ph(u, p))) + h(u, p)− pT∇ph(u, p)

+ρd2(x, u) = 2.
Hence f not higher order (F, α, ρ, d)-convex function. So (F, α, ρ, d)-pseudo convex
function is more generalized than higher order (F, α, ρ, d) convex function.

We now onsider the following nonsmooth multiobjective programming problem:

(NMPP) Minimize f(x) + (xTBx)
1
2 = (f1(x) + (xTB1x)

1
2 , ..., fk(x) + (xTBkx)

1
2 )

Subject to

−g(x) ∈ C∗
2 , x ∈ C1; (1)

where,
(i) f : Rn → Rk and g : Rn → Rm are continuously differentiable functions,
(ii) Bi, i = 1, 2, .., k; are n× n positive semi definite symmetric matrix,
(iii) C1 and C2 are are closed convex cone with nonempty interior in Rn and Rm

respectively, and
(iv) C∗

1 and C∗
2 are positive polar cones of C1 and C2 respectively.

Let X0 = {x ∈ C1 : −g(x) ∈ C∗
2} be the set of all feasible solutions of (NMPP).

Since the objectives in multiobjective programming problems generally conflict with
one another, an optimal solution is chosen from the set of efficient or weak efficient
solution in following sense.

Definition 2.6 [17] A point x0 ∈ X0 is an efficient (pareto optimal) solution of
(NMPP) if there does not exist any other x ∈ X0 such that

fi(x) + (xTBix)
1
2 ≤ fi(x

0) + (x0TBix
0)

1
2 ,∀i = 1, 2, ..., k and

fj(x) + (xTBjx)
1
2 < fj(x

0) + (x0TBjx
0)

1
2 , for at least one index j ∈ {1, 2, ..., k}.

Lemma 2.1 Let x,w ∈ Rn and B ∈ Rn×Rn be a positive semi definite matrix,
then xTBw ≤ (xTBx)

1
2 (wTBw)

1
2 . Equality holds if for some λ ≥ 0, Bx = λBw.

3. Mond-Weir type higher order duality

In this section, we have introduced the Mond-Weir type multiobjective higher
order dual of (MP) and established weak and strong duality theorems under gener-
alized higher order (F, α, ρ, d)-convex functions. We consider the following Mond-
Weir type higher order dual for (NMPP):

(MWHD): Maximize f(u) + uTBw + λTh(u, p)e− pT∇p(λ
Th(u, p))e

Subject to

λT [∇f(u) +Bw +∇ph(u, p)]− yT [∇g(u) +∇pK(u, p)] = 0, (2)

g(u) +K(u, p)− pT∇pK(u, p) ∈ C∗
2 , (3)

wT
i Biwi ≤ 1, i = 1, 2, ..., k, (4)

y ∈ C2, (5)
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λ > 0, λT e = 1, (6)

where (i) f : S1 → Rk and g : S1 : Rm are continuously differentiable functions,
(ii) C1 and C2 are closed convex cones in Rn and Rm with nonempty interior
respectively,
(iii) C∗

1 andC∗
2 are polar cones of C1 and C2 respectively,

(iv) e = (1, 1, ..., 1)T is a vector in Rk,
(v) wi ∈ Rn,
(vi) Bi, i = 1, 2, ..., k, are positive semidefinite symmetric matrix of order n×n and
(vii) h : S × S → Rk and K : S × S → Rm are differentiable functions and p ∈ Rn.

Theorem 3.1 Let x and (u, y, λ, w, p) be the feasible solution for (NMPP) and
(MWHD) respectively. Assume that
λT [f(.) + (.)TBw] is higher order (F, α, ρ, d)-convex at u with respect to λTh(u, p)
and −yT g(.) is higher order (F, α, σ, d)-convex at u with respect to −yTK(u, p)
along with ρ+ σ ≥ 0.
Then f(x) + (xTBx)

1
2 > f(u) + uTBw + λTh(u, p)e− pT∇p(λ

Th(u, p)).
Proof:Suppose that contradiction holds.

That is f(x) + (xTBx)
1
2 ≤ f(u) + uTBw + (λTh(u, p))e− pT∇p(λ

Th(u, p))e.

Since λ > 0, we obtain

λT [f(x) + (xTBx)
1
2 ] < λT [f(u) + uTBw] + λTh(u, p)− pT∇p(λ

Th(u, p)). (7)

From (3) and (5), we have

yT [g(u) +K(u, p)− pT∇pK(u, p)] ≤ 0. (8)

From (7) and (8), we have

λT [f(x) + (xTBx)
1
2 ] < λT [f(u) + uTBw] + λTh(u, p)− pT∇p(λ

Th(u, p))

− yT [g(u) +K(u, p)− pT∇pK(u, p)]. (9)

Now by Schwartz inequality and (4), we obtain xTBw ≤ (xTBx)
1
2 .

So, (9) becomes

λT [f(x) + (xTBw] < λT [f(u) + uTBw] + λTh(u, p)− pT∇p(λ
Th(u, p))

− yT [g(u) +K(u, p)− pT∇pK(u, p)]. (10)

Since λT [f(.) + (.)TBw] is higher order (F, α, ρ, d)-convex at u with respect to
λTh(u, p) and −yT g(.) is higher order (F, α, σ, d)-convex at u with respect to
−yTK(u, p), we have
λT [f(x) + xTBw]− λT [f(u) + uTBw]− λTh(u, p) + pT∇p(λ

Th(u, p))

≥ F (x, u;α(x, u)[λT (∇f(u) +Bw) +∇p(λ
Th(u, p))]) + ρd2(x, u) (11)

and −yT g(x) + yT g(u) + yTK(u, p)− pT∇p(y
TK(u, p))

≥ F (x, u;α(x, u)[−yT (∇g(u))−∇p(y
TK(u, p))]) + σd2(x, u). (12)

Now from (1), (2) and (5), we obtained

− yT g(x) + yT g(u) + yTK(u, p)− pT∇p(y
TK(u, p)) ≤ 0. (13)
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So using (13) in (12), we obtained

F (x, u;α(x, u)[−yT (∇g(u))−∇p(y
TK(u, p))]) + σd2(x, u) ≤ 0. (14)

Since α(x, y) > 0 and F is sublinear, from (2), we obtained,

F (x, u;α(x, u)[λT (∇f(u) +Bw) +∇p(λ
Th(u, p))])

+ F (x, u;α(x, u)[−yT (∇g(u))∇p(y
TK(u, p))])

≥ F (x, u;α(x, u)[λT (∇f(u)+Bw)+∇p(λ
Th(u, p))− yT (∇g(u)+∇pK(u, p))]) = 0

⇒ F (x, u;α(x, u)[λT (∇f(u) +Bw) +∇p(λ
Th(u, p))])

≥ −F (x, u;α(x, u)[−yT (∇g(u))∇p(y
TK(u, p))])

⇒ F (x, u;α(x, u)[λT (∇f(u) +Bw) +∇p(λ
Th(u, p))])− σd2(x, u)

≥ −F (x, u;α(x, u)[−yT (∇g(u))∇p(y
TK(u, p))])− σd2(x, u) ≥ 0 (using(3.13))

⇒ F (x, u;α(x, u)[λT (∇f(u) +Bw) +∇p(λ
Th(u, p))])

+ρd2(x, u)− ρd2(x, u)− σd2(x, u) ≥ 0.

⇒ F (x, u;α(x, u)[λT (∇f(u)+Bw)+∇p(λ
Th(u, p))])+ρd2(x, u) ≥ 0. (as ρ+σ ≥ 0)

So (11) implies

λT [f(x) + xTBw] ≥ λT [f(u) + uTBw] + λTh(u, p) + pT∇p(λ
Th(u, p)).

This is a contradiction to (7). Hence we proved.

Theorem 3.2 Let x and (u, y, λ, w, p) be the feasible solution for (NMPP) and
(MWHD) respectively. Assume that
λT [f(.) + (.)TBw]− yT g(.) is higher order (F, α, ρ, d)- convex at u with respect to
λTh(u, p)− yTK(u, p) along with ρ ≥ 0.

Then f(x) + (xTBx)
1
2 > f(u) + uTBw + λTh(u, p)e− pT∇p(λ

Th(u, p)).
Proof:Suppose that contradiction holds.
That is f(x) + (xTBx)

1
2 ≤ f(u) + uTBw + (λTh(u, p))e− pT∇p(λ

Th(u, p))e.

Since λ > 0, we obtain

λT [f(x) + (xTBx)
1
2 ] < λT [f(u) + uTBw] + λTh(u, p)− pT∇p(λ

Th(u, p)). (15)

From (3) and (5), we have

yT [g(u) +K(u, p)− pT∇pK(u, p)] ≤ 0. (16)

From (15) and (16), we have

λT [f(x) + (xTBx)
1
2 ] < λT [f(u) + uTBw] + λTh(u, p)− pT∇p(λ

Th(u, p))

− yT [g(u) +K(u, p)− pT∇pK(u, p)]. (17)
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Now by Schwartz inequality and (4), we obtain xTBw ≤ (xTBx)
1
2 .

So (17) becomes

λT [f(x) + (xTBw] < λT [f(u) + uTBw] + λTh(u, p)− pT∇p(λ
Th(u, p))

− yT [g(u) +K(u, p)− pT∇pK(u, p)]. (18)

Using −yT g(x) ≤ 0 in (18), we obtain

λT [f(x) + (xTBw]− yT g(x) < λT [f(u) + uTBw] + λTh(u, p)− pT∇p(λ
Th(u, p))

−yT [g(u) +K(u, p)− pT∇pK(u, p)]

⇒ λT [f(x) + (xTBw]− yT g(x)− λT [f(u) + uTBw] + λTh(u, p)− pT∇p(λ
Th(u, p))

− yT [g(u) +K(u, p)− pT∇pK(u, p)] < 0. (19)

Since λT [f(.)+(.)TBw]−yT g(.) is higher order (F, α, ρ, d)- convex at u with respect
to λTh(u, p)− yTK(u, p), we have

λT [f(x)+(xTBw]−yT g(x)−λT [f(u)+uTBw]+yT g(u)−λTh(u, p)+pT∇p(λ
Th(u, p))

+yT [K(u, p)− pT∇pK(u, p)]

≥ Fx,u(α(x, u){λT (∇f(u)+Bw)+∇p(λ
Th(u, p))−yT∇g(u)−∇pK(u, p)})+ρd2(x, u).

(20)
From (2), (19) and (20) along with F (x, u; 0) = 0, we get ρ < 0, which contradicts
the assumption that ρ ≥ 0. Hence we proved.

Theorem 3.3 Let x and (u, y, λ, w, p) be the feasible solution for (NMPP) and
(MWHD) respectively. Assume that
λT [f(.) + (.)TBw] − yT g(.) is higher order (F, α, ρ, d)- pseudo convex at u with
respect to λTh(u, p)− yTK(u, p) along with ρ ≥ 0.

Then f(x) + (xTBx)
1
2 > f(u) + uTBw + λTh(u, p)e− pT∇p(λ

Th(u, p))
Proof: Suppose that contradiction holds.

That is f(x) + (xTBx)
1
2 ≤ f(u) + uTBw + (λTh(u, p))e− pT∇p(λ

Th(u, p))e
Since λ > 0, we obtain

λT [f(x) + (xTBx)
1
2 ] < λT [f(u) + uTBw] + λTh(u, p)− pT∇p(λ

Th(u, p)). (21)

From (3) and (5), we have

yT [g(u) +K(u, p)− pT∇pK(u, p)] ≤ 0. (22)

From (21) and (22), we have

λT [f(x) + (xTBx)
1
2 ] < λT [f(u) + uTBw] + λTh(u, p)− pT∇p(λ

Th(u, p))

− yT [g(u) +K(u, p)− pT∇pK(u, p)]. (23)

Now by Schwartz inequality and (4), we obtain xTBw ≤ (xTBx)
1
2 .

So (23) becomes
λT [f(x) + (xTBw] < λT [f(u) + uTBw] + λTh(u, p)− pT∇p(λ

Th(u, p))

− yT [g(u) +K(u, p)− pT∇pK(u, p)]. (24)
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From (2), we obtain

Fx,u(α(x, u){λT (∇f(u) +Bw) +∇p(λ
Th(u, p))− yT∇g(u)−∇pK(u, p)}) = 0.

So by assumption of theorem 3.3, we get

λT [f(x)+(xTBw]−yT g(x)−λT [f(u)+uTBw]+yT g(u)−λTh(u, p)+pT∇p(λ
Th(u, p))

+yT [K(u, p)− pT∇pK(u, p)] ≥ 0

⇒ λT [f(x)+(xTBw]−yT g(x) ≥ λT [f(u)+uTBw]+yT g(u)−λTh(u, p)+pT∇p(λ
Th(u, p))

+ yT [K(u, p)− pT∇pK(u, p)]. (25)

Since −g(x) ∈ C∗
2 , for y ∈ C2, we get −yT g(x) ≤ 0.

So, (25) implies
λT [f(x) + (xTBw]− yT g(x) ≥ λT [f(u) + uTBw] + λTh(u, p)− pT∇p(λ

Th(u, p))
− yT [g(u) +K(u, p)− pT∇pK(u, p)].
This is a contradiction to (24). Hence we proved.

To prove the strong duality theorem, we shall make use the following lemma
established by Suneja et al. [16]. It gives Fritz John type necessary optimality
conditions for a weakly efficient solution of (NMPP).

Lemma 3.1 If that x̄ ∈ X0 is an efficient solution of (NMPP), then there exist
λ̄ ∈ Rk

+, w̄i ∈ Rn, i = 1, 2, ..., k and ȳ ∈ C2 with (λ̄, ȳ) ̸= 0 such that

(x− x̄)T [λ̄T (∇f(x̄) +Bw̄)− ȳT∇g(x̄)] ≥ 0,∀x ∈ C1, (26)

ȳg(x̄) = 0, (27)

(x̄Bix̄)
1
2 = x̄TBiw̄i, i = 1, 2, ..., k, (28)

w̄iBiw̄i ≤ 1, i = 1, 2, ..., k (29)

Theorem 3.4 (Strong Duality) Let x̄ be an efficient solution of (NMPP), and

h(x̄, 0) = 0,K(x̄, 0) = 0,∇ph(x̄, 0) = ∇f(x),∇pK(x̄, 0) = ∇g(x). (30)

Then there exist λ̄ ∈ Rk
+, w̄i ∈ Rn, i = 1, 2, ..., k and ȳ ∈ C2 with (λ̄, ȳ) ̸= 0 such

that (x̄, ȳ, λ̄, w̄, p̄ = 0) is a feasible solution of (MWHD) and the corresponding
value of objective functions are equal.. Further, if the conditions of weak duality
Theorems 3.1 or Theorems 3.2 or Theorems 3.3 are satisfied then (x̄, ȳ, λ̄, w̄, p̄ = 0)
is an efficient solution of (MWHD).

Proof: Since x̄ be an efficient solution of (NMPP), then by lemma 3.1, there
exist λ̄ ∈ Rk

+, w̄i ∈ Rn, i = 1, 2, ..., k and ȳ ∈ C2 with (λ̄, ȳ) ̸= 0 such that

(x− x̄)T [λ̄T (∇f(x̄) +Bw̄)− ȳT∇g(x̄)] ≥ 0,∀x ∈ C1, (31)

ȳg(x̄) = 0, (32)

(x̄Bix̄)
1
2 = x̄TBiw̄i, i = 1, 2, ..., k, (33)

w̄iBiw̄i ≤ 1, i = 1, 2, ..., k. (34)

Since x ∈ C1, x̄ ∈ C1 and C1 is a closed convex cone, we have x+ x̄ ∈ C1.
So replacing x by x+ x̄ in (31), we get
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xT [λ̄T (∇f(x̄) +Bw̄ − ȳ∇g(x̄)] ≥ 0,∀x ∈ C1

i.e.

xT [λ̄T (∇f(x̄) +Bw̄ − ȳ∇g(x̄)] ≥ 0,∀x ∈ C1. (35)

So, by relation (30), (32), (33), (34) along with (35) imply that
(x̄, ȳ, λ̄, w̄, p̄ = 0) is feasible for (MWHD) and the corresponding value of objective
functions are equal. The proof of the remaining part follows from the weak duality
Theorem 3.1, Theorem 3.2 and Theorem 3.3.

4. Special Cases

(1) If C1 = Rn
+, R

m
+ , k = 1 then we get higher order dual programs studied by

Mishra and Rueda [11].

(2) If C1 = Rn
+, R

m
+ , s(x | D) = (xTBx)T , where D = {Bw | wTBw ≤ 1} then

we get higher order dual programs studied by Yang et al. [18].

(3) If C1 = Rn
+, R

m
+ , Bi = 0, i = 1, 2, ..., k;h(u, p) = pT∇f(u) + 1

2p
T∇2f(u)p and

K(u, p) = pT∇g(u), then our higher order dual programs become first order dual
program in Wolfe [18].

(4) C1 = Rn
+, R

m
+ , Bi = 0, i = 1, 2, ..., k;h(u, p) = pT∇f(u) + 1

2p
T∇2f(u)p then

we obtain second order dual programs studied by [9].

5. Conclusion

In this paper, we consider a new class of generalized higher order (F, α, ρ, d)-
convex and (F, α, ρ, d)-pseudo convex functions with examples. Mond-Weir type
higher order duality is proposed for the non-differentiable multiobjective prob-
lem involving cone constraints, where every component of the objective function
contains square root term of positive semidefinite quadratic form. For this prob-
lem, duality results are established for efficient solution under suitable higher order
(F, α, ρ, d)-convexity conditions. Duality and sufficient optimality conditions with
generalized (F, α, ρ, d)-convexity will be studied for non-differentiable variational
and control problems, which will orient the future research of authors.
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