Electronic Journal of Mathematical Analysis and Applications Vol. 4(2) July 2016, pp. 78-87. ISSN: 2090-729(online) http://fcag-egypt.com/Journals/EJMAA/

BEHAVIOR OF SOLUTIONS OF A CLASS OF NONLINEAR RATIONAL DIFFERENCE EQUATION $x_{n+1} = \alpha x_{n-k} + \frac{\beta x_{n-\ell}^{\delta}}{\gamma x^{\delta}}$

E. M. ELABBASY¹, M. Y. BARSOUM², H. S. ALSHAWEE³

ABSTRACT. The main objective of this paper is to study the qualitative behavior for a class of nonlinear rational difference equation. We study the local stability, periodicity, Oscillation, boundedness, and the global stability for the positive solutions of equation. Examples illustrate the importance of the results

1. INTRODUCTION

In this paper, we aim to achieve a qualitative study of some behavior and solutions in a non-linear differential equations

$$x_{n+1} = \alpha x_{n-k} + \frac{\beta x_{n-\ell}^{\delta}}{\gamma x_{n-s}^{\delta}}, \ n = 0, 1, 2, ...,$$
(1)

where the coefficients α, β and $\gamma \in (0, \infty)$ while k, ℓ and s are positive integers. The initial conditions $x_{-j}, x_{-j+1}, ..., x_0$ are arbitrary positive real numbers such that $j = -\max\{k, \ell, s\}$. Consider $\delta \in [1, \infty)$. Qualitative analysis of difference equation is not only interesting in its own right, but it can provide insights into their continuous counterpararts, namely, differential equations.

There is a set of nonlinear difference equations, known as the rational difference equations, all of which consists of the ratio of two polynomials in the sequence terms in the same from .there has been many work about the global asymptotic of solutions of rational difference equations [3], [6], [7], [8], [11], [12]

In the following we present some basic definitions and known results which will be useful in our study.

Definition 1. [2] Consider a difference equation in the form

$$x_{n+1} = F(x_{n-k}, x_{n-\ell}, x_{n-s})$$
(2)

where F is a continuous function, while $k, \ell, s \in (0, \infty)$ are positive integers. An equilibrium point \overline{x} of this equation is a point that satisfies the condition $\overline{x} =$

¹⁹⁹¹ Mathematics Subject Classification. 39A10.

Key words and phrases. difference equation, stability, oscilation, boundedness, globale stability and Periodicity.

Submitted Jan. 10, 2016.

 $F(\overline{x}, \overline{x}, \overline{x})$. That is, the constant sequence $\{x_n\}$ with $x_n = \overline{x}$ for all $n \ge -k \ge -\ell$ is a solution of that equation.

Definition 2. [9] Let $\overline{x} \in (0, \infty)$ be an equilibrium point of Eq. (2). Then we have

- (i) An equilibrium point \overline{x} of Eq. is said to be locally stable if for every $\varepsilon > 0$ there exists $\sigma > 0$ such that, if $x_{-j}, ..., x_{-1}, x_0 \in (0, \infty)$ with $|x_{-j} - \overline{x}| + ... + |x_{-1} - \overline{x}| + |x_0 - \overline{x}| < \sigma$, then $|x_n - \overline{x}| < \varepsilon$ for all $n \ge -j$.
- (ii) An equilibrium point \overline{x} of Eq.(2) is said to be locally asymptotically stable if it is locally stable and there exists y > 0 such that, $x_{-j}, ..., x_{-1}, x_0 \in (0, \infty)$ with $|x_{-j} - \overline{x}| + ... + |x_{-1} - \overline{x}| + |x_0 - \overline{x}| < y$, then $\lim_{x \to \infty} x_n = \overline{x}$.
- (iii) An equilibrium point \overline{x} of Eq.(2) is said to be a global attractor if for every $x_{-j}, ..., x_{-1}, x_0 \in (0, \infty)$ we have $\lim_{n \to \infty} x_n = \overline{x}$.
- (iv) An equilibrium point \overline{x} of Eq.(2) is said to be globally asymptotically stable if it is locally stable and a global attractor.
- (v) An equilibrium point \overline{x} of Eq.(2) is said to be unstable if it is not locally stable.

Definition 3. [1] The sequence $\{x_n\}$ is said to be periodic with period p if $x_{n+p} = x_n$ for n = 0, 1, ...,

Definition 4. [5] Eq.(2) is said to be permanent and bounded if there exists numbers m and M with $0 < m < M < \infty$ such that for any initial conditions $x_{-j}, ..., x_{-1}, x_0 \in (0, \infty)$ there exists a positive integer N which depends on these initial conditions such that $m \le x_n \le M$ for all $n \ge N$.

Definition 5. [4] A sequence $\{x_n\}_{n=-k}^{\infty}$ is said to be nonoscillatory about the point \overline{x} if there is exists $N \ge -k$ such that either $x_n > \overline{x}$ for all $n \ge N$ or $x_n < \overline{x}$ for all $n \ge N$. Otherwise $\{x_n\}_{n=-k}^{\infty}$ is called oscillatory about \overline{x} .

Definition 6. [3] The linearized equation of Eq.(2) about the equilibrium point \overline{x} is defined by the equation.

$$y_{n+1} = p_0 y_{n-k} + p_1 y_{n-\ell} + p_2 y_{n-s} \tag{3}$$

$$p_0 = \frac{\partial f}{\partial x_{n-k}} \left(\overline{x}, \overline{x}, \overline{x} \right), p_1 = \frac{\partial f}{\partial x_{n-\ell}} \left(\overline{x}, \overline{x}, \overline{x} \right), p_2 = \frac{\partial f}{\partial x_{n-s}} \left(\overline{x}, \overline{x}, \overline{x} \right)$$

The characteristic equation associated with Eq. (3) is

$$p(\lambda) = \lambda^{\ell+1} - p_o \lambda^{\ell} - p_1 \lambda^{\ell-k} - p_2 = 0$$
(4)

Theorem 1. [8] Assume that p_0, p_1 and $p_2 \in R$. Then

$$|p_0| + |p_1| + |p_2| < 1$$

is a sufficient condition for the locally stability of Eq.(2).

2. Local stable of the equilibrium point

The equilibrium point of Eq.(1) is the positive solution of the equation

$$\overline{x} = \alpha \overline{x} + \frac{a \overline{x}^{\delta}}{b \overline{x}^{\delta}}$$

which gives

$$\overline{x} = \frac{\beta}{\gamma \left(1 - \alpha\right)}, \alpha < 1 \tag{6}$$

(5)

Now let $f: (0,\infty)^3 \to (0,\infty)$ be a function defined by

$$f(u, v, w) = \alpha u + \frac{\beta v^{\delta}}{\gamma w^{\delta}}.$$

Then, we have

$$\frac{\partial f}{\partial u} = \alpha, \tag{7}$$

$$\frac{\partial f}{\partial v} = \frac{\beta \delta v^{\delta - 1}}{\gamma w^{\delta}},\tag{8}$$

and

$$\frac{\partial f}{\partial w} = \frac{-\beta\gamma\delta v^{\delta}w^{\delta-1}}{(\gamma w^{\delta})^2}.$$
(9)

Theorem 2. If

 $\alpha+2\delta<1+2\alpha\delta$

then the equilibrium point \overline{x} of eq (1) is local stable.

Proof. From (7) to (9), we get

$$\frac{\partial f}{\partial u} \left(\overline{x}, \overline{x}, \overline{x} \right) = \alpha = p_0,$$

$$\frac{\partial f}{\partial v} \left(\overline{x}, \overline{x}, \overline{x} \right) = \delta \left(1 - \alpha \right) = P_1$$

and

$$\frac{\partial f}{\partial w}\left(\overline{x},\overline{x},\overline{x}\right) = -\delta\left(1-\alpha\right) = P_2.$$

Thus, the linearized equation associated with Eq. (2) about \overline{x} , is

$$y_{n+1} = p_0 y_{n-k} + p_1 y_{n-\ell} + p_2 y_{n-s}.$$

It follows by Theorem 1 that Eq.(1) is localy stable if

$$|\alpha| + |\delta(1-\alpha)| + |-\delta(1-\alpha)| < 1,$$

after simplification and calculations, we get

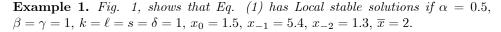
$$\alpha + 2\delta \left(1 - \alpha\right) < 1,$$

which is true if

$$\alpha + 2\delta < 1 + 2\alpha\delta.$$

The proof is completed.

EJMAA-2016/4(2)



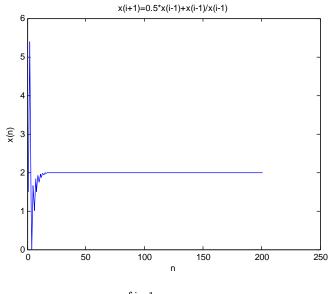


fig.1

3. PERIODIC SOLUTIONS OF Eq. (1)

In this part of the research we are studying the possibility of the existence of periodic solutions to the eq. (1).

Theorem 3. If $\delta = 1$. In the all following cases, Equation (1) has no positive prime period-two solutions:

- (1) If k, ℓ and s are all even positive number.
- (2) If k, ℓ and s are all odd positive number.
- (3) If k is even and ℓ , s are both odd positive number.
- (4) If k, ℓ are both even and s odd positive number.
- (5) If k is odd and ℓ , s are both even positive number.
- (6) If k, ℓ are both odd and s is even positive number.
- (7) If k, s are both odd and ℓ is even positive number.

Proof. Case(1) Suppose that there exists a prime period-two solution

$$\dots, p, q, p, q, p, q, , \dots$$

If k, ℓ even then $x_n = x_{n-k} = x_{n-\ell} = x_{n-s} = q$, $x_{n+1} = p$

$$p = \alpha q + \frac{\beta}{\gamma},\tag{10}$$

also,

$$q = \alpha p + \frac{\beta}{\gamma}.$$
 (11)

By (10) and (11), we have

$$(p-q)(\alpha+1) = 0 \implies p = q$$

Similarly, we can prove other cases which is omitted here for convenience. Hence, the proof is completed. $\hfill \Box$

The following theorem states the sufficient conditions that the Eq (1) has periodic solutions of prime period two.

Theorem 4. Assume that k, s are both even and ℓ is odd positive integers and $\delta = 1$. If

$$3\alpha < 1, \tag{12}$$

then Eq. (1) has prime period two solution.

Proof. Suppose that there exists a prime period-two solution

$$\dots, p, q, p, q, p, q, \dots$$

of (1). We will prove that condition (12) holds.

We see from (1) that if k, s are both even and ℓ is odd, then $x_n = x_{n-k} = x_{n-s} = q$, $x_{n+1} = x_{n-\ell} = p$

$$p = \alpha q + \frac{\beta p}{\gamma q},$$

and

$$q = \alpha p + \frac{\beta q}{\gamma p}$$

,

we have

$$\gamma pq = \alpha \gamma q^2 + \beta p, \tag{13}$$

and

$$\gamma pq = \alpha \gamma p^2 + \beta q. \tag{14}$$

By subtracting (13) and (14), we have

$$\alpha\gamma\left(q^2 - p^2\right) + \beta\left(p - q\right) = 0,$$

then,

$$(p+q) = \frac{\beta}{\alpha\gamma}.$$
(15)

By Combining (13) and (14), we have

$$2\gamma pq = \alpha \gamma (p^2 + q^2) + \beta (p+q), \qquad (16)$$

then,

$$p^{2} + q^{2} = (p+q)^{2} - 2pq.$$
(17)

Form (15), (16) and (17), we get

$$\begin{split} 2\gamma pq \left(1+\alpha\right) &= & \alpha\gamma \left[\frac{\beta}{\alpha\gamma}\right]^2 + \beta \left[\frac{\beta}{\alpha\gamma}\right], \\ pq &= & \frac{\beta^2}{\alpha\gamma^2(\alpha+1)}. \end{split}$$

We have,

$$u^{2} + (p+q)u + pq = 0$$
 and $(p+q)^{2} - 4pq > 0$,

then,

$$\left[\frac{\beta}{\alpha\gamma}\right]^2 - \frac{4\beta^2}{\alpha\gamma^2(1+\alpha)} > 0,$$

which is true if

$$3\alpha < 1.$$

EJMAA-2016/4(2)

Hence, the proof is completed.

Example 2. Fig. 2, shows that Eq. (1) has prime period two solutions if $k = s = 0, \ell = 1, \alpha = (1/16), \beta = 2, \gamma = \delta = 1$, (see Table 1)

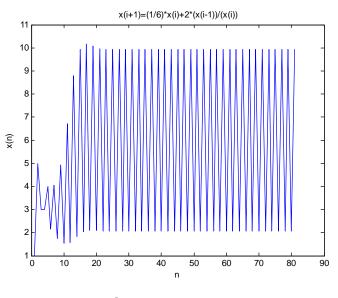


fig 2.

n	x(n)	n	x(n)	n	x(n)	n	x(n)
1	1.0000	17	10.1640	33	9.9283	49	9.9279
2	5.0000	18	2.0923	34	2.0721	50	2.0721
3	3.0000	19	10.0644	35	9.9281	51	9.9279
4	3.0000	20	2.0932	36	2.0721	52	2.0721
5	4.0000	21	9.9652	37	9.9280	53	9.9279
6	2.1667	22	2.0810	38	2.0721	54	2.0721
7	4.0534	23	9.9243	39	9.9279	55	9.9279
8	1.7446	24	2.0734	40	2.0721	56	2.0721
9	4.9375	25	9.9185	41	9.9279	57	9.9279
10	1.5296	26	2.0712	42	2.0721	58	2.0721
11	6.7109	27	9.9228	43	9.9279	59	9.9279
12	1.5743	28	2.0713	44	2.0721	60	2.0721
13	8.7877	29	9.9267	45	9.9279	61	9.9279
14	1.8229	30	2.0718	46	2.0721	62	2.0721
15	9.9452	31	9.9281	47	9.9279	63	9.9279
16	2.0241	32	2.0720	48	2.0721	64	2.0721

4. GLOBAL STABILITY

Theorem 5. If $\alpha < 1$, then the equilibrium point \overline{x} of Eq. 1 is global attractor.

 $\mathrm{EJMAA}\text{-}2016/4(2)$

Proof. We consider the following function

$$f(u, v, w) = \alpha u + \frac{\beta v^{\delta}}{\gamma w^{\delta}},$$

f are increasing for u, v and decreasing for w.

Let m = f(m, m, M) and M = f(M, M, m)

$$m = \alpha m + \frac{\beta m^{\delta}}{\gamma M^{\delta}},\tag{18}$$

$$M = \alpha M + \frac{\beta M^{\delta}}{\gamma m^{\delta}},\tag{19}$$

from (18)

$$\gamma m M^{\delta} \left(1 - \alpha \right) = \beta m^{\delta}, \tag{20}$$

from (19)

$$\gamma M m^{\delta} \left(1 - \alpha \right) = \beta M^{\delta}. \tag{21}$$

Subtracting Equation (20) of (21) produces

$$\gamma \left(1-\alpha\right) \left(mM^{\delta}-Mm^{\delta}\right) - \beta \left(m^{\delta}-M^{\delta}\right) = 0,$$

 then

M = m

Hence, the proof is completed.

5. OSCILLATORY SOLUTION

Theorem 6. Eq.(1) has an oscilatory solution If $k = \max \{k, \ell, s\}$ and k, ℓ is odd and s is even.

Proof. First, assume that,

$$x_{-k}, x_{-k+2}, x_{-k+4}, ..., x_{-1} > \overline{x}$$
 and $x_{-k+1}, x_{-k+3}, ..., x_0 < \overline{x}$

 \mathbf{SO}

$$x_1 = \alpha x_{-k} + \frac{\beta x_{-\ell}^{\delta}}{\gamma x_{-s}^{\delta}},$$

then

$$x_1 > \alpha \overline{x} + \frac{\beta \overline{x}^{\gamma}}{\gamma \overline{x}^{\delta}},$$

and

$$x_1 > \frac{\beta}{\gamma \left(1 - \alpha\right)} = \overline{x}.$$

So, we have

$$x_2 = \alpha x_{-k+1} + \frac{\beta x_{-\ell+1}^{\delta}}{\gamma x_{-s+1}^{\delta}},$$

 $\mathrm{so},$

$$x_2 < \alpha + \frac{a\overline{x}^{\gamma}}{b\overline{x^{\gamma}} + c\overline{x}^{\gamma}},$$

then,

$$x_2 < \frac{\beta}{\gamma \left(1 - \alpha\right)} = \overline{x}.$$

Secandiy assume that,

$$x_{-k}, x_{-k+2}, x_{-k+4}, \dots, x_{-1} < \overline{x}$$
 and $x_{-k+1}, x_{-k+3}, \dots, x_0 > \overline{x}$,

EJMAA-2016/4(2)

 $x_1 = \alpha x_{-k} + \frac{\beta x_{-\ell}^{\delta}}{\gamma x_{-s}^{\delta}},$

then,

$$x_1 < \alpha \overline{x} + \frac{\beta \overline{x}^{\gamma}}{\gamma \overline{x}^{\delta}},$$

and

$$x_1 < \frac{\beta}{\gamma \left(1 - \alpha\right)} = \overline{x}.$$

So, we have

$$x_2 = \alpha x_{-k+1} + \frac{\beta x_{-\ell+1}^{\delta}}{\gamma x_{-s+1}^{\delta}},$$

so,

$$x_2 > \alpha \overline{x} + \frac{\beta \overline{x}^{\gamma}}{\gamma \overline{x}^{\delta}},$$

then,

$$x_2 > \frac{\beta}{\gamma \left(1 - \alpha\right)} = \overline{x}$$

One camproceed in prove manwer to show that $x_3 < \overline{x}$ and $x_4 > \overline{x}$ and soon. Hence, the proof is completed.

Example 3. Fig. 3, shows that Eq.(1) has 0scilatory solution if $\alpha = 0.5$, $\beta = 5$, $\gamma = 5$, $\delta = 0.5$, $\overline{x} = 2$.(see Table 2)

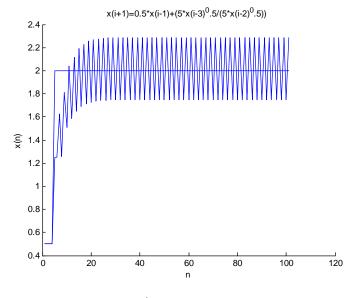


fig.3

85

1	0.5000		17	2.2298		33	2.2878		49	2.2888
2	0.5000		18	1.7129	Í	34	1.7471		50	1.7476
3	0.5000		19	2.2541		35	2.2882		51	2.2888
4	0.5000		20	1.7273		36	1.7473		52	1.7477
5	1.2500		21	2.2680		37	2.2884		53	2.2888
6	1.2500		22	1.7354		38	1.7475		54	1.7477
7	1.6250		23	2.2764		39	2.2886		55	2.2888
8	1.2575		24	1.7404		40	1.7475		56	1.7477
9	1.8125		25	2.2814		41	2.2887		57	2.2888
10	1.5058		26	1.7433		42	1.7476		58	1.7477
11	2.0430		27	2.2844		43	2.2887		59	2.2888
12	1.5858		28	1.7451		44	1.7476		60	1.7477
13	2.1186		29	2.2862		45	2.2887		61	2.2888
14	1.6514		30	1.7461		46	1.7476		62	1.7477
15	2.1944		31	2.2872		47	2.2888		63	2.2888
16	1.6909		32	1.7467		48	1.7476		64	1.7477
Table 2										

6. Boundedness of the solutions

Theorem 7. Let $\{x_n\}_{n=-\max\{k,\ell,s\}}^{\infty}$ be asolution of Eq (1), then the following statements are true :-

(1) Assume that $\beta < \gamma$ and let for some $N \ge 0, x_{N-\ell+1}, ..., x_{N-1}, x_N \in \left[\frac{\beta}{\gamma}, 1\right]$ are valid, then we have

$$\frac{\alpha\beta^{\delta}}{\gamma^{\delta}} + \frac{\beta^{\delta}}{\gamma^{\delta-1}} \le x_n \le \alpha + \frac{\gamma^{\delta-1}}{\beta^{\delta-1}}$$

(2) Assume that $\beta > \gamma$ and for some $N \ge 0, x_{N-\ell+1}, ..., x_N \in \left[1, \frac{\beta}{\gamma}\right]$ are valid, Then we have

$$\alpha + \frac{\gamma^{\delta - 1}}{\beta^{\delta - 1}} \le x_n \le \frac{\alpha \beta^{\delta}}{\gamma^{\delta}} + \frac{\beta^{\delta}}{\gamma^{\delta - 1}}$$

Proof. (1) If $\beta < \gamma$ then $x_{N-\ell+1}, ..., x_{N-1}, x_N \in \left[\frac{\beta}{\gamma}, 1\right]$ $x_{n+1} = \alpha x_{n-k} + \frac{\beta x_{n-\ell}^{\delta}}{\gamma x_{n-s}^{\delta}},$

then,

$$\leq \alpha + \frac{\beta}{\gamma\left(\frac{\beta}{\gamma}\right)^{\delta}}, \\ \leq \alpha + \frac{\gamma^{\delta-1}}{\beta^{\delta-1}},$$

and

$$x_{n+1} = \alpha x_{n-k} + \frac{\beta x_{n-\ell}^{\delta}}{\gamma x_{n-s}^{\delta}},$$

then,

$$\geq \frac{\alpha\beta}{\gamma} + \frac{\beta^{\delta+1}}{\gamma^{\delta-1}}.$$

Then

$$\frac{\alpha\beta}{\gamma} + \frac{\beta^{\delta+1}}{\gamma^{\delta-1}} \le x_n \le \alpha + \frac{\gamma^{\delta-1}}{\beta^{\delta-1}}.$$

Similarly, we can prove other cases which is omitted here for convenience. Hence, the proof is completed. $\hfill \Box$

References

- [1] A. M. Amleh, E. A. Grove, D. A. Georgiou and G. Ladas, On the recursive sequence $x_{n+1} = \alpha + \frac{x_{n-1}}{x_n}$, J. Math. Anal. Appl. 233 (1999), 790-798.
- [2] E. Camouzis, R. DeVault and G. Ladas, On the recursive sequence $x_{n+1} = -1 + x_{n-1}/x_n$, J. Difference Eqs. and Appl., 7 (2001) 477-482.
- [3] S. N. Elaydi, An Introduction to Difference Equations, Undergraduate Texts in Mathematics, Springer, New York, NY, USA, 1996.
- [4] H. M. El-Owaidy, A. M. Ahmed and M.S.Mousa, On asymptotic behaviour of the differens equation $x_{n+1} = \alpha + \frac{x_{n-1}^p}{x_n^p}$, J. Appl. Math. & Computing Vol. 12 (2003), No.1-2, pp. 31 37.
- [5] A. E. Hamza and A. Morsy, "On the recursive sequence $x_{n+1} = \alpha + x_{n-1}/x_n^{\gamma}$," Applied Mathematics Letters. In press.
- [6] E. A. Grove, G. Ladas, Periodicities in Nonlinear Difference Equations, vol. 4, Chapman & Hall / CRC, 2005.
- [7] W. Kosmala, M.Kulenovi´c, G. Ladas and C. Teixeira, On the recursive sequence, $x_{n+1} = (p + x_{n-1})/(qx_n + x_{n-1})$, J. Math. Anal. Appl. 251, (2000),571-586.
- [8] M. R. S. Kulenovic, G. Ladas, Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures, Chapman & Hall/CRC, Florida, 2001.
- [9] M. Saleh and M. Aloqeili. On the rational difference equation $x_{n+1} = A + x_{n-k}/x_n$. Appl. Math. Comput., 171(2):862–869, 2005.
- [10] M. Saleh and M. Aloqeili. On the difference equation $x_{n+1} = A + x_n/x_{n-k}$ with A < 0. Appl. Math. Comput., 176(1):359–363, 2006.
- [11] I. Yalcinkaya, N. Atasever, and C. Cinar, "On the recursive sequence $x_{n+1} = \alpha + (x_{n-3}/x_n^k)$," submitted.
- [12] L.Zhang, Guang Zhang, and Hui Liu. Periodicity and attractivity for a rational recursive sequence. J. Appl. Math. Comput., 19(1-2):191-201, 2005.
- [13] Z. Zhang, B. Ping and W.Dong, Oscillatory of unstable type second-order neutral difference equations, Journal of Applied Mathematics and computing 9, No 1(2002), 87-100.

E. M. ELABBASY, ¹DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, MANSOURA UNIVER-SITY, MANSOURA, 35516, EGYPT.

E-mail address: ¹emelabbasy@mans.edu.eg;

M. Y. $\rm Barsoum^2,\ ^2Department$ of Mathematics, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.

E-mail address: magd45@yahoo.com

H. S. Alshawee³, ³Department of Mathematics, The Faculty of Education, University of Tikrit, Iraq.

E-mail address: ³hayderalshawee@gmail.com