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TRIPLED COINCIDENCE POINT THEOREM FOR

COMPATIBLE MAPS IN FUZZY METRIC SPACES

P. P. MURTHY, RASHMI AND VISHNU NARAYAN MISHRA∗

Abstract. In this paper, we are going to introduce the concept of compatible

maps in Fuzzy metric spaces to establish a triple coincidence point Theorem.
Our result extends the result of Hu [10]. We are providing an example to
support our main result.

1. Introduction

The concept of fuzzy set theory introduced by Zadeh [24]. There are many view-
points of the notion of the metric space in fuzzy topology. We can divide them into
following two groups:
First group involves those results in which a fuzzy metric on a set X is treated as
a map d: X x X → R+, where X represents the totality of all fuzzy points of a
set and satisfy some axioms which are analogous to the ordinary metric axioms. In
such an approach numerical distances are set up between fuzzy objects.

Second group focussed on those results in which the distance between objects is
fuzzy and the objects themselves may or may not be fuzzy. Erceg [4], Kaleva
and Seikkala [12] and Kramosil and Michalek [13] discussed in length about fuzzy
metric spaces. Grabiec’s [7] proved a fixed point theorem in fuzzy metric space.
Subramanyam [23] generalized Grabiec’s result for a pair of commuting maps in the
setting of Jungck 1976 [11]. George and Veermani [6] modified the concept of fuzzy
metric spaces and defined a Hausdorff topology on this fuzzy metric space which a
few applications in quantum particle physics particularly in connection with both
string and E - infinity theory.

In 2004 the concept of partially ordered metric space which was introduced by Ran
and Reurings [21], Guo and Lakshmikantham [8] studied the concept of coupled
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fixed points in partially ordered metric spaces. Bhaskar and Lakshmikantham [3]
introduced the monotone property in partially ordered metric spaces and given an
application to the existence of periodic boundary value problem. Nieto and Lopez
([19] - [20]) rediscovered the partially ordered metric spaces and applied their prob-
lems to periodic boundary value problems. Berinde and Borcut [1] introduced the
concept of tripled fixed point for nonlinear contractive mappings F : X3 → X, in
partially ordered complete metric spaces (see also [2]). On the other hand, Sedghi,
Altun and Shobe [22] gave a coupled fixed point theorem for contractions in fuzzy
metric spaces and Fang [5] gave some common fixed point theorems under ϕ - con-
tractions for compatible and weakly compatible mappings in probabilistic menger
metric spaces. Many authors have proved fixed point theorems in (intuitionistic)
fuzzy metric space or probabilistic metric spaces.
Hu [10], inspired us to obtain a triple coincidence point theorem under weaker con-
ditions by providing an example to show that the result is a genuine generalization
of the corresponding result of Hu [10]. In this aspect several results and applications
are established in ([15, 16, 17, 18] and references therein).

2. Preliminaries

We recall a few definitions and symbols which are useful in proving our theorem.

Definition 1. [6] A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is a continuous
t-norm if it satisfies the following conditions:

(1) ∗ is associative and commutative;
(2) ∗ is continuous;
(3) a ∗ 1 = a for every a ∈ [0, 1];
(4) a ∗ b ≤ c ∗ d if a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Definition 2. [9] A special class of t-norms △(called a Hadžíc-type t-norm) is
introduced as follows:
Let △ be a t-norm and sup0<t<1△(t, t) = 1. A t - norm △ is said to be of H - type
if the family of functions {△m(t)}∞m=1 is equicontinuous at t = 1, where

△1(t) = t△t, △m+1(t) = t△(△m(t)), m = 1, 2, ..., t ∈ [0, 1]. (2.1)

The t - norm △M = min is an example of t - norm of H - type, but there are some
other t - norms △ of H - type [9].
Obviously, △ is a H - type t norm if and only if for any λ ∈ (0, 1), there exists
δ(λ) ∈ (0, 1) such that △m(t) > 1− λ for all m ∈ N, when t > 1− δ.

Definition 3. [6] A triplet (X,M, ∗) is said to be a fuzzy metric space, if X is
an arbitrary set, ∗ is a continuous t-norm and M is a fuzzy set on X2 × (0,∞)
satisfying the following conditions for all x, y, z ∈ X and t, s > 0:

(M1) M(x, y, t) > 0,
(M2) M(x, y, t) = 1 if and only if x = y,
(M3) M(x, y, t) =M(y, x, t),
(M4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s),
(M5) M(x, y, ·) : (0,∞) → [0, 1] is continuous.

In view of (M1) and (M2), it is worth pointing out that 0 < M(x, y, t) < 1 for
all t > 0, provided x ̸= y. In view of Definition (3), George and Veermani [21]
introduced the concept of Hausdorff topology on fuzzy metric spaces and showed
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that every metric space induces a fuzzy metric space.
In fact, we can fuzzify metric spaces into fuzzy metric spaces in a natural way as
is shown by the following example. In other words, every metric induces a fuzzy
metric.

Example 4. Let (X, d) be a metric space and define a ∗ b = ab for all a, b ∈ [0, 1].
Also define M(x, y, t) = t

t+d(x,y) for all x, y ∈ X and t > 0. Then (X,M, ∗) is a

fuzzy metric space, called standard fuzzy metric space induced by (X, d).

Definition 5. [6] Let (X,M, ∗) be a fuzzy metric space, then

(i) a sequence {xn} in X is said to be convergent and converges to say x if

limn→∞M(xn, x, t) = 1,

for all t > 0;
(ii) a sequence {xn} in X is said to be a Cauchy sequence if for a given ϵ > 0,

there exists n0 ∈ N, such that

M(xn, xm, t) > 1− ϵ,

for all t > 0 and n,m ≥ n0;
(iii) a fuzzy metric space (X,M, ∗) is said to be complete if and only if every

Cauchy sequence in X is a convergent sequence.

Remark 6. (see [7]).

(a) For all x, y ∈ X,M(x, y, .) is non - decreasing.
(b) It is easy to prove that if xn → x, yn → y, tn → t, then

limn→∞M(xn, yn, tn) =M(x, y, t). (2.2)

(c) In a fuzzy metric space (X,M, ∗), whenever M(x, y, t) > 1− r for
x, y ∈ X, t > 0, 0 < r < 1, we can find a t0, 0 < t0 < t such that
M(x, y, t0) > 1− r.

(d) For any r1 > r2, we can find r3 such that r1 ∗ r3 ≥ r2 and for any r4 we
can find r5 such that r3 ∗ r5 ≥ r4,
where r1, r2, r3, r4, r5 ∈ (0, 1).

Definition 7. [22] Let (X,M, ∗) be a fuzzy metric space. M is said to satisfy the
n - property on X ×X × (0,∞) if

limn→∞[M(x, y, knt)]n
p

= 1, (2.3)

whenever x, y ∈ X, k > 1 and p > 0.

Lemma 8. Let (X,M, ∗) be a fuzzy metric space and M satisfies the n - property;
then

limt→+∞M(x, y, t) = 1, (2.4)

for all x, y ∈ X.

Proof. If not, since M(x, y, .) is non - decreasing and 0 ≤ M(x, y, .) ≤ 1, there
exists x0, y0 ∈ X such that limt→+∞M(x0, y0, t) = λ < 1, then for k > 1, knt →
+∞ as n → ∞ and t > 0. We get limn→∞[(M(x0, y0, k

nt))n
p

] = 0, which is a
contraction. �

Remark 9. Condition (2.4) cannot guaranteed for the n - property in fuzzy metric
space. To see this we have the following example given in [10].
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Example 10. Let (X, d) be an ordinary metric space, a∗ b ≤ ab for all a, b ∈ [0, 1],
and ψ be define as following:

ψ(t) =

{
α
√
t, if 0 < t ≤ 4,

1− 1
Int , if t > 4,

(2.5)

where α = ( 12 )(1−
1

In4 ). Then ψ(t) is continuous and increasing in (0,∞),
ψ(t) ∈ (0, 1) and limt→+∞ ψ(t) = 1. Let

M(x, y, t) = [ψ(t)]d(x,y), ∀x, y ∈ X, t > 0, (2.6)

then (X,M, ∗) is a fuzzy metric space and

lim
t→+∞

M(x, y, t) = lim
t→+∞

[ψ(t)]d(x,y) = 1, ∀ x, y ∈ X, t > 0, (2.7)

But for any x ̸= y, p = 1, k > 1, t > 0,

lim
n→∞

[M(x, y, knt)]n
p

= lim
n→∞

[(ψ(knt))]d(x,y).n
p

= lim
n→∞

[1− 1

In(knt)
]n.d(x,y) = e

−d(x,y)
Ink ̸= 1.

(2.8)

Now, we recall the following:
Φ = {ϕ : R+ → R+}, where R+ = [0,∞) and each ϕ ∈ Φ satisfies the following
conditions:

(ϕ1) ϕ is non decreasing;

(ϕ2) ϕ is upper semi - continuous from the right;

(ϕ3) Σ∞
n=0ϕ

n(t) < +∞ for all t > 0 where ϕn+1(t) = ϕ(ϕn(t)), n ∈ N.

It is easy to prove that, if ϕ ∈ Φ, then ϕ(t) < t for all t > 0.

Lemma 11. [5] Let (X,M, ∗) be a fuzzy metric space, where ∗ is a continuous t -
norm of H - type. If there exists ϕ ∈ Φ such that if

M(x, y, ϕ(t)) ≥M(x, y, t), (2.9)

for all t > 0, then x = y.

In this context, we mildly modify the concept of tripled fixed point introduced
by Berinde and Borcut [1] in partially ordered metric space into fuzzy metric space.
Also we introduce the following notion of tripled coincidence point and tripled fixed
point.

Definition 12. Let (X,M, ∗) be a nonempty fuzzy metric space. An element
(x, y, z) ∈ X × X × X is said to be tripled coincidence point of the maps F :
X × X × X → X and g : X → X if F (x, y, z) = g(x), F (y, x, z) = g(y) and
F (z, y, x) = g(z).

Definition 13. Let (X,M, ∗) be a nonempty fuzzy metric space. An element
(x, y, z) ∈ X×X×X is said to be tripled fixed point of the map F : X×X×X → X
if F (x, y, z) = x, F (y, x, z) = y and F (z, y, x) = z.

Now we define the concept of compatibility for a pair of maps F : X×X×X → X
and g : X → X.
The notion introduce by us is analogous to the notion of Hu [10] in the setting of
fuzzy metric spaces.
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Definition 14. The maps F : X × X × X → X and g : X → X are said to be
compatible pair of maps if

lim
n→∞

M(g(F (xn, yn, zn)), F (g(xn), g(yn), g(zn)), t) = 1,

lim
n→∞

M(g(F (yn, xn, zn)), F (g(yn), g(xn), g(zn)), t) = 1,

and

lim
n→∞

M(g(F (zn, yn, xn)), F (g(zn), g(yn), g(xn)), t) = 1,

whenever {xn}, {yn} and {zn} are sequences in X, such that

lim
n→∞

F (xn, yn, zn) = lim
n→∞

g(xn) = x, lim
n→∞

F (yn, xn, zn) = lim
n→∞

g(yn) = y

lim
n→∞

F (zn, yn, xn) = lim
n→∞

g(zn) = z,

for all x, y, z ∈ X and t > 0.

Definition 15. The mappings F : X ×X ×X → X and g : X → X are said to be
commutative if

g(F (x, y, z)) = F (gx, gy, gz),

for all x, y ∈ X.

Remark 16. If F and g are commutative pair of maps, then they are compatible
pair of maps.

3. Main results

Now, we prove tripled coincidence point theorem under weaker conditions, which
generalizes the result of Hu [10].

Throughout this section:

[M(x, y, t)]n =M(x, y, t) ∗M(x, y, t) ∗ ... ∗M(x, y, t),︸ ︷︷ ︸
n

(3.1)

for all n ∈ N.

Theorem 17. Let (X,M, ∗) be a complete FM - Space, where ∗ is a continuous t
- norm of H - type satisfying (2.4). Let F : X ×X ×X → X and g : X → X be
two mappings such that there exists ϕ ∈ Φ satisfying

M(F (x, y, z), F (u.v, w), ϕ(t)) ≥M(g(x), g(u), t)∗M(g(y), g(v), t)∗M(g(z), g(w), t),
(3.2)

for all x, y, z, u, v, w ∈ X, t > 0. Suppose that

(a) F (X ×X ×X) ⊆ g(X);
(b) g is continuous;
(c) F and g are compatible.

Then there exits x, y, z ∈ X such that g(x) = F (x, y, z), g(y) = F (y, x, z), g(z) =
F (z, y, x) that is, F and g have triple coincidence point in X.
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Proof. Let x0, y0, z0 ∈ X be arbitrary points in X. Since F (X ×X ×X) ⊆ g(X),
then there exists x1, y1, z1 ∈ X such that
g(x1) = F (x0, y0, z0), g(y1) = F (y0, x0, z0), and g(z1) = F (z0, y0, x0).
Continuing in this way, we can construct sequences {xn}, {yn} and {zn} in X such
that

g(xn+1) = F (xn, yn, zn), g(yn+1) = F (yn, xn, zn) and g(zn+1) = F (zn, yn, xn),
(3.3)

for all n ≥ 0.
We shall divided the proof in two steps:
Step I: First we show that {gxn}, {gyn} and {gzn} are Cauchy sequences. Since ∗
is a t - norm of H - type, then for any λ > 0, there exists a µ > 0 such that

(1− µ) ∗ (1− µ) ∗ ... ∗ (1− µ)︸ ︷︷ ︸
k−times

≥ 1− λ, (3.4)

for all k ∈ N.
Since M(x, y, .) is continuous and limt→+∞M(x, y, t) = 1 for all x, y ∈ X there
exists t0 > 0 such that  M(gx0, gx1, t0) ≥ 1− µ,

M(gy0, gy1, t0) ≥ 1− µ,
M(gz0, gz1, t0) ≥ 1− µ.

(3.5)

On the other hand, since ϕ ∈ Φ, by condition (ϕ3) we have
∑∞

n=1 ϕ
n(t0) < ∞.

Then for any t > 0, there exists n0 ∈ N such that

t >
∞∑

k=n0

ϕk(t0), (3.6)

From condition (3.2), we have

M(gx1, gx2, ϕ(t0)) =M(F (x0, y0, z0), F (x1, y1, z1), ϕ(t0))

≥M(gx0, gx1, t0) ∗M(gy0, gy1, t0) ∗M(gz0, gz1, t0).

M(gy1, gy2, ϕ(t0)) =M(F (y0, x0, z0), F (y1, x1, z1), ϕ(t0))

≥M(gy0, gy1, t0) ∗M(gx0, gx1, t0) ∗M(gz0, gz1, t0).
and

M(gz1, gz2, ϕ(t0)) =M(F (z0, y0, x0), F (z1, y1, x1), ϕ(t0))

≥M(gz0, gz1, t0) ∗M(gy0, gy1, t0) ∗M(gx0, gx1, t0)
Similarly, we can also get

M(gx2, gx3, ϕ
2(t0)) =M(F (x1, y1, z1), F (x2, y2, z2), ϕ

2(t0))

≥M(gx1, gx2, ϕ(t0)) ∗M(gy1, gy2, ϕ(t0)) ∗M(gz1, gz2, ϕ(t0))

=M(F (x0, y0, z0), F (x1, y1, z1), ϕ(t0))

∗M(F (y0, x0, z0), F (y1, x1, z1), ϕ(t0))

∗M(F (z0, y0, x0), F (z1, y1, x1), ϕ(t0))

≥M(gx0, gx1, t0) ∗M(gy0, gy1, t0) ∗M(gz0, gz1, t0)

∗M(gy0, gy1, t0) ∗M(gx0, gx1, t0) ∗M(gz0, gz1, t0)

∗M(gz0, gz1, t0) ∗M(gy0, gy1, t0) ∗M(gx0, gx1, t0)
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= [M(gx0, gx1, t0)]
3 ∗ [M(gy0, gy1, t0)]

3 ∗ [M(gz0, gz1, t0)]
3.

M(gy2, gy3, ϕ
2(t0)) =M(F (y1, x1, z1), F (y2, x2, z2), ϕ

2(t0))

≥M(gy1, gy2, ϕ(t0)) ∗M(gx1, gx2, ϕ(t0)) ∗M(gz1, gz2, ϕ(t0))

=M(F (y0, x0, z0), F (y1, x1, z1), ϕ(t0))

∗M(F (x0, y0, z0), F (x1, y1, z1), ϕ(t0))

∗M(F (z0, y0, x0), F (z1, y1, x1), ϕ(t0))

≥M(gy0, gy1, t0) ∗M(gx0, gx1, t0) ∗M(gz0, gz1, t0)

∗M(gx0, gx1, t0) ∗M(gy0, gy1, t0) ∗M(gz0, gz1, t0)

∗M(gz0, gz1, t0) ∗M(gy0, gy1, t0) ∗M(gx0, gx1, t0)

= [M(gy0, gy1, t0)]
3 ∗ [M(gx0, gx1, t0)]

3 ∗ [M(gz0, gz1, t0)]
3.

M(gz2, gz3, ϕ
2(t0)) ≥ [M(gz0, gz1, t0)]

3 ∗ [M(gy0, gy1, t0)]
3 ∗ [M(gx0, gx1, t0)]

3.

Continuing in the same way we get

M(gxn, gxn+1, ϕ
n(t0)) ≥ [M(gx0, gx1, t0)]

3n−1

∗ [M(gy0, gy1, t0)]
3n−1

∗ [M(gz0, gz1, t0)]
3n−1

,

M(gyn, gyn+1, ϕ
n(t0)) ≥ [M(gy0, gy1, t0)]

3n−1

∗ [M(gx0, gx1, t0)]
3n−1

∗ [M(gz0, gz1, t0)]
3n−1

,

M(gzn, gzn+1, ϕ
n(t0)) ≥ [M(gz0, gz1, t0)]

3n−1

∗ [M(gy0, gy1, t0)]
3n−1

∗ [M(gx0, gx1, t0)]
3n−1

,

So, from (3.5) and (3.6), for m > n ≥ n0, we have

M(gxn, gxm, t) ≥M(gxn, gxm,
∞∑

k=n0

ϕk(t0))

≥M(gxn, gxm,
m−1∑
k=n

ϕk(t0))

≥M(gxn, gxn+1, ϕ
n(t0)) ∗M(gxn+1, gxn+2, ϕ

n+1(t0))

∗ · · · ∗M(gxm−1, gxm, ϕ
m−1(t0))

≥ [M(gy0, gy1, t0)]
3n−1∗[M(gx0, gx1, t0)]

3n−1∗[M(gz0, gz1, t0)]
3n−1

∗[M(gy0, gy1, t0)]
3n ∗ [M(gx0, gx1, t0)]

3n ∗ [M(gz0, gz1, t0)]
3n

∗ · · ·∗[M(gy0, gy1, t0)]
3m−2∗[M(gx0, gx1, t0)]

3m−2∗[M(gz0, gz1, t0)]
3m−2

= [(M(gy0, gy1, t0))
1
2 ]3

n−1(3m−n−1)∗[(M(gx0, gx1, t0))
1
2 ]3

n−1(3m−n−1)

∗[(M(gz0, gz1, t0))
1
2 ]3

n−1(3m−n−1)

≥ (1− µ) ∗ (1− µ) ∗ ... ∗ (1− µ)

≥ 1− λ
which implies that

M(gxn, gxm, t) > 1− λ, (3.7)

for all m,n ∈ N with m > n ≥ n0 and t > 0. So {g(xn)} is a cauchy sequence.
Similarly, we can get that {g(yn)} and {g(zn)} is also a Cauchy sequence.
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Step II: Here we shall prove that g and F have a tripled coincidence point.
Since X is complete, there exists x, y, z ∈ X such that

limn→∞F (xn, yn, zn) = limn→∞g(xn) = x,

limn→∞F (yn, xn, zn) = limn→∞g(yn) = y,

limn→∞F (zn, yn, xn) = limn→∞g(zn) = z,

Since F and g are compatible, we have by

limn→∞M(gF (xn, yn, zn), F (gxn, gyn, gzn), t) = 1,

limn→∞M(gF (yn, xn, zn), F (gyn, gxn, gzn), t) = 1,

limn→∞M(gF (zn, yn, xn), F (gzn, gyn, gxn), t) = 1.

∀ t > 0.
Now, we prove that g(x) = F (x, y, z), g(y) = F (y, x, z) and g(z) = F (z, y, x), so by
condition (3.2) and (3.3), we have

M(gx, F (x, y, z), ϕ(t)) ≥M(ggxn+1, F (x, y, z), ϕ(k1t))∗M(gx, ggxn+1, ϕ(t)−ϕ(k1t))

=M(gF (xn, yn, zn), F (x, y, z), ϕ(k1t))

∗M(gx, ggxn+1, ϕ(t)− ϕ(k1t))

≥M(gF (xn, yn, zn), F (gxn, gyn, gzn), ϕ(k1t)− ϕ(k2t))

∗M(F (gxn, gyn, gzn), F (x, y, z), ϕ(k2t))

∗M(gx, ggxn+1, ϕ(t)− ϕ(k1t))

≥M(gF (xn, yn, zn), F (gxn, gyn, gzn), ϕ(k1t)− ϕ(k2t))

∗M(ggxn, gx, k2t) ∗M(ggyn, gy, k2t)

∗M(ggzn, gz, k2t) ∗M(gx, ggxn+1, ϕ(t)− ϕ(k1t)),
∀ 0 < k2 < k1 < 1.
Since g is continuous, {g, F} is a compatible pair and by letting n → ∞, we have
M(gx, F (x, y, z), ϕ(t)) ≥ 1,⇒ gx = F (x, y, z).
Similarly, we obtain gy = F (y, x, z) and gz = F (z, y, x).
Hence F and g have a have triple coincidence point. �

As an immediate consequence of the above theorem, we have the following corol-
laries:

Corollary 18. Let (X,M, ∗) be a complete fuzzy metric space, where ∗ is a con-
tinuous t - norm of H - type satisfying (2.4). Let F : X ×X ×X → X and there
exists ϕ ∈ Φ such that

M(F (x, y, z), F (u.v, w), ϕ(t)) ≥M(x, u, t) ∗M(y, v, t) ∗M(z, w, t), (3.8)

for all x, y, z, u, v, w ∈ X, t > 0. Then there exits x, y, z ∈ X such that
x = F (x, y, z), y = F (y, x, z), z = F (z, y, x) that is, F have a common tripled fixed
point in X.
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Corollary 19. [22] Let a ∗ b ≥ ab for all a, b ∈ [0, 1] and (X,M, ∗) be a complete
fuzzy metric space such that M has n - property. Let F : X × X × X → X and
g : X → X be two function such that

M(F (x, y, z), F (u.v, w), kt) ≥M(gx, gu, t) ∗M(gy, gv, t) ∗M(gz, gw, t), (3.9)

for all x, y, z, u, v, w ∈ X, where 0 < k < 1, F (X ×X ×X) ⊂ g(X) and g is contin-
uous and commutes with F. Then there exists triple coincidence point (x, y, z) ∈ X
such that
g(x) = F (x, y, z), g(y) = F (y, x, z), g(z) = F (z, y, x).

Now we are ready to give an example to validate our main theorem:

Example 20. Let X = [−2, 2], a ∗ b = ab for all a, b ∈ [0, 1]. ψ is defined as (2.5).
Let

M(x, y, t) = [ψ(t)]|x−y|,

for all x, y ∈ [0, 1]. Then (X,M, ∗) is a complete FM - space.
Let ϕ(t) = t

2 , g(x) = x and F : X ×X ×X → X be defined as

F (x, y, z) =
x+ y + z

4
, ∀x, y ∈ X.

Thus F satisfies all the condition of Theorem(3.1), and there exists point (0, 0, 0)
is tripled coincidence point of g and F.
It is easy to see that F (X ×X ×X) = [−2

3 ,
2
3 ],

M(F (x, y, z), F (u, v, w), ϕ(t)) = [ψ(ϕ(t))]
|x−u+y−v+z−w|

4 , (3.10)

For all t > 0 and x, y ∈ [−2, 2]. (3.8) is equivalent to

[ψ(
t

2
)]

|x−u+y−v+z−w|
4 ≥ [ψ(t)]|x−u| · [ψ(t)]|y−v| · [ψ(t)]|z−w| (3.11)

Since ψ ∈ (0, 1), we can get

[ψ(
t

2
)]

|x−u+y−v+z−w|
4 ≥ [ψ(

t

2
)]

|x−u|
4 · [ψ( t

2
)]

|y−v|
4 · [ψ( t

2
)]

|z−w|
4 (3.12)

From (3.11), we only need to verify the following:

[ψ(
t

2
)]

|x−u|
4 ≥ [ψ(t)]|x−u| (3.13)

that is,

ψ(
t

2
) ≥ [ψ(t)]4∀t > 0. (3.14)

We consider the following cases.

Case 1: (0 < t ≤ 4). Then (3.14) is equivalent to

α

√
t

2
≥ (α

√
(t))4, (3.15)

it is easy to verified.

Case 2: (t ≥ 8). Then (3.14) is equivalent to

1− 1

In t
2

≥ (1− 1

Int
)4 (3.16)
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which is

4In3t · In t
2
+ 4Int · In t

2
≥ In4t+ 6In2t · In t

2
+ In

t

2
(3.17)

since

In4t− 4In3t · In t
2
− 4Int · In t

2
+ 6In2t · In t

2
+ In4

t

2
− In4

t

2
+ In

t

2
≤ 0, (3.18)

hods for all t ≥ 8. So (3.14) holds for t ≥ 8.

Case 3: (4 < t < 8). Then (3.14) is equivalent to

α

√
t

2
≥ (1− 1

Int
)4 (3.19)

Let t = ex, we only need to verify

α√
2
e

x
2 − (1− 1

x
)4 ≥ 0, (3.20)

for all x that 2In2 < x < 3In2.
Hence it is verified that the functions F, g, ϕ satisfies all the conditions given in the
Theorem(3.1) and (x, y, z) = (0, 0, 0) is a triple coincidence point of F and g in X.
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