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BEHAVIOUR OF THE NEW CLASS OF THE RATIONAL

DIFFERENCE EQUATIONS

O. MOAAZ, MAHMOUD A.E. ABDELRAHMAN

Abstract. In this paper we study the behavior of the solution of the new
class of the rational Difference Equations. Namely, we study the stability,

boundedness, periodicity and the oscillation of the solution. Moreover some

interesting counter examples are given in order to verify our strong results.

1. Introduction

The study of Difference Equations has been great interest in various branches of
mathematics. These Difference Equations describing real life situations in probabil-
ity theory, queuing theory, statistical problems, stochastic time series, combinatorial
analysis, number theory, electrical network, quanta in radiation, genetics in biology,
economics, psychology, sociology, etc. So our study of the Difference Equations is
so interesting.

There is a set of nonlinear difference equations, known as the rational difference
equations, all of which consists of the ratio of two polynomials in the sequence
terms in the same from .there has been many work about the global asympototic
of solutions of rational difference equations [1]-[13].

In this paper, we are concerned with analytical investigation of the solution of
the following difference equation

xn+1 = a+ b
xn−l
xn−k

+ c
xn−l
xn−s

, n = 0, 1, ..., (1)

where the initial conditions x−r, x−r+1, ..., x−1, x0, r = max{l, k, s} are arbitrary
positive real numbers and a, b, c, d are positive constants.

In this section we present the basic definitions and theorems of the our model,
namely equilibrium points, local and global stability, boundedness, periodicity and
the oscillation of the solution.
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Definition 1 (Equilibrium point)
Consider a difference equation in the form

xn+1 = F (xn−l, xn−k, xn−s), n = 0, 1, 2, ... (2)

where F is a continuous function, while l, k and s are positive integers. A point x
is said to be an equilibrium point of the equation (4) if it is a fixed point of F , i.e.,
x = F (x, x , x).

Definition 2 (stability)
Let x ∈ (0,∞) be an equilibrium point of equation (4). Then we have

(a) (local stability)
An equilibrium point x of equation (4) is said to be locally stable if for
every ε > 0 there exists δ > 0 such that, if x−ν ∈ (0,∞) for ν = 0, 1, ..., r
with

r∑
i=0

|x−i − x| < δ,

then | xn − x |< ε for all n ≥ −r .
(b) (local asymptotic stability)

An equilibrium point x of equation (4) is said to be locally asymptotically
stable if it is locally stable and there exists γ > 0 such that, if x−ν ∈ (0,∞)
for ν = 0, 1, ..., r with

r∑
i=0

|x−i − x| < γ,

then

lim
n→∞

xn = x.

(c) (global stability)
An equilibrium point x of equation (4) is said to be a global attractor if for
every x−ν ∈ (0,∞) for ν = 0, 1, ..., r we have

lim
n→∞

xn = x.

(d) (global asymptotic stability)
An equilibrium point x of equation (4) is said to be globally asymptotically
stable if it is locally stable and a global attractor.

(v) (unstability)
An equilibrium point x of equation (4) is said to be unstable if it is not
locally stable.

Definition 3 (periodicity)
A sequence {xn}∞n=−r is said to be periodic with period t if xn+t = xn for all

n ≥ −r. A sequence {xn}∞n=−r is said to be periodic with prime period t if t is the
smallest positive integer having this property

Definition 4 (boundedness)
Equation (4) is called permanent and bounded if there exists numbers m and M
with 0 < m < M < ∞ such that for any initial conditions x−ν ∈ (0,∞) for ν =
0, 1, ..., r there exists a positive integer N which depends on these initial conditions
such that 0 < m < M <∞ for all n ≥ N .
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Definition 5 The linearized equation of equation (4) about the equilibrium
point x is defined by the linear difference equation

zn+1 =

k∑
i=0

hizn−i (3)

where

hi =
∂F (x, x, ..., x)

∂xn−i
, kispositiveinteger

Theorem 1[10] Assume that hi, i = 0, 1, 2 ∈ R. Then

2∑
i=0

| hi |< 1,

is a sufficient condition for the asymptotic stability of equation (4).

2. The stability of solutions

In this section we study the local stability character of the solutions of equation
(1). The positive equilibrium point of equation (1) is given by

x = a+ b+ c,

Now, we define the continuous function f : (0,∞)
3 → (0,∞) , such that

f (u1, u2, u3) = a+ b
u2
u1

+ c
u2
u3
,

Therefore, it follows that

∂f

∂u1
(u1, u2, u3) = −bu2

u21
,

∂f

∂u2
(u1, u2, u3) =

b

u1
+

c

u3
, (4)

∂f

∂u3
(u1, u2, u3) = −cu2

u23
.

Theorem 2 The equilibrium point x of equation(1) is locally stable, if a > b+c .

Proof. The linearized equation of (1) about the equilibrium point x is the linear
difference equation

zn+1 =

2∑
i=0

∂f (x, x, x)

∂un−i
zn−i

From (4), we obtain

∂f

∂u1
(x, x, x) = − b

a+ b+ c
= −h0,

∂f

∂u2
(x, x, x) =

b+ c

a+ b+ c
= −h1,

and
∂f

∂u3
(x, x, x) = − c

a+ b+ c
= −h2.

Then the linearized equation

zn+1 + h0zn + h1zn−1 + h2zn−2 = 0 (5)
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It is follows by Theorem 1 that, equation (5) is locally stable if

2∑
i=0

|hi| < 1.

This implies that ∣∣∣∣ b

a+ b+ c

∣∣∣∣+

∣∣∣∣ b+ c

a+ b+ c

∣∣∣∣+

∣∣∣∣ c

a+ b+ c

∣∣∣∣ < 1.

and so,
b+ c < a

Hence, the proof is completed. �

The following counter example shows the stability of solution of equation (1).
Example 1 We consider the following initial data: x−2 = 2, x−1 = 3, x0 = 2 for

equation (1) with l = 2, k = 0, s = 1, a = 1, b = 0.5 and c = 0.3, Figure 1 .

Figure 1. Stability of solution.

Now we introduce the following theorem, which will be useful for the investigation
of the global attractivity of solution of equation (1).

Theorem 3 Let [a, b] be an interval of real numbers and assume that

F : [a, b]
3 → [a, b]

is a continuous function satissfying the following properties:

(i) F (u1, u2, u3) is non-increeasing in u1 and u3 for each u2 in [a, b] and
non-decreeasing in u2 for each u1, u3 in [a, b] .
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(ii) If (m,M) ∈ [a, b]× [a, b] is a solution of the system

m = F (M,m,M) and M = F (m,M,m) (6)

implies
m = M.

Then equation (1) has a unique equilibrium point x ∈ [a, b] and every solution
of equation (1) converges to x.

Proof. We define the sequances {mi}i=0 and {Mi}i=0 as the following

m0 = a, mi = F (Mi−1,mi−1,Mi−1)

and
M0 = b, Mi = F (mi−1,Mi−1,mi−1)

for i = 1, 2, ....
From propertiy (i), we note that

mi+1 = F (Mi,mi,Mi) ≥ F (Mi−1,mi−1,Mi−1) = mi

and
Mi+1 = F (mi,Mi,mi) ≤ F (mi−1,Mi−1,mi−1) = Mi

Thus, we have the sequances {mi}i=0 non-decreeasing and {Mi}i=0 non-increeasing
and hence

m0 ≤ m1 ≤ ... ≤ mi ≤ ... ≤Mi ≤ ... ≤M1 ≤M0 = b

and so,
mi ≤ xj ≤Mi for j ≥ 3i+ 1. (7)

Now, we set
m = lim

i→∞
mi

and
M = lim

i→∞
Mi

From (7), we obtain
M ≥ lim sup

i→∞
xi ≥ lim inf

i→∞
xi ≥ m

By the continuity of F , we have that (m,M) is a solution of the system (6), then

m = x = M.

�

Theorem 4 If a 6= b + c, then the positive equilibrium point x of Eq. (1) is
global attractor.

Proof. From (4), we can easily see that the continuous function f defined by

f (u1, u2, u3) = a+ b
u2
u1

+ c
u2
u3
,

is non-increeasing in u1 and u3 and non-decreeasing in u2.
Assume that (m,M) is a solution of the system

m = F (M,m,M) and M = F (m,M,m)

Thus, by equation (1), we find

m = a+ b
m

M
+ c

m

M
and M = a+ b

M

m
+ c

M

m
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and so,

Ma+ (b+ c)m = mM = ma+ (b+ c)M,

hence,

(M −m) (a− b− c) = 0.

If a 6= b + c, then we get M = m. It follows by Theorem 2 that x is a global
attractor of equation (1) and then the proof is complete. �

3. Boundedness of the solutions

In this section, we investigate the boundedness of the positive solutions of equa-
tion (1).

Theorem 5 Assume that {xn}n=−rbe a solution of equation (1).

(i) If b+ c < 1 and the initial conditions xη−r+1, ..., xη−1, xη ∈ [b+ c, 1] , for
some η ≥ 0. Then we have the inequality

a+ (b+ c)
2 ≤ xn ≤ a+ 1, for n ≥ η. (8)

(ii) If b+ c > 1 and the initial conditions xη−r+1, ..., xη−1, xη ∈ [1, b+ c] , for
some η ≥ 0. Then we have the inequality

a+ 1 ≤ xn ≤ a+ (b+ c)
2
, for n ≥ η. (9)

Proof. For (i), let xη−r+1, ..., xη−1, xη ∈ [b+ c, 1] , for some η ≥ 0. Thus, we get

xη+1 = a+ b
xη−l
xη−k

+ c
xη−l
xη−s

≤ a+
b

b+ c
+

c

b+ c
= a+ 1. (10)

Also, we obtain

xη+1 ≥ a+ b (b+ c) + c (b+ c)

= a+ (b+ c)
2
. (11)

From (10) and (11), we deduce for all n ≥ η that the inequality (8) is valid. Hence,
the proof of part (i) is completed. Similarly, we can prove part (ii). Thus, the proof
is now completed. �
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Figure 2. Prime period two.

4. Periodic and Oscillatory solutions

Theorem 6 Assume that l− odd and k, s− even positive integers. If a 6= b+ c,
then equation (1) has no prime period two solution.

Proof. Suppose that there exists a distinct prime period two solution

..., β, γ, β, γ, ...

of equation (1). Thus, we have xn−l = β and xn−k = xn−s = γ.
From equation (1), we find

β = a+ b
β

γ
+ c

β

γ
(12)

and

γ = a+ b
γ

β
+ c

γ

β
. (13)

Subtracting (12) from (13), we get

(β − γ) (a− b− c) = 0,

Since a 6= b+ c, then β = γ. This is a contradiction. Thus, the proof is completed.
�

Remark 1 In the previous theorem, we can get the prime period two if a = b+c.
This nice result will be illustrated in the following counter example, Figure 2.

Example 2 We consider the following initial data: x−2 = 3, x−1 = 4, x0 = 4 for
equation (1) with l = 1, k = 0, s = 2, a = 11, b = 8 and c = 3, Figure 2 .
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Theorem 7 Assume that l−even and k, s−odd positive integers. Then equation
(1) has no prime period two solution.

Proof. Let there exists a distinct prime period two solution

..., β, γ, β, γ, ...

of equation (1). Thus, we have xn−l = γ and xn−k = xn−s = β.
From equation (1), we find

β = a+ b
γ

β
+ c

γ

β

and

γ = a+ b
β

γ
+ c

β

γ
.

Hence, we obtain

β2 = aβ + (b+ c) γ (14)

and

γ2 = aγ + (b+ c)β. (15)

By subtracting (14) from (15), we get

β + γ = a− b− c (16)

By adding (14) and (15), we have

βγ = − (a− b− c) (b+ c) (17)

But, from (16) and (17), we see that (β + γ) (βγ) < 0,which contradicts β, γ are
positives. This completes the proof. �

Remark 2 The all remaining cases for l, k, s matches with one of the above two
cases given in Theorems 4 and 4 .

The following theorem shows the oscillation behaviour of solutions of equation
(1).

Theorem 8 Assume that l is odd and k, s are even. Then, equation (1) has an
oscillatory solution.

Proof. Initially, without loss of generality we may assume that s = max {l, k, s} ,
and let the sequance {xn}n=−s be a solution of the equation (1). Now, we suppose
that

(i) x−s+(2µ−1) > x and x−s+2λ < x

for µ = 1, 2, ..., s2 and λ = 0, 1, ..., s2 . Hence, we obtain

x1 = a+ b
x−l
x−k

+ c
x−l
x−s

,

> a+ b
x

x
+ c

x

x
= x

and

x2 = a+ b
x−l+1

x−k+1
+ c

x−l+1

x−s+1
,

< x
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Figure 3. Oscillation of solution.

Next, let x2υ−1 > x and x2υ < x for υ = 1, 2, ..., t, and we shall prove that x2t+1 > x
and x2t+2 < x. From equation (1), we find

x2t+1 = a+ b
x−l+2t

x−k+2t
+ c

x−l+2t

x−s+2t
,

> x

and

x2t+2 = a+ b
x−l+2t+1

x−k+2t+1
+ c

x−l+2t+1

x−s+2t+1
,

< x

Similarly, if

(ii) x−s+(2µ−1) < x and x−s+2λ > x

for µ = 1, 2, ..., s2 and λ = 0, 1, ..., s2 , , we can prove that x2υ−1 < x and x2υ > x for
υ = 1, 2, .... Hence, the proof is completed. �

The following counter example show the oscillation behaviour of solution of equa-
tion (1).

Example 3 We consider the following initial data: x−3 = 1, x−2 = 0.99, x−1 =
1.2, x0 = 0.7 for equation (1) with l = 3, k = 0, s = 2, a = 0.5, b = 0.3 and c = 0.3,
Figure 3.
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