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SOME INTEGRALS FOR THE GENERALIZED BESSEL

MAITLAND FUNCTIONS

N. U. KHAN, T. KASHMIN

Abstract. The present paper is the investigation of some integrals for the
generalized Bessel-Maitland functions Jµ,γ

ν,q (z), which are expressed in terms of
generalized (Wright) hypergeometric functions. Some interesting special cases
involving Bessel functions, generalized Bessel functions, generalized Mitagg-

Leffler functions, Struv’s functions are deduced. These results are also estab-
lished in terms of generalized Wright hypergeometric functions.

1. Introduction

In recent years, many integral formulas involving a variety of special functions
have been developed by many authors (see [1],[2],([3]),[4],[16], for example). Sev-
eral integral formulas involving product of Bessel functions have been developed and
play an important role in several physical problems. In fact, Bessel functions are
associated with a wide range of problems in diverse areas of mathematical physics.
Here, we aim at presenting two generalized integral formulas involving the general-
ized Bessel-Maitland function, which are expressed in terms of generalized (Wright)
hypergeometric functions. Some interesting special cases of our main results are
also considered.
Definition 1 The special function of the form defined by the series representation
as

Jµ
ν (z) =

∞∑
m=0

(−z)m

m! Γ(ν + µm+ 1)
(µ > 0; z ∈ C) (1)

is known as Bessel-Maitland function, or the Wright generalized function (see[7]).
An interesting generalization of the Bessel function Jµ

ν,σ(z) defined by [10] as follow

Jµ
ν,σ(z) =

∞∑
m=0

(−1)m (z/2)ν+2σ+2m

Γ(σ +m+ 1) Γ(ν + σ + µm+ 1)
, (2)

wherez ∈ C\(−∞, 0]; µ > 0, ν, σ ∈ C.
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Further, another generalization of the generalized Bessel-Maitland function Jµ,γ
ν,q (z)

defined by [14] as follows

Jµ,γ
ν,q (z) =

∞∑
m=0

(γ)qm(−z)m

m! Γ(ν + µm+ 1)
, (3)

where µ, ν, γ ∈ C,Re(µ) ≥ 0, Re(ν) ≥ −1, Re(γ) ≥ 0 and q ∈ (0, 1)
∪
N and

(γ)0 = 1, (γ)qm = Γ(γ+qm)
Γ(γ) , denotes the generalized pochhammer symbol (see [12]).

We investigate some special cases of the generalized Bessel-Maitland function
(3) by giving particular values to the parameters µ, ν, γ, q.

If q = 1, γ = 1 and ν is replaced by ν + σ and z by
(

z2

4

)
in (3), we get

Jµ,1
ν+σ,1

(
z2

4

)
= Γ(σ +m+ 1)

(z
2

)−ν−2σ

Jµ
ν,σ(z), (4)

where Jµ
ν,σ(z) denotes Bessel-Maitland function defined by (3).

Also, if µ = 1 and σ = 1
2 in (4), we get

J1,1

ν+ 1
2 ,1

(
z2

4

)
= Γ

(
m+

3

2

)(z
2

)−ν−1

Hν(z), (5)

where Hν(z) denotes Struve’s function (see [8]) defined as follows

Hν(z) =
∞∑

m=0

(−1)m (z/2)ν+2m+1

Γ(m+ 3
2 ) Γ(ν +m+ 3

2 )
. (6)

We have also some important special cases of the generalized Bessel-Maitland func-
tion Jµ,γ

ν,q (z), as follows.
If q = 0, equation (3) reduces to

Jµ,γ
ν,0 (z) = Jµ

ν (z), (7)

where Jµ
ν (z) is generalized Bessel function defined by (1).

if q = 0 and ν is replaced by ν − 1 and z by −z, (3) reduces to
Jµ,γ
ν−1,0(−z) = Φ(µ, ν; z), (8)

known as Wright function (see, [5] was introduced by Wright [21].

if q = 0, µ = 1 and z is replaced by
(

z2

4

)
, (3) reduces to

J1,γ
ν,0

(
z2

4

)
=

(z
2

)−ν

Jν(z), (9)

an ordinary Bessel function [16].
If ν is replaced by ν − 1 and z by −z, (3) reduces to

Jµ,γ
ν−1,q(−z) = Eγ,q

µ,ν(z), (10)

where µ, ν, γ ∈ C, Re(µ) > 0, , Re(ν) > 0, Re(γ) > 0, q ∈ (0, 1)
∪
N, and Eγ,q

µ,ν(z)
denotes generalized Mittag-Leffler function, was given by Shukla and Prajapati [18].
If q = 1 and ν is replaced by ν − 1 and z by −z, (3) reduces to

Jµ,γ
ν−1,1(−z) = Eγ

µ,ν(z), (11)

was introduced by Prabhakar [15].
If γ = 1, q = 1 and ν is replaced by ν − 1 z by −z, (3) reduces to

Jµ,1
ν−1,1(−z) = Eµ,ν(z), (12)
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where µ ∈ C,Re(µ) > 0, Re(ν) > 0, was studied by Wiman [23].
If ν = 0, q = 1, γ = 1 and z is replaced by −z,(3) reduces to

Jµ,1
0,1 (−z) = Eµ(z), (13)

where µ ∈ C,Re(µ) > 0, was introduced by Ghosta Mittag-Leffler [12].
If µ = k ∈ N and q ∈ N in (3), we get

Jk,γ
ν,q (z) =

1

Γ(ν + 1)
qFk

 ∆(q; γ) ;

∆(k; ν + 1) ;

−qqz
kk

 . (14)

where Jk,γ
ν,q (z) is another representation of the generalized Bessel-Maitland function

defined by (see [19]), qFk(.) is the generalized hypergeometric function and the sym-

bol ∆(q; γ) is a q-tuple γ
q ,

γ+1
q , ...., γ+q−1

q ; ∆(k; ν+1) is a k-tuple ν+1
k , ν+2

k , ...., ν+k
k .

The generalization of the generalized hypergeometric series pFq (10) is due to Fox[9]
and Wright ([24],[25],[26], for example) who studied the asymptotic expansion of
the generalized Wright hypergeometric function defined by (see, also [21]).

pΨq

 (α1 , A1), ....., (αp , Ap);

(β1 , B1), ....., (βq , Bq);
z

 =
∞∑
k=0

p∏
j=1

Γ(αj +Ajk)

q∏
j=1

Γ(βj +Bjk)

zk

k!
(15)

where the coefficients A1, · · ··, Ap and B1, · · ··, Bq are positive real numbers such
that

1 +

q∑
j=1

Bj −
p∑

j=1

Aj ≥ 0. (16)

A special case of (15)

pΨq

 (α1 , 1), ....., (αp , 1);

(β1 , 1), ....., (βq , 1);
z

 =

p∏
j=1

Γ(αj)

q∏
j=1

Γ(βj)
pFq

 α1, ....., αp ;

β1, ....., βq ;
z


(17)

where pFq is the generalized hypergeometric series defined by [15].

pFq

 α1, ....., αp ;

β1, ....., βq ;
z

 =
∞∑

n=0

(α1)n · · · (αp)n
(β1)n · · · (βq)n

zn

n!

= pFq(α1, · · · , αp; β1, · · ·βq; z), (18)

(λ)n is called the Pochhammer’s symbol [16].
For our present investigation, we required equation (3) and also need to recall the
following Oberhettinger’s integral formula [13].∫ ∞

0

xδ−1(x+ a+
√
x2 + 2ax)−λdx = 2λa−λ

(a
2

)δ Γ(2δ)(Γ(λ− δ)

Γ(1 + λ+ δ)
, (19)

provided 0 < R(δ) < R(λ).



142 N. U KHAN, T. KASHMIN EJMAA-2016/4(2)

2. Main Results

In this section, we established two generalized integral formulas, which are ex-
pressed in terms of generalized (Wright) hypergeometric functions, by inserting the
generalized Bessel-Maitland function (3) with suitable arguments into the integrand
of (19).
Theorem 1 The following integral formula holds true:∫ ∞

0

xδ−1(x+ a+
√
x2 + 2ax)−λJµ,γ

ν,q

(
y

x+ a+
√
x2 + 2ax

)
dx

=
21−δaδ−λΓ(2δ)

Γ(γ)
3ψ3

 (λ, q), (λ− δ, 1), (1 + λ, 1);
−y
a

(ν + 1, µ), (1 + λ+ δ, 1), (λ, 1);

 , (20)

where x > 0; δ, λ, µ, ν, γ ∈ C; ℜ(δ) > 0,ℜ(ν) > −1,ℜ(µ) > 0,ℜ(γ) > 0, 0 <
ℜ(δ) < ℜ(λ), and q ∈ (0, 1)

∪
N.

Theorem 2 The following integral formula holds true:∫ ∞

0

xδ−1(x+ a+
√
x2 + 2ax)−λJµ,γ

ν,q

(
xy

x+ a+
√
x2 + 2ax

)
dx

=
21−δaδ−λΓ(λ− δ)

Γ(γ)
3ψ3

 (λ, q), (2δ, 2), (1 + λ, 1);
−y
2

(ν + 1, µ), (1 + λ+ δ, 2), (λ, 1);


(21)

where x > 0; δ, λ, µ, ν, γ ∈ C; ℜ(δ) > 0,ℜ(ν) > −1,ℜ(µ) > 0,ℜ(γ) > 0, 0 <
ℜ(δ) < ℜ(λ), and q ∈ (0, 1)

∪
N.

Proof. By applying (3) to the integrand of (20) and then interchanging the order
of integral sign and summation, which is verified by uniform convergence of the
involved series under the given conditions, we get∫ ∞

0

xδ−1(x+ a+
√
x2 + 2ax)−λJµ,γ

ν,q

(
y

x+ a+
√
x2 + 2ax

)
dx

=
∞∑

m=0

(γ)qm(−1)mym

m! Γ(ν + µm+ 1)

∫ ∞

0

xδ−1(x+ a+
√
x2 + 2ax)−λ−mdx (22)

In view of the conditions given in theorem 1, since
ℜ(ν) > −1, 0 < ℜ(δ) < ℜ(λ),We can apply the integral formula(19) to the integral
(22) and obtain the following expression:∫ ∞

0

xδ−1(x+ a+
√
x2 + 2ax)−λJµ,γ

ν,q

(
y

x+ a+
√
x2 + 2ax

)
dx

=
21−δaδ−λΓ(2δ)

Γ(γ)

∞∑
m=0

(−1)mΓ(γ + qm)Γ(λ+ 1 +m)Γ(λ− δ +m)

m! Γ(ν + µm+ 1)Γ(λ+ 1)Γ(λ+ δ + 1 +m)

(y
2

)m

, (23)

which, upon using (17), yields (20). This completes the proof of theorem (1).
It is easy to see that a similar arguments as in the proof of theorem (2) will establish
the integral formula (21).
Next we consider other variations of theorem 1 and theorem 2. In fact, we es-
tablish some integral formulas for the generalized Bessel-Maitland function Jµ,γ

ν,q (z)
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expressed in terms of the generalized hypergeometric function qFk. To do this, we
recall the well-known Legendre duplication formula (see, [20], for example ) as:

(λ)2n = 22n
(
λ

2

)
n

(
λ+ 1

2

)
n

(nεN0) (24)

now we are ready to state the following two corollaries.
Corollary 1 Let the condition of theorem 1 be satisfied and replacing µ by k in
the generalized Bessel-Maitland function Jµ,γ

ν,q (z) in (20) and using(14). Then the
following integral formula holds true:∫ ∞

0

xδ−1(x+ a+
√
x2 + 2ax)−λJk,γ

ν,q

(
y

x+ a+
√
x2 + 2ax

)
dx

=
y 2−δaδ−λΓ(2δ)Γ(λ+ 2)Γ(λ+ 1− δ)

Γ(ν + 1)Γ(λ+ 1)Γ(λ+ δ + 2)
qFk

 ∆(q; γ) ;

∆(k; ν + 1) ;

−qq

kk

 , (25)

where ℜ(δ) > 0,ℜ(λ) > 0, and ∆(q; γ) is a q-tuple γ
q ,

γ+1
q , ...., γ+q−1

q ; ∆(k; ν + 1)

is a k-tuple ν+1
k , ν+2

k , ...., ν+k
k .

Corollary 2 Let the condition of theorem 2 be satisfied and replacing µ by k in the
generalized Bessel-Maitland function Jµ,γ

ν,q (z) in (21) and using the relation (14).
Then the following integral formula holds true:∫ ∞

0

xδ(x+ a+
√
x2 + 2ax)−λJk,γ

ν,q

(
xy

x+ a+
√
x2 + 2ax

)
dx

=
y 2−δaδ−λΓ(2δ)Γ(λ+ 2)Γ(λ+ 1− δ)

Γ(ν + 1)Γ(λ+ 1)Γ(λ+ δ + 2)
qFk

 ∆(q; γ) ;

∆(k; ν + 1) ;

−qq

kk

 , (26)

provided λ, δ ∈ C; ℜ(δ) > 0,ℜ(λ) > 0,ℜ(δ) < ℜ(λ andx > 0.
Proof. By writing the the right-hand side of (20) in the original summation for-
mula, after a little simplification, we find that, when the last resulting summation is
expressed in terms of qFk in the relation (14), this completes the proof of corollary
1. Similarly, it is easy to see that a similar argument as in proof of corollary 1 will
established the integral formula (26). Therefore we omit the details of the proof of
the corollary 2.

3. Special Cases

On setting q = 0 in theorem 1 and theorem 2 and making use of the relation (7),
then the generalized Bessel-Maitland function Jµ,γ

ν,q (z) will have following relation
with Bessel-Maitland function Jµ

ν (z) as follows:
1 The following integral formula holds true:∫ ∞

0

xδ−1(x+ a+
√
x2 + 2ax)−λJµ

ν

(
y

x+ a+
√
x2 + 2ax

)
dx

= 21−δaδ−λΓ(2δ) 2ψ3

 (λ− δ, 1), (1 + λ, 1);
−y
a

(ν + 1, µ), (1 + λ+ δ, 1), (λ, 1);

 , (27)

provided λ, δ ∈ C; 0 < ℜ(δ) < ℜ(λ) andx > 0.
2 The following integral formula holds true:
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∫ ∞

0

xδ−1(x+ a+
√
x2 + 2ax)−λJµ

ν

(
xy

x+ a+
√
x2 + 2ax

)
dx

= 21−δaδ−λΓ(λ− δ) 2ψ3

 (2δ, 2), (1 + λ, 1);
−y
a

(ν + 1, µ), (1 + λ+ δ, 2), (λ, 1);

 , (28)

provided λ, δ ∈ C; 0 < ℜ(δ) < ℜ(λ) andx > 0.
On setting q = 0 and ν is replaced by ν − 1 and z is by −z in theorem 1 and

theorem 2 and making use of the relation (8), we obtain the following integral
formulas involving the Wright function as follows:
3 The following integral formula holds true:∫ ∞

0

xδ−1(x+ a+
√
x2 + 2ax)−λΦ

(
µ; ν;

y

x+ a+
√
x2 + 2ax

)
dx

= 21−δaδ−λΓ(2δ) 2ψ3

 (λ− δ, 1), (1 + λ, 1);
y
a

(ν, µ), (1 + λ+ δ, 1), (λ, 1);

 , (29)

provided λ, δ ∈ C; 0 < ℜ(δ) < ℜ(λ) andx > 0.
4 The following integral formula holds true:∫ ∞

0

xδ−1(x+ a+
√
x2 + 2ax)−λΦ

(
µ; ν;

xy

x+ a+
√
x2 + 2ax

)
dx

= 21−δaδ−λΓ(λ− δ) 2ψ3

 (2δ, 2), (1 + λ, 1);
−y
2

(ν, µ), (1 + λ+ δ, 2), (λ, 1);

 , (30)

provided λ, δ ∈ C; 0 < ℜ(δ) < ℜ(λ) and x > 0.

On setting µ = 1, q = 0 and z is replaced by
(

z2

4

)
in theorem 1 and theorem

2 and making use of the relation (9), into accounts, yields the following integral
formulas involving the ordinary Bessel function as follows:
5 The following integral formula holds true:∫ ∞

0

xδ−1(x+ a+
√
x2 + 2ax)−λ−2νJν

(
y

x+ a+
√
x2 + 2ax

)
dx

=
(y
2

)ν

21−δaδ−λ−νΓ(2δ) 2ψ3

 (λ+ 2ν − δ, 2), (1 + λ+ 2ν, 2);
−y2

4a2

(ν + 1, 1), (1 + λ+ 2ν + δ, 2), (λ+ 2ν, 2);

 ,
(31)

provided λ, δ ∈ C; 0 < ℜ(δ) < ℜ(λ) and x > 0.
6 The following integral formula holds true:∫ ∞

0

xδ−1(x+ a+
√
x2 + 2ax)−λ−2νJν

(
xy

x+ a+
√
x2 + 2ax

)
dx

= 21−δaδ−λ−2νΓ(λ+2ν−δ) 2ψ3

 (2δ, 4), (1 + λ+ 2ν, 2);
−y2

16
(ν + 1, 1), (1 + λ+ 2ν + δ, 4), (λ+ 2ν, 2);

 ,
(32)

provided λ, δ ∈ C; 0 < ℜ(δ) < ℜ(λ) and x > 0.
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On replacing ν by ν−1 and z by −z in theorem 1 and theorem 2, and making use
of the relation (10) , we get the following integral formulas involving the generalized
Mittag-Leffler function as follows:
7 The following integral formula holds true:∫ ∞

0

xδ−1(x+ a+
√
x2 + 2ax)−λEγ,q

µ,ν

(
y

x+ a+
√
x2 + 2ax

)
dx

= 21−δaδ−λΓ(2δ) 3ψ3

 (γ, q), (λ− δ, 1), (1 + λ, 1);
y
a

(ν, µ), (1 + λ+ δ, 1), (λ, 1);

 , (33)

where δ, λ, µ, ν, γ ∈ C, ℜ(δ) > 0,ℜ(λ) > 0,ℜ(µ) > 0,ℜ(ν) ≥ −1,ℜ(γ) > 0, q ∈
(0, 1)

∪
N.

8 The following integral formula holds true:∫ ∞

0

xδ−1(x+ a+
√
x2 + 2ax)−λEγ,q

µ,ν

(
xy

x+ a+
√
x2 + 2ax

)
dx

= 21−δaδ−λΓ(λ− δ) 3ψ3

 (γ, q), (2δ, 2), (1 + λ, 1);
y
2

(ν, µ), (1 + λ+ δ, 2), (λ, 1);

 , (34)

where δ, λ, µ, ν, γ ∈ C, ℜ(δ) > 0,ℜ(λ) > 0,ℜ(µ) > 0,ℜ(ν) ≥ −1,ℜ(γ) > 0, q ∈
(0, 1)

∪
N and x > 0.

On setting q = 1 and ν is replaced by ν−1 and z by −z in theorem 1 and theorem
2 and making use of the relation (11), we get the following integrals formulas
involving the Mittag-Leffler functions as follows:
9 The following integral formula holds true:∫ ∞

0

xδ−1(x+ a+
√
x2 + 2ax)−λEγ

µ,ν

(
y

x+ a+
√
x2 + 2ax

)
dx

= 21−δaδ−λΓ(2δ) 3ψ3

 (γ, 1), (λ− δ, 1), (1 + λ, 1);
y
a

(ν, µ), (1 + λ+ δ, 1), (λ, 1);

 , (35)

where δ, λ ∈ C; ℜ(δ) > 0,ℜ(λ) > 0.
10 The following integral formula holds true:∫ ∞

0

xδ−1(x+ a+
√
x2 + 2ax)−λEγ

µ,ν

(
xy

x+ a+
√
x2 + 2ax

)
dx

= 21−δaδ−λΓ(λ− δ) 3ψ3

 (γ, 1), (2δ, 2), (1 + λ, 1);
y
2

(ν, µ), (1 + λ+ δ, 2), (λ, 1);

 (36)

where δ, λ ∈ C; ℜ(δ) > 0,ℜ(λ) > 0, x > 0.

On setting γ = 1 and ν is replaced by ν − 1 and z by −z in theorem 1 and
theorem 2 and making use of the relation (12), we get the following integral formulas
involving the Mittag-Leffler function as given below.
11 The following integral formula holds true:∫ ∞

0

xδ−1(x+ a+
√
x2 + 2ax)−λEµ,ν

(
y

x+ a+
√
x2 + 2ax

)
dx
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= 21−δaδ−λΓ(2δ) 3ψ3

 (λ− δ, 1), (1 + λ, 1)), (1, 1);
y
a

(ν, µ), (1 + λ+ δ, 1), (λ, 1);

 , (37)

where δ, λ, µ, ν,∈ C; ℜ(δ) > 0,ℜ(λ) > 0, x > 0.
12 The following integral formula holds true:∫ ∞

0

xδ−1(x+ a+
√
x2 + 2ax)−λEµ,ν

(
xy

x+ a+
√
x2 + 2ax

)
dx

= 21−δaδ−λΓ(λ− δ) 3ψ3

 (2δ, 2), (1 + λ, 1), (1, 1);
y
2

(ν, µ), (1 + λ+ δ, 2), (λ, 1);

 , (38)

where δ, λ, µ, ν,∈ C; ℜ(δ) > 0,ℜ(λ) > 0, x > 0.
On setting ν = 0, q = 1, γ = 1 and z is replaced by −z in theorem 1 and theorem

2 and making use of the relation(14), we get the following integral formulas as
follows:
13 The following integral formula holds true:∫ ∞

0

xδ−1(x+ a+
√
x2 + 2ax)−λEµ

(
y

x+ a+
√
x2 + 2ax

)
dx

= 21−δaδ−λΓ(2δ) 3ψ3

 (λ− δ, 1), (1 + λ, 1), (1, 1);
y
a

(1, µ), (1 + λ+ δ, 1), (λ, 1);

 , (39)

where δ, λ, µ,∈ C; ℜ(δ) > 0,ℜ(λ) > 0.
14 The following integral formula holds true:∫ ∞

0

xδ−1(x+ a+
√
x2 + 2ax)−λEµ

(
xy

x+ a+
√
x2 + 2ax

)
dx

= 21−δaδ−λΓ(λ− δ) 3ψ3

 (2δ, 2), (1 + λ, 1), (1, 1);
y
2

(1, µ), (1 + λ+ δ, 2), (λ, 1);

 , (40)

where δ, λ, µ,∈ C; ℜ(δ) > 0,ℜ(λ) > 0.

On setting q = 1, γ = 1, ν = ν + σ and z is replaced by
(

z2

4

)
in theorem 1

and theorem 2 and using the relation (4), then the generalized Bessel-Maitland
function Jµ,γ

ν,q (z) will have following relation with Bessel-Maitland function Jµ
ν,σ(z)

as follows.
15 The following integral formula holds true:∫ ∞

0

xδ−1(x+ a+
√
x2 + 2ax)−λJµ

ν,σ

(
y

x+ a+
√
x2 + 2ax

)
dx

= 21−δaδ−λΓ(2δ) 3ψ3

 (λ− δ, 2), (1 + λ, 2), (1, 1);
−y2

4a2

(ν + σ + 1, µ), (1 + λ+ δ, 2), (λ, 2);

 , (41)

where δ, λ, σ, ν ∈ C; ℜ(δ) > 0,ℜ(λ) > 0,ℜ(µ) > 0.
16 The following integral formula holds true:∫ ∞

0

xδ−1(x+ a+
√
x2 + 2ax)−λJµ

ν,σ

(
xy

x+ a+
√
x2 + 2ax

)
dx
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= 21−δaδ−λΓ(λ− δ) 3ψ3

 (2δ, 4), (1 + λ, 2), (1, 1);
−y2

16
(ν + σ + 1, µ), (1 + λ+ δ, 4), (λ, 2);

 , (42)
where δ, λ, σ, ν ∈ C; ℜ(δ) > 0,ℜ(λ) > 0,ℜ(µ) > 0.

Also, setting µ = 1, σ = 1
2 in (41) and (42) and using the relation (5), then we

get the integral formulas involving the Struv’s function Hν(z) as follows.
17 The following integral formula holds true:∫ ∞

0

xδ−1(x+ a+
√
x2 + 2ax)−λHν

(
y

x+ a+
√
x2 + 2ax

)
dx

= 21−δaδ−λΓ(2δ) 3ψ3

 (λ− δ, 2), (1 + λ, 2), (1, 1);
−y2

4a2

(ν + 3
2 , 1), (1 + λ+ δ, 2), (λ, 2);

 , (43)

where δ, λ, ν ∈ C; ℜ(δ) > 0,ℜ(λ) > 0..
18 The following integral formula holds true:∫ ∞

0

xδ−1(x+ a+
√
x2 + 2ax)−λHν

(
xy

x+ a+
√
x2 + 2ax

)
dx

= 21−δaδ−λΓ(λ− δ) 3ψ3

 (2δ, 4), (1 + λ, 2), (1.1);
−y2

16
(ν + 3

2 , 1), (1 + λ+ δ, 4), (λ, 2);

 , (44)

where δ, λ, ν ∈ C; ℜ(δ) > 0,ℜ(λ) > 0.
19 The following integral formula holds true:∫ ∞

0

xδ−1(x+ a+
√
x2 + 2ax)−λJk

ν

(
y

x+ a+
√
x2 + 2ax

)
dx

=
y 2−δaδ−λΓ(2δ)Γ(λ+ 2)Γ(λ+ 1− δ)

Γ(ν + 1)Γ(λ+ 1)Γ(λ+ δ + 2)
0Fk

 −−− ;

∆(k; ν + 1) ;

−qq

kk

 , (45)

where k is positive integer δ, λ, ν ∈ C; ℜ(δ) > 0,ℜ(λ) > 0.
20 The following integral formula holds true:∫ ∞

0

xδ(x+ a+
√
x2 + 2ax)−λJk

ν

(
xy

x+ a+
√
x2 + 2ax

)
dx

=
2−δaδ−λΓ(λ− δ)Γ(λ+ 2)Γ(2δ + 2)

Γ(ν + 1)Γ(λ+ 1)Γ(λ+ δ + 3)
0Fk

 −−− ;

∆(k; ν + 1) ;

−qq

kk

 , (46)

where k is positive integer δ, λ, ν ∈ C; ℜ(δ) > 0,ℜ(λ) > 0.

4. Concluding Remark

In the present paper, we investigate new integrals involving the generalized
Bessel-Maitland function Jµ,γ

ν,q (z), in terms of the generalized (Wright) hypergeo-
metric function. Certain special cases of integrals involving the generalized Bessel-
Maitland function have been investigated in the literature by a number of authors
with different arguments (see,[12],[15], [18], [19], for example). Also, the generalized
Bessel-Maitland function Jµ,γ

ν,q (z) are expressed in terms of Fox H-function [9], and
the generalized hypergeometric function qFk [14]. Therefore, the results presented
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in this paper are easily converted in terms of a similar type of new interesting
integrals with different arguments after some suitable parametric replacements.
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