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NEW REFINEMENT ALGORITHM FOR A POSTERIORI ERROR
ESTIMATE IN GOAL-ORIENTED PROBLEMS
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Abstract. In this work, a modi�ed algorithm is presented for the mesh re-
�nement involved in evaluating a posteriori error estimate for goal-oriented
problems using recovery techniques. As the results show in some problems,
the e¤ectivity index exhibits some peaks before tending to 1. To overcome
these peaks, we propose an improvement to the local re�nement algorithm.

1. Introduction

In this section we explain some of the terms and derive some of the mathematical
formulas related to the work in this article.

1.1. Adaptive �nite element. Adaptive methods based on a posteriori error es-
timates are now widely used in the scienti�c computation to achieve better accuracy
with minimum degrees of freedom. Adaptive �nite element methods (FEM) typi-
cally consist of successive loops of the sequence (Solve �Estimate �Mark �Re�ne),
until a stopping criterion is satis�ed, as in [1].

1.2. Recovery techniques. Error estimators can be categorized under two classes.
The �rst one is the residual type estimators, as in [2], and the second one is the
recovery type estimators, as in [3]. Many of the popular techniques are based on
the residual type estimators, as in [4]-[11].
Finite element recovery techniques are post-processing methods that reconstruct

numerical approximations from �nite element solutions to obtain the improved
solutions. The practical usage of the recovery technique is not only to improve the
quality of the approximation, but also to construct recovery type a posteriori error
estimators in adaptive computations [12].
Recently, gradient recovery has gained a lot of interest from scientists and en-

gineers. Several gradient recovery techniques are proposed based on weighted av-
eraging [13], [14], local or global projections [15]-[17], smoothing techniques [18],
[19] and least-square type methods [20]-[22]. Gradient recovery technique has been
widely used in engineering practice due to its good properties. These properties
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include robustness as an a posteriori error estimator, superconvergence of the re-
covered derivatives, and e¢ ciency in implementation; see, e.g., [23]-[30].

1.3. Polynomial preserving recovery technique. In [21], the authors designed
a new systematic gradient recovery technique that is applicable to FEMs of all
orders in 2D and 3D and at the same time inherits the good properties of the
superconvergent patch recovery (SPR) technique. This is the polynomial preserving
recovery (PPR) technique. The authors introduced [26], analyzed and showed that
the PPR technique is as good as or better than the SPR.
To recover the gradient using the PPR technique at a mesh node p, a patch �p of

elements is selected. Then, a polynomial that best �ts the �nite element solution is
constructed, in least-squares sense, at the mesh nodes in �p. The recovered gradient
is de�ned to be the gradient of the �tting polynomial. Nodes on domain boundary
@
 are handled in the same way, although they need extra care in constructing
their patches
The PPR-recovered gradient has a superconvergence property i.e. the conver-

gence rate at some exceptional points of the domain exceeds the global known
optimal rates. As it is known, if the recovered gradient is superconvergent to the
exact gradient, then the a posteriori error estimator based on this recovered gradient
is exact in asymptotic sense [23].

1.4. Goal-oriented problem. In �nite element analysis it is frequently the case
that the analyst is more interested in certain output data of the �nite element
approximation than in the global energy norm. In order to �nd an estimate for
the error in the output data related to a speci�c quantity, or to �nd at least an
e¤ective mesh to accurately solve for this quantity, error estimators for the energy
norm are not useful. Hence, more recently so-called goal-oriented error estimates
were developed, which estimate the error in quantities of interest [31].
Goal-oriented methods visualized as a generalization to classical a posteriori

error estimation methods. The mission of goal-oriented adaptive algorithms is
to estimate the discretization error in such quantities of interest and use these
estimates to adapt the mesh in order to control their accuracy.
In [32], a new approach for evaluating a posteriori error estimate for goal-oriented

problems is presented. This approach is based on replacing the gradient in the goal-
oriented error estimate by the recovered gradient obtained by PPR. Also, a local
re�nement algorithm that properly implements the proposed technique is suggested.

1.5. Model problem. Suppose that we are given the elliptic boundary-value prob-
lem

��u = f in 
; u = 0 on @
; (1)

and a linear functional G such that G(u) is a quantity of interest. In order to
approximate G(u), one may compute G(uh), where uh is the linear �nite element
approximation to u over a conforming mesh � of 
.
We are interested in estimating the goal-oriented error eh

eh = G (u� uh) = hu� uh ; Gi ; (2)

where h. ; .i denotes the inner product in L2(
). Numerous contributions have
been made to have an upper bound to eh in both the mathematical and engineering
literature as in [5]-[10]. In fact, combining the solution of the dual problem
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��z = f in 
; z = 0 on @
; (3)

with Galerkin orthogonality yields the representation formula

eh = h��z ; u� uhi
= hrz ; r (u� uh)i
= hr (u� uh) ; r (z � zh)i ; (4)

where zh is the linear �nite element approximation of z [9]. The approach in
[32] replaced the exact gradients in (4) by the recovered gradients obtained by the
PPR technique. So, the estimated error �h is calculated by the inner product

�h = hRhuh �ruh ; Rhzh �rzhi ; (5)

where Rhuh and Rhzh are the PPR recovered gradients of uh and zh, respectively.
Then the proposed approach is used to obtain an estimate for the goal-oriented

error to one-dimensional problems. Numerical examples are presented to show the
resulting estimator provide tight bound with the e¤ectivity index �h de�ned by

�h = j�h=ehj ; (6)

tending to 1. But, sometimes the results show that, the e¤ectivity index exhibits
some peaks before tending to 1. To overcome these peaks, an improvement to the
local re�nement algorithm is introduced in the next section.
It is customary to choose the molli�ers G� of the form

G�(x� x0) = C . exp
�

�2

(x� x0)2 � �2

�
; (7)

if jx� x0j < � and G�(x�x0) = 0 elsewhere. The constant C, depends on � and
x0, is selected to satisfy

x0+�R
x0��

G�(x� x0)dx = 1; (8)

a numerical integration of the last integral provides that C � 2:2523 ��1 [4].

2. Modified local refinement algorithm

After having computed the local error estimate, we resort to marking the ele-
ments that need to be re�ned. Di¤erent approaches for marking strategies can be
found in [1]. Let �h;0 be the initial mesh. Now we start the procedure to compute
a sequence of meshes and approximate solutions. The local error estimate �h;T is
computed for every element T of the mesh �h;k for some integer k � 0 and choose
an appropriate tolerance " for the error estimate �h and choose �; � 2 (0; 1).
In [32], an algorithm compatible with estimate (5) was proposed for the goal-

oriented problems in the following procedure (goal-adaptation)
while (j�hj > ") do

sum = 0 ;
t = 1 ;
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while (jsumj < � : j�hj) do
t = t� � ;
if (t 6= 0)
for all T 2 �h;k

if (T is not marked)
if (
���h;T �� > t : ���h;T ��max) mark T ;
sum = sum + �h;T ;

By choosing � we can control how �ne the procedure should work. One may
choose � depending on the complexity of f . Note that this algorithm is not expen-
sive in its computational cost, because all local errors have already been computed.
If there are sources of error, this will a¤ect the quality of the error estimator.

Additionally, small number of marked elements does not enhance �h. The modi�ed
algorithm tests the error between the recovered gradient and the gradient of the
�nite element solution in the L2 norm sense

�h = kRhuh �ruhkL2(
) ; (9)

and provide additional marking strategy (u-adaptation), to help the goal-adaptation
to achieve a good quality of the error estimator, as follow
if (
���h;T �� > � : ���h;T ��max) mark T ;

Figure 1. Flow chart for the modi�ed algorithm
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3. Numerical examples

In the following examples, we �x the following parameters

� = 0:1; � = � = 0:5; x0 = 0:5 and " = 10�6

and explore the in�uence of the parameter � with respect to the mesh size h on
the e¤ectivity index �h de�ned by (6).

Example 1.

Consider the problem

� u00 = f in 
; u = 0 on @
; (10)

and the dual problem

� z00 = G in 
; z = 0 on @
; (11)

where 
 is (0; 1). We choose f so that the exact solution is

u(x) = sin(�x): (12)

Figure 2. The initial mesh (16 nodes)

Figure 3. E¤ectivity index for � = 0:1
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Figure 4. Final mesh for � = 0:1

Figure 5. E¤ectivity index for � = 0:15

Figure 6. Final mesh for � = 0:15
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Figure 7. E¤ectivity index for � = 0:2

Figure 8. Final mesh for � = 0:2

Example 2.

For the equations in (10) and (11), we choose another f so that

u(x) = x4 (x� 1); (13)
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Figure 9. E¤ectivity index for � = 0:1

Figure 10. Final mesh for � = 0:1

Figure 11. E¤ectivity index for � = 0:15
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Figure 12. Final mesh for � = 0:15

Figure 13. E¤ectivity index for � = 0:2

Figure 14. Final mesh for � = 0:2

Example 3.

Consider the problem

� u00 + u = f in 
; u = 0 on @
; (14)

where 
 is (0; 1). Set f so that the solution of this problem given by

u(x) = x (x� 1); (15)
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Figure 15. E¤ectivity index for � = 0:1

Figure 16. Final mesh for � = 0:1

Figure 17. E¤ectivity index for � = 0:15
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Figure 18. Final mesh for � = 0:15

Figure 19. E¤ectivity index for � = 0:2

Figure 20. Final mesh for � = 0:2

4. Conclusion

In this work, we present a new algorithm for goal oriented problems. We proposed
a mixed algorithm where we employ two error estimates, goal-oriented estimate and
recovered gradient estimate, together to choose the elements to be re�ned. The
results show that this algorithm overcome a drawback in previous algorithms as
it yields an e¤ectivity index that tends to 1 with no or minimum peaks. Yet, the
degrees of freedom is larger than the one obtained in previous algorithms. This
suggests that the parameters involved in the re�nement algorithm should also be
chosen in an adaptive way.
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