HANKEL DETERMINANT FOR CERTAIN SUBCLASS OF p-VALENT FUNCTION

TRAILOKYA PANIGRAHI

Abstract

The object of this paper is to use Toeplitz determinant to obtain a sharp upper bound of the second Hankel determinant $\left|a_{p+1} a_{p+3}-a_{p+2}^{2}\right|$ for the p-valent functions belonging to class $\mathcal{M}_{p}(\alpha, \beta)$. Our main theorem unify and extend several results established earlier for special values of the parameters p, α and β.

1. Introduction and Motivation

Let $\mathcal{A}_{p}(p$ is a fixed integer $\geq 1)$ denote the class of all analytic functions $f(z)$ of the form:

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

defined on the open unit disk:

$$
\mathbb{U}:=\{z \in \mathbb{C}:|z|<1\}
$$

and let $\mathcal{A}_{1}=\mathcal{A}$. Let \mathcal{S} be the subclass of \mathcal{A} consisting of univalent functions in \mathbb{U}. A function $f(z) \in \mathcal{A}_{p}$ is said to be p-valent starlike function $\left(\frac{f(z)}{z} \neq 0\right)$, if it satisfies the condition

$$
\begin{equation*}
\Re\left\{\frac{z f^{\prime}(z)}{p f(z)}\right\}>0 \quad(z \in \mathbb{U}) \tag{2}
\end{equation*}
$$

The set of all these functions is denoted by S_{p}^{*}. It is observed that for $p=1, S_{p}^{*}$ reduces to S^{*}.
The q th Hankel determinant for $q \geq 1$ and $n \geq 1$ is stated by Noonan and Thomas (see [23]) as

$$
\left.H_{q}(n)=\left\lvert\, \begin{array}{ccl}
a_{n} & a_{n+1} & \cdots \tag{3}\\
a_{n+1} & a_{n+2} & \cdots \\
a_{n+q-1} \\
\cdot & & a_{n+q} \\
\cdot & & \cdot \\
\cdot & \cdots & \cdot \\
a_{n+q-1} & a_{n+q} & \cdots
\end{array}\right.\right) a_{n+2 q-2} \mid l
$$

[^0]This determinant has been considered by several authors in the literature. For example, Noor [24] determined the rate of growth of $H_{q}(n)$ as $n \longrightarrow \infty$ for the functions f given by (1) with bounded boundary rotation. Ehrenborg [5] studied the Hankel determinant of exponential polynomials. It is well-known [4] that for $f \in \mathcal{S}$ and given by (1), the sharp inequality $\left|a_{3}-a_{2}^{2}\right| \leq 1$ holds. This corresponds to the Hankel determinant with $q=2$ and $n=1$. Fekete-Szegö (see [6]) then further generalized the estimate $\left|a_{3}-\mu a_{2}^{2}\right|$ with μ real and $f \in \mathcal{S}$. For a given family \mathcal{F} of the functions in \mathcal{A}, the sharp upper bound for the nonlinear functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ is popularly known as the second Hankel determinant. Second Hankel determinant for various subclasses of analytic functions were obtained by different researchers including Janteng et al. [11], Mishra and Gochhayat [21] and Murugusundaramoorthy and Magesh [22]. For some more recent works see [1, 2, 3, 7, 8, 9, 10, 13, 25].

For our discussion in this paper, we consider the Hankel determinant in the case of $q=2$ and $n=p+1$, denoted by $H_{2}(p+1)$ given by

$$
H_{2}(p+1)=\left|\begin{array}{ll}
a_{p+1} & a_{p+2} \\
a_{p+2} & a_{p+3}
\end{array}\right|=a_{p+1} a_{p+3}-a_{p+2}^{2}
$$

Motivated by the above mentioned results obtained by different researchers in this direction, in this paper, we obtain a sharp upper bound to the functional $\left|a_{p+1} a_{p+3}-a_{p+2}^{2}\right|$ for the function f belonging to certain subclass of p-valent functions, defined as follows:

Definition 1. A function $f(z) \in \mathcal{A}_{p}$ is said to be in the class $\mathcal{M}_{p}(\alpha, \beta)$ if it satisfies the condition

$$
\begin{equation*}
\Re\left[(1-\beta)\left(\frac{f(z)}{z^{p}}\right)^{\alpha}+\beta\left(\frac{z f^{\prime}(z)}{p f(z)}\right)\left(\frac{f(z)}{z^{p}}\right)^{\alpha}\right]>0 \quad(0 \leq \alpha, \beta \leq 1 ; z \in \mathbb{U}) . \tag{4}
\end{equation*}
$$

Note that for $\alpha=1$, the class $\mathcal{M}_{p}(1, \beta)$ reduces to the class $I_{p}(\beta)$ studied by Krishna and Ramreddy [16]; while for $\alpha=0$ and $\beta=1$, the class $\mathcal{M}_{p}(0,1)$ reduces to the well-known class of p-valent starlike function S_{p}^{*} studied by Krishna and Ramreddy [14]. Furthermore, for $\alpha=\beta=1$, the class $\mathcal{M}_{p}(1,1)$ reduces to $R T_{p}$ studied by Krishna et al. [17]; while for $\alpha=\beta=p=1$, the class $\mathcal{M}_{1}(1,1)$ reduces to the class $R T$, the subclass of \mathcal{S} consisting of functions whose derivative has a positive real part studied by Mac Gregor [20] was obtained by Janteng et al. [11].

2. Preliminary Lemmas

Let \mathcal{P} denote the class of functions of the form

$$
\begin{equation*}
p(z)=1+c_{1} z+c_{2} z^{2}+\cdots=1+\sum_{n=1}^{\infty} c_{n} z^{n} \tag{5}
\end{equation*}
$$

which are regular in \mathbb{U} and satisfy $\Re(p(z))>0$ for any $z \in \mathbb{U}$. Here, $p(z)$ is called Caratheòdory function (see [4].
To prove our main result, we need the following lemmas:
Lemma 1.(see [4]) If $p \in \mathcal{P}$, then $\left|c_{k}\right| \leq 2$ for each $k \in \mathbb{N}$.
Lemma 2.(see $[18,19])$ Let $p \in \mathcal{P}$. Then

$$
\begin{equation*}
2 c_{2}=c_{1}^{2}+x\left(4-c_{1}^{2}\right) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
4 c_{3}=\left\{c_{1}^{3}+2 c_{1}\left(4-c_{1}^{2}\right) x-c_{1}\left(4-c_{1}^{2}\right) x^{2}+2\left(4-c_{1}^{2}\right)\left(1-|x|^{2}\right) z\right\} \tag{7}
\end{equation*}
$$

for some values of x, z such that $|x| \leq 1$ and $|z| \leq 1$.

3. Main Result

We state and prove the following:
Theorem 1. If $f(z) \in \mathcal{M}_{p}(\alpha, \beta)(0<\alpha, \beta \leq 1)$, then

$$
\left|a_{p+1} a_{p+3}-a_{p+2}^{2}\right| \leq \frac{4 p^{2}}{(\alpha p+2 \beta)^{2}}
$$

The estimate is sharp.
Proof. Let $f(z)$ given by (1) be in the class $\mathcal{M}_{p}(\alpha, \beta)$. Then from Definition 1 there exists an analytic function $p \in \mathcal{P}$ in the unit disk \mathbb{U} with $p(0)=1$ and $\Re\{p(z)\}>0$ such that

$$
\begin{equation*}
(1-\beta)\left(\frac{f(z)}{z^{p}}\right)^{\alpha}+\beta \frac{z f^{\prime}(z)}{p f(z)}\left(\frac{f(z)}{z^{p}}\right)^{\alpha}=p(z) \tag{8}
\end{equation*}
$$

Replacing $f(z), f^{\prime}(z)$ with their equivalent p-valent series expressions and the equivalent expression for $p(z)$ in series in (8), after simplification, we have

$$
\begin{array}{r}
1+\frac{1}{p}(\alpha p+\beta) a_{p+1} z+\frac{1}{2 p}(\alpha p+2 \beta)\left\{2 a_{p+2}-(1-\alpha) a_{p+1}^{2}\right\} z^{2} \\
+\frac{\alpha p+3 \beta}{p}\left\{a_{p+3}-(1-\alpha) a_{p+1} a_{p+2}+\frac{(1-\alpha)(2-\alpha)}{6} a_{p+1}^{3}\right\} z^{3}+\cdots \\
=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\cdots \tag{9}
\end{array}
$$

Equating the coefficients of the like powers of z, z^{2}, z^{3} respectively on both sides of (9). we get

$$
\begin{array}{r}
a_{p+1}=\frac{p}{\alpha p+\beta} c_{1}, \\
a_{p+2}=\frac{p}{\alpha p+2 \beta} c_{2}+(1-\alpha) \frac{p^{2}}{2(\alpha p+\beta)^{2}} c_{1}^{2} \\
a_{p+3}=\frac{p}{\alpha p+3 \beta} c_{3}+(1-\alpha) \frac{p^{2}}{(\alpha p+\beta)(\alpha p+2 \beta)} c_{1} c_{2}+\frac{(1-\alpha)(1-2 \alpha)}{6(\alpha p+\beta)^{3}} p^{3} c_{1}^{3} \tag{10}
\end{array}
$$

Substituting the values of a_{p+1}, a_{p+2} and a_{p+3} from the relation (10) in the second Hankel functional $\left|a_{p+1} a_{p+3}-a_{p+2}^{2}\right|$ for the function $f \in \mathcal{M}_{p}(\alpha, \beta)$, we obtain

$$
\begin{aligned}
\mid a_{p+1} a_{p+3}- & a_{p+2}^{2}|=|\left(\frac{p c_{1}}{\alpha p+\beta}\right)\left(\frac{p}{\alpha p+3 \beta} c_{3}+(1-\alpha) \frac{p^{2}}{(\alpha p+\beta)(\alpha p+2 \beta)} c_{1} c_{2}\right. \\
& \left.+\frac{(1-\alpha)(1-2 \alpha)}{6(\alpha p+\beta)^{3}} p^{3} c_{1}^{3}\right) \left.-\left\{\frac{p}{\alpha p+2 \beta} c_{2}+(1-\alpha) \frac{p^{2}}{2(\alpha p+\beta)^{2}} c_{1}^{2}\right\}^{2} \right\rvert\,
\end{aligned}
$$

Upon simplification, we obtain

$$
\begin{aligned}
\left|a_{p+1} a_{p+3}-a_{p+2}^{2}\right|= & \left.\frac{p^{2}}{12(\alpha p+\beta)^{4}(\alpha p+2 \beta)^{2}(\alpha p+3 \beta)} \right\rvert\, 12(\alpha p+\beta)^{3}(\alpha p+2 \beta)^{2} c_{1} c_{3} \\
& -12(\alpha p+\beta)^{4}(\alpha p+3 \beta) c_{2}^{2}-\left(1-\alpha^{2}\right)(\alpha p+2 \beta)^{2}(\alpha p+3 \beta) p^{2} c_{1}^{4} \mid
\end{aligned}
$$

The above expression is equivalent to

$$
\begin{equation*}
\left|a_{p+1} a_{p+3}-a_{p+2}^{2}\right|=\frac{p^{2}}{12(\alpha p+\beta)^{4}(\alpha p+2 \beta)^{2}(\alpha p+3 \beta)}\left|A_{1} c_{1} c_{3}+A_{2} c_{2}^{2}+A_{3} c_{1}^{4}\right| \tag{11}
\end{equation*}
$$

where

$$
\begin{array}{r}
A_{1}=12(\alpha p+\beta)^{3}(\alpha p+2 \beta)^{2}, \\
A_{2}=-12(\alpha p+\beta)^{4}(\alpha p+3 \beta) \\
A_{3}=-\left(1-\alpha^{2}\right) p^{2}(\alpha p+2 \beta)^{2}(\alpha p+3 \beta) . \tag{12}
\end{array}
$$

Substituting the values of c_{2} and c_{3} from (6) and (7) respectively from Lemma 2 in the right hand side of (11), we get

$$
\begin{array}{r}
\left|A_{1} c_{1} c_{3}+A_{2} c_{2}^{2}+A_{3} c_{1}^{4}\right|=\left\lvert\, A_{1} c_{1} \times \frac{1}{4}\left\{c_{1}^{3}+2 c_{1}\left(4-c_{1}^{2}\right) x-c_{1}\left(4-c_{1}^{2}\right) x^{2}+2\left(4-c_{1}^{2}\right)\left(1-|x|^{2}\right) z\right\}\right. \\
\left.+A_{2} \times \frac{1}{4}\left\{c_{1}^{2}+x\left(4-c_{1}^{2}\right)\right\}^{2}+A_{3} c_{1}^{4} \right\rvert\,
\end{array}
$$

Using the fact that $|z|<1$ and $|x a+y b| \leq|x||a|+|y||b|$, where x, y, a and b are real numbers, after simplifying, we obtain

$$
\begin{array}{r}
4\left|A_{1} c_{1} c_{3}+A_{2} c_{2}^{2}+A_{3} c_{1}^{4}\right| \leq \mid\left(A_{1}+A_{2}+4 A_{3}\right) c_{1}^{4}+2 A_{1} c_{1}\left(4-c_{1}^{2}\right) \\
+2\left(A_{1}+A_{2}\right) c_{1}^{2}\left(4-c_{1}^{2}\right)|x|-\left\{\left(A_{1}+A_{2}\right) c_{1}^{2}+2 A_{1} c_{1}-4 A_{2}\right\}\left(4-c_{1}^{2}\right)|x|^{2} \mid \tag{13}
\end{array}
$$

Using the values of A_{1}, A_{2} and A_{3} from (12), upon simplification, we get

$$
\begin{align*}
A_{1}+A_{2}+4 A_{3} & =12 \beta^{2}(\alpha p+\beta)^{3}-4\left(1-\alpha^{2}\right) p^{2}(\alpha p+2 \beta)^{2}(\alpha p+3 \beta) \\
A_{1}+A_{2} & =12 \beta^{2}(\alpha p+\beta)^{3} \tag{14}
\end{align*}
$$

and

$$
\begin{array}{r}
\left(A_{1}+A_{2}\right) c_{1}^{2}+2 A_{1} c_{1}-4 A_{2}=12 \beta^{2}(\alpha p+\beta)^{3}\left[c_{1}^{2}+2 \frac{(\alpha p+2 \beta)^{2}}{\beta^{2}} c_{1}+4 \frac{(\alpha p+\beta)(\alpha p+3 \beta)}{\beta^{2}}\right] \\
=12 \beta^{2}(\alpha p+\beta)^{3}\left[\left\{c_{1}+\frac{(\alpha p+2 \beta)^{2}}{\beta^{2}}\right\}^{2}-\left\{\frac{(\alpha p+2 \beta)^{4}}{\beta^{4}}-\frac{4(\alpha p+\beta)(\alpha p+3 \beta)}{\beta^{2}}\right\}\right] \\
=12 \beta^{2}(\alpha p+\beta)^{3}\left[\left\{c_{1}+\frac{(\alpha p+2 \beta)^{2}}{\beta^{2}}\right\}^{2}-\left\{\sqrt{\frac{\alpha^{4} p^{4}+8 \alpha^{3} p^{3} \beta+20 \alpha^{2} p^{2} \beta^{2}+16 \alpha p \beta^{3}+4 \beta^{4}}{\beta^{4}}}\right\}^{2}\right] \\
=12 \beta^{2}(\alpha p+\beta)^{3}\left[c_{1}+\left\{\frac{(\alpha p+2 \beta)^{2}}{\beta^{2}}+\sqrt{\frac{\alpha^{4} p^{4}+8 \alpha^{3} p^{3} \beta+20 \alpha^{2} p^{2} \beta^{2}+16 \alpha p \beta^{3}+4 \beta^{4}}{\beta^{4}}}\right\}\right] \\
\times\left[c_{1}+\left\{\frac{(\alpha p+2 \beta)^{2}}{\beta^{2}}-\sqrt{\frac{\alpha^{4} p^{4}+8 \alpha^{3} p^{3} \beta+20 \alpha^{2} p^{2} \beta^{2}+16 \alpha p \beta^{3}+4 \beta^{4}}{\beta^{4}}}\right\}\right] . \tag{15}
\end{array}
$$

By Lemma $1, c_{1} \in[0,2]$. Using the result $\left(c_{1}+a\right)\left(c_{1}+b\right) \geq\left(c_{1}-a\right)\left(c_{1}-b\right)$, where $a, b \geq 0$ in the right hand side of (15), we get

$$
\begin{equation*}
\left(A_{1}+A_{2}\right) c_{1}^{2}+2 A_{1} c_{1}-4 A_{2} \geq 12 \beta^{2}(\alpha p+\beta)^{3} c_{1}^{2}-24(\alpha p+2 \beta)^{2}(\alpha p+\beta)^{3} c_{1}+48(\alpha p+\beta)^{4}(\alpha p+3 \beta) \tag{16}
\end{equation*}
$$

Making use of (14) and (16) in (13) yield

$$
\begin{array}{r}
4\left|A_{1} c_{1} c_{3}+A_{2} c_{2}^{2}+A_{3} c_{1}^{4}\right| \leq \mid 12 \beta^{2}(\alpha p+\beta)^{3} c_{1}^{4}-4\left(1-\alpha^{2}\right) p^{2}(\alpha p+2 \beta)^{2}(\alpha p+3 \beta) c_{1}^{4} \\
+24(\alpha p+\beta)^{3}(\alpha p+2 \beta)^{2} c_{1}\left(4-c_{1}^{2}\right)+24 \beta^{2}(\alpha p+\beta)^{3} c_{1}^{2}\left(4-c_{1}^{2}\right)|x| \\
-\left\{12 \beta^{2}(\alpha p+\beta)^{3} c_{1}^{2}-24(\alpha p+\beta)^{3}(\alpha p+2 \beta)^{2} c_{1}\right. \\
\left.+48(\alpha p+\beta)^{4}(\alpha p+3 \beta)\right\}\left(4-c_{1}^{2}\right)|x|^{2} \mid \tag{17}
\end{array}
$$

Choosing $c_{1}=c \in[0,2]$, applying triangle inequality and replacing $|x|$ by μ in the right hand side of (17), assuming that $12 \beta^{2}(\alpha p+\beta)^{3} c^{2}-24(\alpha p+\beta)^{3}(\alpha p+2 \beta)^{2} c+$ $48(\alpha p+\beta)^{4}(\alpha p+3 \beta) \geq 0$, we get

$$
\begin{array}{r}
4\left|A_{1} c_{1} c_{3}+A_{2} c_{2}^{2}+A_{3} c_{1}^{4}\right| \leq 12 \beta^{2}(\alpha p+\beta)^{3} c^{4}+4\left(1-\alpha^{2}\right) p^{2}(\alpha p+2 \beta)^{2}(\alpha p+3 \beta) c^{4} \\
+24(\alpha p+\beta)^{3}(\alpha p+2 \beta)^{2} c\left(4-c^{2}\right)+24 \beta^{2}(\alpha p+\beta)^{3} c^{2}\left(4-c^{2}\right) \mu \\
+\left\{12 \beta^{2}(\alpha p+\beta)^{3} c^{2}-24(\alpha p+\beta)^{3}(\alpha p+2 \beta)^{2} c+48(\alpha p+\beta)^{4}(\alpha p+3 \beta)\right\}\left(4-c^{2}\right) \mu^{2} \\
=F(c, \mu)(\text { say }) \quad(0 \leq \mu \leq 1,0 \leq c \leq 2) \tag{18}
\end{array}
$$

where

$$
\begin{array}{r}
F(c, \mu)=12 \beta^{2}(\alpha p+\beta)^{3} c^{4}+4\left(1-\alpha^{2}\right) p^{2}(\alpha p+2 \beta)^{2}(\alpha p+3 \beta) c^{4} \\
+24(\alpha p+\beta)^{3}(\alpha p+2 \beta)^{2} c\left(4-c^{2}\right)+24 \beta^{2}(\alpha p+\beta)^{3} c^{2}\left(4-c^{2}\right) \mu \\
+\left\{12 \beta^{2}(\alpha p+\beta)^{3} c^{2}-24(\alpha p+\beta)^{3}(\alpha p+2 \beta)^{2} c\right. \\
\left.+48(\alpha p+\beta)^{4}(\alpha p+3 \beta)\right\}\left(4-c^{2}\right) \mu^{2} \tag{19}
\end{array}
$$

Now we assume that the upper bound for (18) occurs at an interior point of the set $\{(\mu, c): \mu \in[0,1]$ and $c \in[0,2]\}$.
Differentiating $F(c, \mu)$ in (19) partially with respect to μ, we get

$$
\begin{array}{r}
\frac{\partial F}{\partial \mu}=2\left[12 \beta^{2}(\alpha p+\beta)^{3} c^{2}+\left\{12 \beta^{2}(\alpha p+\beta)^{3} c^{2}\right.\right. \\
\left.\left.-24(\alpha p+\beta)^{3}(\alpha p+2 \beta)^{2} c+48(\alpha p+\beta)^{4}(\alpha p+3 \beta)\right\} \mu\right]\left(4-c^{2}\right) \tag{20}
\end{array}
$$

For $0<\mu<1$ and for fixed c with $0<c<2,0<\alpha, \beta \leq 1$ and $p \in \mathbb{N}$, from (20) we observe that $\frac{\partial F}{\partial \mu}>0$. Consequently, $F(c, \mu)$ is an increasing function of μ and hence it cannot have a maximum value at any point in the interior of the closed square $[0,2] \times[0,1]$. Also, for a fixed $c \in[0,2]$, we have

$$
\begin{equation*}
\max _{0 \leq \mu \leq 1} F(c, \mu)=F(c, 1)=G(c)(\text { say }) . \tag{21}
\end{equation*}
$$

Therefore, replacing μ by 1 in (19), upon simplification gives

$$
\begin{align*}
G(c) & =\left[-24 \beta^{2}(\alpha p+\beta)^{3}+4\left(1-\alpha^{2}\right) p^{2}(\alpha p+2 \beta)^{2}(\alpha p+3 \beta)\right] c^{4} \\
& -48(\alpha p+\beta)^{3}\left(\alpha^{2} p^{2}+4 \alpha p \beta\right) c^{2}+192(\alpha p+\beta)^{4}(\alpha p+3 \beta) . \tag{22}
\end{align*}
$$

$$
\begin{aligned}
& G^{\prime}(c)=-4 c\left[\left\{24 \beta^{2}(\alpha p+\beta)^{3}-4\left(1-\alpha^{2}\right) p^{2}(\alpha p+2 \beta)^{2}(\alpha p+3 \beta)\right\} c^{2}\right. \\
&+\left.24(\alpha p+\beta)^{3}\left(\alpha^{2} p^{2}+4 \alpha p \beta\right)\right]
\end{aligned}
$$

We observe that $G^{\prime}(c) \leq 0$ for all values of $0<c \leq 2$ with $p \in \mathbb{N}$ and $0<\alpha, \beta \leq 1$ and $G(c)$ has real critical point at $c=0$. Hence, the maximum value of $G(c)$ occurs at $c=0$. Thus, the upper bound of $F(c, \mu)$ corresponds to $\mu=1$ and $c=0$. From (22), we obtain

$$
\begin{equation*}
\max _{0 \leq c \leq 2} G(c)=192(\alpha p+\beta)^{4}(\alpha p+3 \beta) \tag{23}
\end{equation*}
$$

From the relations (18) and (23), it follows that

$$
\begin{equation*}
\left|A_{1} c_{1} c_{3}+A_{2} c_{2}^{2}+A_{3} c_{1}^{4}\right| \leq 48(\alpha p+\beta)^{4}(\alpha p+3 \beta) \tag{24}
\end{equation*}
$$

From the expressions (11) and (24), upon simplification, we obtain

$$
\left|a_{p+1} a_{p+3}-a_{p+2}^{2}\right| \leq \frac{4 p^{2}}{(\alpha p+2 \beta)^{2}}
$$

By taking $c_{1}=c=0$ and selecting $x=-1$ in (6) and (7), we obtain $c_{2}=-2$ and $c_{3}=0$. Using these values in (11) we observe that equality is attained which shows that our result is sharp.
This completes the proof of Theorem 1.

4. Concluding Remark and Future Enhancement

In this paper, we have obtained the sharp upper bound for the functional $\mid a_{p+1} a_{p+3}-$ $a_{p+2}^{2} \mid$ for the functions $f \in \mathcal{A}_{p}$ belonging to the class $\mathcal{M}_{p}(\alpha, \beta)$. We conclude this paper by remarking that the above theorem include several previously established results for particular values of the parameters α, β and p. Taking $\alpha=1$ in Theorem 1 we obtain the result due to Krishna and Ramreddy (see [16]), while for $\alpha=\beta=1$, we get the result of Krishna et al. (see [17]). Further, choosing $\alpha=\beta=p=1$, we obtain the result of Janteng et al. [11]. For letting $\alpha=0, \beta=p=1$ we get $\left|a_{2} a_{4}-a_{3}^{2}\right| \leq 1$. This inequalities is sharp and it coincide with the result of Janteng et al.[12](also see [14, 15]). Now we are working on to find the upper bound for the class $\mathcal{M}_{p}(\alpha, \beta)$ using third Hankel determinant.

Acknowledgement: The author thanks the referees for their valuable comments to improve the paper in the present form.

References

[1] A. Abubaker and M. Darus, Hankel determinant for a class of analytic functions involving a generalized linear differential operator, Int. J. Pure Appl. Math., 69(4) (2011), 429-435.
[2] O. AL-Refai and M. Darus, Second Hankel determinant for a class of analytic functions defined by a fractional operator, European J. Scientific Research, 28(2)(2009), 234-241.
[3] D. Bansal, Upper bound of second Hankel determinant for a new class of analytic functions, Appl. Math. Lett., 26 (2013), 103-107 .
[4] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, vol. 259, Springer-Verlag, New York, (1983).
[5] R. Ehrenborg, The Hankel determinant of exponential polynomials, Amer. Math. Monthly, 107 (6)(2000), 557-560.
[6] M. Fekete and G. Szegö, Eine bemerkung über ungerade schlichte funktionen, J. London Math. Soc. 8 (1933), 85-89.
[7] W. K. Hayman, On the second Hankel determinant of mean univalent functions, Proc. London Math. Soc., 3 (1968), 77-94.
[8] T. Hayami and S. Owa, Coefficient estimates for analytic functions concerned with Hankel determinant, Int. J. Theory Appl., 13 (4) (2010), 367-384.
[9] T. Hayami and S. Owa, Generalized Hankel determinant for certain classes, Int. J. Math. Anal., 4 (52)(2010), 2573-2585.
[10] R. W. Ibrahim, Upper bound of partial sums determined by matrix, Turkish J. Anal. Number Theory, 3(6) (2015) 149-153.
[11] A. Janteng, S. A. Halim and M. Darus, Coefficient inequality for a function whose derivative has positive real part, J. Inequal. Pure Appl. Math., 7 (2)(2006), 1-5.
[12] A. Janteng, S. A. Halim and M. Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal., 1(13) (2007), 619-625.
[13] A. Janteng, S. A. Halim and M. Darus, Estimate on the second Hankel functional for functions whsoe derivative has a positive real part, J. Quality Measurement Anal., 4 (2008), 189-195.
[14] D. V. Krishna and T. Ramreddy, Hankel determinant for p-valent starlike and convex functions of order α, Novi Sad J. Math., 42(2) (2012), 89-102.
[15] D. V. Krishna and T. Ramreddy, Hankel determinant for starlike and convex functions of order alpha, Tbilisi Math. J., 5(1) (2012), 65-76.
[16] D. V. Krishna and T. Ramreddy, Coefficient inequality for certain subclass of p-valent functions, Palestine J. Math., 4(1)(2015), 223-228.
[17] D. V. Krishna and B. Venkateswarlu and T. Ramreddy, Third Hankel determinant for certain subclass of p-valent functions, Complex Var. Elliptic Equations (2015), http:/dx.doi.org/10.1080/17476933.2015.1012162.
[18] R. J. Libera and E. J. Zlotkiewicz, Early coefficient of the inverse of a regular convex function, Proc. Amer. Math. Soc., 85(2)(1982), 225-230.
[19] R. J. Libera and E. J. Zlotkiewicz, Coefficients bounds for the inverse of a function with derivative in \mathcal{P}, Proc. Amer. Math. Soc., 87(2)(1983), 251-257.
[20] T. H. Mac Gregor, Functions whose derivative have a positive real part, Trans. Amer. Math. Soc., 104(3) (1962), 532-537.
[21] A. K. Mishra and P. Gochhayat, Second Hankel determinant for a class of analytic functions defined by fractional derivative, Int. J. Math. Math. Sci., 2008, Art. ID 153280(2008).
[22] G. Murugusundaramoorthy and N. Magesh, Coefficient inequalities for certain classes of analytic functions associated with Hankel determinant, Bull. Math. Anal. Appl., 1(3) (2009), 85-89.
[23] J. W. Noonan and D. K. Thomas, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc., 223(2) (1976), 337-346.
[24] K. I. Noor, Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roum. Math. Pures Et Appl., 28(8) (1983), 731-739.
[25] S. Verma, S. Gupta and S. Singh, Bounds of Hankel determinant for a class of univalent function, Int. J. Math. Soc.(2012), Art. ID:147842, 1-6.

Trailokya Panigrahi
Department of Mathematics, School of Applied Sciences, KiIT University, Bhubaneswar751024, Odisha, India

E-mail address: trailokyap6@gmail.com, t_panispce@rediffmail.com

[^0]: 2010 Mathematics Subject Classification. 30C45.
 Key words and phrases. p-valent function, p-valent starlike function, Upper bound, Hankel determinant, Toeplitz determinant.

 Submitted March 3, 2016.

