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HANKEL DETERMINANT FOR CERTAIN SUBCLASS OF
p-VALENT FUNCTION

TRAILOKYA PANIGRAHI

ABSTRACT. The object of this paper is to use Toeplitz determinant to obtain
a sharp upper bound of the second Hankel determinant |aptiap43 — a129+2|
for the p-valent functions belonging to class My (a,8). Our main theorem
unify and extend several results established earlier for special values of the
parameters p, @ and .

1. INTRODUCTION AND MOTIVATION

Let A, (p is a fixed integer > 1) denote the class of all analytic functions f(z)
of the form:

f =2+ S anen M
n=p+1

defined on the open unit disk:

U:={ze€C:|z| <1}
and let A; = A. Let S be the subclass of A consisting of univalent functions in
U. A function f(z) € A, is said to be p-valent starlike function (@ =+ 0), if it
satisfies the condition

e

pf(z)}>o (z € U). (2)

The set of all these functions is denoted by S;. It is observed that for p = 1, S}
reduces to S*.

The gth Hankel determinant for ¢ > 1 and n > 1 is stated by Noonan and Thomas
(see [23]) as

Qp Qp41 " Gp4q—1
Ap41 Ap42 - an+q
Hy(n) = 3)
Up4q—1 QAnitq " (p4-2q—2
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This determinant has been considered by several authors in the literature. For
example, Noor [24] determined the rate of growth of H,(n) as n — oo for the
functions f given by (1) with bounded boundary rotation. Ehrenborg [5] studied
the Hankel determinant of exponential polynomials. It is well-known [4] that for
f € S and given by (1), the sharp inequality |az — a3| < 1 holds. This corresponds
to the Hankel determinant with ¢ = 2 and n = 1. Fekete-Szego (see [6]) then further
generalized the estimate |az — pa3| with u real and f € S. For a given family F of
the functions in A, the sharp upper bound for the nonlinear functional |azas — a3
is popularly known as the second Hankel determinant. Second Hankel determinant
for various subclasses of analytic functions were obtained by different researchers
including Janteng et al. [11], Mishra and Gochhayat [21] and Murugusundaramoor-
thy and Magesh [22]. For some more recent works see [1, 2, 3, 7, 8, 9, 10, 13, 25].

For our discussion in this paper, we consider the Hankel determinant in the case
of g =2 and n =p+ 1, denoted by Ha(p + 1) given by

ap4+1  Ap42

Hy(p+1) = Upra Gpis

_ 2
= Op410p43 = Uy a.

Motivated by the above mentioned results obtained by different researchers in
this direction, in this paper, we obtain a sharp upper bound to the functional
lapt1apts — ag 1o| for the function f belonging to certain subclass of p-valent func-
tions, defined as follows:

Definition 1. A function f(z) € A, is said to be in the class M, (e, §) if it
satisfies the condition

8?{(1—5) (JZ?):&(M(Z)) (f(z))a} >0 (0<a, B<L;zel). (4)

pf(2) zP

Note that for o = 1, the class M, (1, ) reduces to the class I,(8) studied by
Krishna and Ramreddy [16]; while for o = 0 and 8 = 1, the class M,,(0, 1) reduces
to the well-known class of p-valent starlike function S, studied by Krishna and
Ramreddy [14]. Furthermore, for o« = § = 1, the class M,(1,1) reduces to RT,
studied by Krishna et al. [17]; while for &« = 5 = p = 1,the class M(1,1) reduces
to the class RT, the subclass of S consisting of functions whose derivative has a
positive real part studied by Mac Gregor [20] was obtained by Janteng et al. [11].

2. PRELIMINARY LEMMAS

Let P denote the class of functions of the form
p(Z):1+012+C222+...:1+chzn (5)
n=1

which are regular in U and satisfy R(p(z)) > 0 for any z € U. Here, p(z) is called
Caratheodory function (see [4].
To prove our main result, we need the following lemmas:

Lemma 1.(see [4]) If p € P, then |cx| < 2 for each k € N.

Lemma 2.(see [18, 19]) Let p € P. Then
29 =3+ a(d—cd) (6)
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and
des ={S +2c,(4 -z —c1(4—A)x? +2(4 — (A — |z} 2} (7)

for some values of z, z such that |z| <1 and |z|<1.

3. MAIN RESULT

We state and prove the following:

Theorem 1. If f(z) € My(a, ) (0 <, B < 1), then
4p?
2
|lap+1ap43 — ppal < (ap+ 20

The estimate is sharp.

Proof. Let f(z) given by (1) be in the class M, («, ). Then from Definition 1 there
exists an analytic function p € P in the unit disk U with p(0) = 1 and R®{p(z)} > 0

such that N N
-0 (T2 528 (1) ) ®

2P pf(z) \ 2°
Replacing f(z), f’(z) with their equivalent p-valent series expressions and the equiv-
alent expression for p(z) in series in (8), after simplification, we have

1 1
1+ E(ap + B)api1z + %(ap +28){2ap42 — (1 — a)aj, }2°

ap+ 30 (1-a)(2—-a)
+7 T
=l4ciz4cz?+e3B 1. (9)

{apts — (1 — a)apriapys + a2+1}23 +oe

2

Equating the coefficients of the like powers of z, 22, 23 respectively on both sides

of (9). we get

p
apH:iap—i—ﬁcl’
2
p p 2
a =———¢c+(1l—a)——=c,
p+2 ozp—|—2ﬁ 2 ( )2(ap+5)2 1

p? (1-a)(1-2a) 54
@) (ap + B)(ap + 25) cice + 46(ap+5)3 -pUcy.

Substituting the values of apt1, apt2 and apq3 from the relation (10) in the second
Hankel functional |a, 110,43 — a2 | for the function f € M,(a, 3), we obtain

2
c
< et )( P s+ (1—a) P c1C9

(10)

p
Gpt3 = ———c3+ (1 —
p+3 353 (

lap+1ap43 — a129+2| =

ap+ ) \ap+33 (ap + B)(ap +20)
(1—0a)(1-20) 44 P )
+ 6(ap + B)3 pcl)_{ozp+2,802+(1_a)Q(ap-i-ﬁ)ch} '

Upon simplification, we obtain
2

(ap410p43 = o] = 12(ap + 5)4(app+ 28)(ap + 38) [12(ap+ )*(ap +26) ercs

—12(ap + B)*(ap +3B)c3 — (1 — o) (ap + 28)*(ap + 38)p°ci| .
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The above expression is equivalent to

p2

— 2 =
|ap+1ap+3 a/p+2| 12(ap+ﬂ)4(ap+25)2(04p+35)

|A10103 +AQC§ —|—A30411|, (11)

where

Ay = 12(ap + B)*(ap + 28)?,
Ay = —12(ap + B)(ap + 38),
As = —(1—a®)p*(ap +2B)*(ap + 3B). (12)

Substituting the values of ¢y and ¢z from (6) and (7) respectively from Lemma 2
in the right hand side of (11), we get

1
|Ajcics + Agca + Asci| = |Arep x Z{ci’ +2c1(4— Az —c1(4—cA)x? +2(4 — A)(1 — |z]?) 2}
1
+As X Z{c? +2(4 — )} + Ascdl.

Using the fact that |z| < 1 and |za + yb| < |x||a| + |y||b], where z, y, a and b are
real numbers, after simplifying, we obtain
4|Ajcres + Aacs + Azct| < (A1 + Az + 443)ct + 24161 (4 — )
F2(A1 + Ag)ci(4 — )| = {(A1 + A9)ef + 241¢1 — 4Ax}(4 — )z’ (13)

Using the values of A;, Az and Az from (12), upon simplification, we get

Ap+ Ay +443 = 128%(ap+ B)° — 4(1 — o®)p*(ap + 2B)*(ap + 3),
A+ Ay = 128%(ap + B)°, (14)
and
(A1 + A2)C§ +2A1¢c1 — 44, = 1252(043 + ﬁ)g {C% +2 (ap ;226)2 c + 4(ap + 5)B(;Jép +30)]
9 -
— 128%(ap + B)° {Cl L (ap ;2%)2} B { (ap ;4%)4 B 4(ap+6;gap+ 35)}
o5
2
= 128%(ap + B)* {Cl C 2225)2 } B {\/a‘*p“ +8a3p3p + 20a;f252 + 16aps? + 454 }
128%(ap+ B e+ { (ap ;22/3)2 . \/ alpt + 8ap?f + 20a;f262 + 16ap5? + 43" }
e+ { (ap ;22,8)2 3 \/a4p4 + 8a3p38 + 20&;52,32 + 16apB3 + 4584 }] (1)

By Lemma 1, ¢; € [0,2]. Using the result (¢1 +a)(c1 +b) > (c1 — a)(e1 — b), where
a, b >0 in the right hand side of (15), we get

(A14+A2)E+2A ¢, —4A5 > 126% (ap+B)3c2—24(ap+28)* (ap+B)3c1+48(ap+5)* (ap+31).
(16)
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Making use of (14) and (16) in (13) yield
4| Areres + Agcs + Agcy| < [128%(ap + B8)°ct — 4(1 — o®)p*(ap + 26)* (ap + 38)c]
+24(ap + )’ (ap +26)%c1(4 — cf) + 2457 (ap + B)’ci (4 — ¢} ||
—{128%(ap + B)°ci — 24(ap + B)°(ap + 28)*cx
+48(ap + B)*(ap +38)} (4 — c])|2[?]. (17)
Choosing ¢; = ¢ € [0, 2], applying triangle inequality and replacing |z| by u in the
right hand side of (17), assuming that 125%(ap + 8)3c? — 24(ap + B)3(ap +28)?c +
48(ap + B)*(ap + 38) > 0, we get
4lAjcies + Agcd 4+ Asct] < 128%(ap + B)3c* +4(1 — o®)p?(ap + 28)* (ap + 36)c?
+24(ap + B)%(ap + 2B8)%c(4 — ¢*) + 24B%(ap + B)3c2 (4 — A
+{128%(ap + B)°¢® — 24(ap + B)*(ap + 2B)*c + 48(ap + B)*(ap + 3B) } (4 — *)?
=F(c,p)(say) (0<p<1, 0<c<2),(18)
where
Fe,p) =126%(ap + B)°c* +4(1 — a®)p* (ap + 25)* (ap + 36)c*
+24(ap + B)3(ap + 28)%c(4 — ) + 248%(ap + )32 (4 — A)p
+{128%(ap + B)*c* — 24(ap + B)*(ap + 28)%c
+48(ap + B)(ap +3B) } (4 — Z)p®. (19)
Now we assume that the upper bound for (18) occurs at an interior point of the set

{(u,¢) : p€10,1] and ¢ € [0, 2]}.
Differentiating F'(c, p) in (19) partially with respect to i, we get

OF
g = A1268%(ap + 5)°c + {126%(ap + )"
—24(ap + B)* (ap + 28)*c + 48(ap + B)* (ap + 38) (4 — ). (20)
For 0 < pu < 1 and for fixed c with 0 < ¢ <2, 0 <, 8 <1 and p € N, from (20)

we observe that ?TI; > 0. Consequently, F'(c, 1) is an increasing function of p and
hence it cannot have a maximum value at any point in the interior of the closed
square [0,2] x [0,1]. Also, for a fixed ¢ € [0, 2], we have

Jnax, F(e,p) = F(c, 1) = G(c)(say). (21)

Therefore, replacing p by 1 in (19), upon simplification gives
G(c) = [-24%(ap + B)° + 4(1 — a®)p*(ap + 26)* (ap + 35)]c*
—48(ap + 8)*(?p” + dapf)c? + 192(ap + B)* (ap + 35). (22)

G'(c) = —4c[{248%(ap + B)° — 4(1 — &®)p*(ap + 28)* (ap + 38) }
+24(ap + B)*(a®p” + 4apB)].
We observe that G'(¢) < 0 for all values of 0 < ¢ <2withpeNand 0 < a,8<1
and G(c) has real critical point at ¢ = 0 . Hence, the maximum value of G(c¢) occurs

at ¢ = 0. Thus, the upper bound of F(c, ) corresponds to =1 and ¢ = 0. From
(22), we obtain

e G(c) = 192(ap + B)*(ap + 38). (23)
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From the relations (18) and (23), it follows that
|Arcres + Asca + Asct| < 48(ap + B)* (ap + 35). (24)

From the expressions (11) and (24), upon simplification, we obtain

apsripss — gl < — L
R G

By taking ¢; = ¢ = 0 and selecting £ = —1 in (6) and (7), we obtain ¢o = —2 and
c3 = 0. Using these values in (11) we observe that equality is attained which shows
that our result is sharp.

This completes the proof of Theorem 1. O

4. CONCLUDING REMARK AND FUTURE ENHANCEMENT

In this paper, we have obtained the sharp upper bound for the functional |a,416,y+3—
a2 .| for the functions f € A, belonging to the class My («, 3). We conclude this
paper by remarking that the above theorem include several previously established
results for particular values of the parameters «, 8 and p. Taking o = 1 in Theorem
1 we obtain the result due to Krishna and Ramreddy (see [16]), while for o« = 8 =1,
we get the result of Krishna et al. (see [17]). Further, choosing o = 8 = p = 1,
we obtain the result of Janteng et al. [11]. For letting o = 0,8 = p = 1 we get
lagay — a3| < 1. This inequalities is sharp and it coincide with the result of Janteng
et al.[12]( also see [14, 15]). Now we are working on to find the upper bound for
the class M, (a, B) using third Hankel determinant.

Acknowledgement: The author thanks the referees for their valuable com-
ments to improve the paper in the present form.
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