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HANKEL DETERMINANT FOR CERTAIN SUBCLASS OF

p-VALENT FUNCTION

TRAILOKYA PANIGRAHI

Abstract. The object of this paper is to use Toeplitz determinant to obtain

a sharp upper bound of the second Hankel determinant |ap+1ap+3 − a2p+2|
for the p-valent functions belonging to class Mp(α, β). Our main theorem
unify and extend several results established earlier for special values of the
parameters p, α and β.

1. Introduction and Motivation

Let Ap (p is a fixed integer ≥ 1) denote the class of all analytic functions f(z)
of the form:

f(z) = zp +

∞∑
n=p+1

anz
n (1)

defined on the open unit disk:

U := {z ∈ C : |z| < 1}
and let A1 = A. Let S be the subclass of A consisting of univalent functions in

U. A function f(z) ∈ Ap is said to be p-valent starlike function
(

f(z)
z ̸= 0

)
, if it

satisfies the condition

ℜ
{
zf ′(z)

pf(z)

}
> 0 (z ∈ U). (2)

The set of all these functions is denoted by S∗
p . It is observed that for p = 1, S∗

p

reduces to S∗.
The qth Hankel determinant for q ≥ 1 and n ≥ 1 is stated by Noonan and Thomas
(see [23]) as

Hq(n) =

∣∣∣∣∣∣∣∣∣∣∣∣

an an+1 · · · an+q−1

an+1 an+2 · · · an+q

. . . .

. . . .

. . . .
an+q−1 an+q · · · an+2q−2

∣∣∣∣∣∣∣∣∣∣∣∣
. (3)
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This determinant has been considered by several authors in the literature. For
example, Noor [24] determined the rate of growth of Hq(n) as n −→ ∞ for the
functions f given by (1) with bounded boundary rotation. Ehrenborg [5] studied
the Hankel determinant of exponential polynomials. It is well-known [4] that for
f ∈ S and given by (1), the sharp inequality |a3 − a22| ≤ 1 holds. This corresponds
to the Hankel determinant with q = 2 and n = 1. Fekete-Szegö (see [6]) then further
generalized the estimate |a3 − µa22| with µ real and f ∈ S. For a given family F of
the functions in A, the sharp upper bound for the nonlinear functional |a2a4 − a23|
is popularly known as the second Hankel determinant. Second Hankel determinant
for various subclasses of analytic functions were obtained by different researchers
including Janteng et al. [11], Mishra and Gochhayat [21] and Murugusundaramoor-
thy and Magesh [22]. For some more recent works see [1, 2, 3, 7, 8, 9, 10, 13, 25].

For our discussion in this paper, we consider the Hankel determinant in the case
of q = 2 and n = p+ 1, denoted by H2(p+ 1) given by

H2(p+ 1) =

∣∣∣∣ ap+1 ap+2

ap+2 ap+3

∣∣∣∣ = ap+1ap+3 − a2p+2.

Motivated by the above mentioned results obtained by different researchers in
this direction, in this paper, we obtain a sharp upper bound to the functional
|ap+1ap+3 − a2p+2| for the function f belonging to certain subclass of p-valent func-
tions, defined as follows:

Definition 1. A function f(z) ∈ Ap is said to be in the class Mp(α, β) if it
satisfies the condition

ℜ
[
(1− β)

(
f(z)

zp

)α

+ β

(
zf ′(z)

pf(z)

)(
f(z)

zp

)α]
> 0 (0 ≤ α, β ≤ 1; z ∈ U). (4)

Note that for α = 1, the class Mp(1, β) reduces to the class Ip(β) studied by
Krishna and Ramreddy [16]; while for α = 0 and β = 1, the class Mp(0, 1) reduces
to the well-known class of p-valent starlike function S∗

p studied by Krishna and
Ramreddy [14]. Furthermore, for α = β = 1, the class Mp(1, 1) reduces to RTp

studied by Krishna et al. [17]; while for α = β = p = 1,the class M1(1, 1) reduces
to the class RT , the subclass of S consisting of functions whose derivative has a
positive real part studied by Mac Gregor [20] was obtained by Janteng et al. [11].

2. Preliminary Lemmas

Let P denote the class of functions of the form

p(z) = 1 + c1z + c2z
2 + · · · = 1 +

∞∑
n=1

cnz
n (5)

which are regular in U and satisfy ℜ(p(z)) > 0 for any z ∈ U. Here, p(z) is called
Caratheòdory function (see [4].
To prove our main result, we need the following lemmas:

Lemma 1.(see [4]) If p ∈ P, then |ck| ≤ 2 for each k ∈ N.

Lemma 2.(see [18, 19]) Let p ∈ P. Then

2c2 = c21 + x(4− c21) (6)
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and

4c3 = {c31 + 2c1(4− c21)x− c1(4− c21)x
2 + 2(4− c21)(1− |x|2)z} (7)

for some values of x, z such that |x| ≤ 1 and |z| ≤ 1 .

3. Main Result

We state and prove the following:

Theorem 1. If f(z) ∈ Mp(α, β) (0 < α, β ≤ 1), then

|ap+1ap+3 − a2p+2| ≤
4p2

(αp+ 2β)2
.

The estimate is sharp.

Proof. Let f(z) given by (1) be in the class Mp(α, β). Then from Definition 1 there
exists an analytic function p ∈ P in the unit disk U with p(0) = 1 and ℜ{p(z)} > 0
such that

(1− β)

(
f(z)

zp

)α

+ β
zf ′(z)

pf(z)

(
f(z)

zp

)α

= p(z). (8)

Replacing f(z), f ′(z) with their equivalent p-valent series expressions and the equiv-
alent expression for p(z) in series in (8), after simplification, we have

1 +
1

p
(αp+ β)ap+1z +

1

2p
(αp+ 2β){2ap+2 − (1− α)a2p+1}z2

+
αp+ 3β

p
{ap+3 − (1− α)ap+1ap+2 +

(1− α)(2− α)

6
a3p+1}z3 + · · ·

= 1 + c1z + c2z
2 + c3z

3 + · · · . (9)

Equating the coefficients of the like powers of z, z2, z3 respectively on both sides
of (9). we get

ap+1 =
p

αp+ β
c1,

ap+2 =
p

αp+ 2β
c2 + (1− α)

p2

2(αp+ β)2
c21,

ap+3 =
p

αp+ 3β
c3 + (1− α)

p2

(αp+ β)(αp+ 2β)
c1c2 +

(1− α)(1− 2α)

6(αp+ β)3
p3c31. (10)

Substituting the values of ap+1, ap+2 and ap+3 from the relation (10) in the second
Hankel functional |ap+1ap+3 − a2p+2| for the function f ∈ Mp(α, β), we obtain

|ap+1ap+3 − a2p+2| =
∣∣∣∣( pc1

αp+ β

)(
p

αp+ 3β
c3 + (1− α)

p2

(αp+ β)(αp+ 2β)
c1c2

+
(1− α)(1− 2α)

6(αp+ β)3
p3c31

)
−
{

p

αp+ 2β
c2 + (1− α)

p2

2(αp+ β)2
c21

}2
∣∣∣∣∣ .

Upon simplification, we obtain

|ap+1ap+3 − a2p+2| =
p2

12(αp+ β)4(αp+ 2β)2(αp+ 3β)

∣∣12(αp+ β)3(αp+ 2β)2c1c3

−12(αp+ β)4(αp+ 3β)c22 − (1− α2)(αp+ 2β)2(αp+ 3β)p2c41
∣∣ .
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The above expression is equivalent to

|ap+1ap+3−a2p+2| =
p2

12(αp+ β)4(αp+ 2β)2(αp+ 3β)
|A1c1c3+A2c

2
2+A3c

4
1|, (11)

where

A1 = 12(αp+ β)3(αp+ 2β)2,

A2 = −12(αp+ β)4(αp+ 3β),

A3 = −(1− α2)p2(αp+ 2β)2(αp+ 3β). (12)

Substituting the values of c2 and c3 from (6) and (7) respectively from Lemma 2
in the right hand side of (11), we get

|A1c1c3 +A2c
2
2 +A3c

4
1| = |A1c1 ×

1

4
{c31 + 2c1(4− c21)x− c1(4− c21)x

2 + 2(4− c21)(1− |x|2)z}

+A2 ×
1

4
{c21 + x(4− c21)}2 +A3c

4
1|.

Using the fact that |z| < 1 and |xa + yb| ≤ |x||a| + |y||b|, where x, y, a and b are
real numbers, after simplifying, we obtain

4|A1c1c3 +A2c
2
2 +A3c

4
1| ≤ |(A1 +A2 + 4A3)c

4
1 + 2A1c1(4− c21)

+2(A1 +A2)c
2
1(4− c21)|x| − {(A1 +A2)c

2
1 + 2A1c1 − 4A2}(4− c21)|x|2|. (13)

Using the values of A1, A2 and A3 from (12), upon simplification, we get

A1 +A2 + 4A3 = 12β2(αp+ β)3 − 4(1− α2)p2(αp+ 2β)2(αp+ 3β),

A1 +A2 = 12β2(αp+ β)3, (14)

and

(A1 +A2)c
2
1 + 2A1c1 − 4A2 = 12β2(αp+ β)3

[
c21 + 2

(αp+ 2β)2

β2
c1 + 4

(αp+ β)(αp+ 3β)

β2

]
= 12β2(αp+ β)3

[{
c1 +

(αp+ 2β)2

β2

}2

−
{
(αp+ 2β)4

β4
− 4(αp+ β)(αp+ 3β)

β2

}]

= 12β2(αp+ β)3

{c1 + (αp+ 2β)2

β2

}2

−

{√
α4p4 + 8α3p3β + 20α2p2β2 + 16αpβ3 + 4β4

β4

}2


= 12β2(αp+ β)3

[
c1 +

{
(αp+ 2β)2

β2
+

√
α4p4 + 8α3p3β + 20α2p2β2 + 16αpβ3 + 4β4

β4

}]

×

[
c1 +

{
(αp+ 2β)2

β2
−

√
α4p4 + 8α3p3β + 20α2p2β2 + 16αpβ3 + 4β4

β4

}]
. (15)

By Lemma 1, c1 ∈ [0, 2]. Using the result (c1 + a)(c1 + b) ≥ (c1 − a)(c1 − b), where
a, b ≥ 0 in the right hand side of (15), we get

(A1+A2)c
2
1+2A1c1−4A2 ≥ 12β2(αp+β)3c21−24(αp+2β)2(αp+β)3c1+48(αp+β)4(αp+3β).

(16)
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Making use of (14) and (16) in (13) yield

4|A1c1c3 +A2c
2
2 +A3c

4
1| ≤ |12β2(αp+ β)3c41 − 4(1− α2)p2(αp+ 2β)2(αp+ 3β)c41

+24(αp+ β)3(αp+ 2β)2c1(4− c21) + 24β2(αp+ β)3c21(4− c21)|x|
−
{
12β2(αp+ β)3c21 − 24(αp+ β)3(αp+ 2β)2c1

+48(αp+ β)4(αp+ 3β)
}
(4− c21)|x|2|. (17)

Choosing c1 = c ∈ [0, 2], applying triangle inequality and replacing |x| by µ in the
right hand side of (17), assuming that 12β2(αp+β)3c2 − 24(αp+β)3(αp+2β)2c+
48(αp+ β)4(αp+ 3β) ≥ 0, we get

4|A1c1c3 +A2c
2
2 +A3c

4
1| ≤ 12β2(αp+ β)3c4 + 4(1− α2)p2(αp+ 2β)2(αp+ 3β)c4

+24(αp+ β)3(αp+ 2β)2c(4− c2) + 24β2(αp+ β)3c2(4− c2)µ

+
{
12β2(αp+ β)3c2 − 24(αp+ β)3(αp+ 2β)2c+ 48(αp+ β)4(αp+ 3β)

}
(4− c2)µ2

= F (c, µ)(say) (0 ≤ µ ≤ 1, 0 ≤ c ≤ 2), (18)

where

F (c, µ) = 12β2(αp+ β)3c4 + 4(1− α2)p2(αp+ 2β)2(αp+ 3β)c4

+24(αp+ β)3(αp+ 2β)2c(4− c2) + 24β2(αp+ β)3c2(4− c2)µ

+
{
12β2(αp+ β)3c2 − 24(αp+ β)3(αp+ 2β)2c

+48(αp+ β)4(αp+ 3β)
}
(4− c2)µ2. (19)

Now we assume that the upper bound for (18) occurs at an interior point of the set
{(µ, c) : µ ∈ [0, 1] and c ∈ [0, 2]}.
Differentiating F (c, µ) in (19) partially with respect to µ, we get

∂F

∂µ
= 2[12β2(αp+ β)3c2 + {12β2(αp+ β)3c2

−24(αp+ β)3(αp+ 2β)2c+ 48(αp+ β)4(αp+ 3β)}µ](4− c2). (20)

For 0 < µ < 1 and for fixed c with 0 < c < 2, 0 < α, β ≤ 1 and p ∈ N, from (20)
we observe that ∂F

∂µ > 0. Consequently, F (c, µ) is an increasing function of µ and

hence it cannot have a maximum value at any point in the interior of the closed
square [0, 2]× [0, 1]. Also, for a fixed c ∈ [0, 2], we have

max
0≤µ≤1

F (c, µ) = F (c, 1) = G(c)(say). (21)

Therefore, replacing µ by 1 in (19), upon simplification gives

G(c) = [−24β2(αp+ β)3 + 4(1− α2)p2(αp+ 2β)2(αp+ 3β)]c4

−48(αp+ β)3(α2p2 + 4αpβ)c2 + 192(αp+ β)4(αp+ 3β). (22)

G′(c) = −4c[
{
24β2(αp+ β)3 − 4(1− α2)p2(αp+ 2β)2(αp+ 3β)

}
c2

+24(αp+ β)3(α2p2 + 4αpβ)].

We observe that G′(c) ≤ 0 for all values of 0 < c ≤ 2 with p ∈ N and 0 < α, β ≤ 1
and G(c) has real critical point at c = 0 . Hence, the maximum value of G(c) occurs
at c = 0. Thus, the upper bound of F (c, µ) corresponds to µ = 1 and c = 0. From
(22), we obtain

max
0≤c≤2

G(c) = 192(αp+ β)4(αp+ 3β). (23)
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From the relations (18) and (23), it follows that

|A1c1c3 +A2c
2
2 +A3c

4
1| ≤ 48(αp+ β)4(αp+ 3β). (24)

From the expressions (11) and (24), upon simplification, we obtain

|ap+1ap+3 − a2p+2| ≤
4p2

(αp+ 2β)2
.

By taking c1 = c = 0 and selecting x = −1 in (6) and (7), we obtain c2 = −2 and
c3 = 0. Using these values in (11) we observe that equality is attained which shows
that our result is sharp.
This completes the proof of Theorem 1. �

4. Concluding Remark and Future Enhancement

In this paper, we have obtained the sharp upper bound for the functional |ap+1ap+3−
a2p+2| for the functions f ∈ Ap belonging to the class Mp(α, β). We conclude this
paper by remarking that the above theorem include several previously established
results for particular values of the parameters α, β and p. Taking α = 1 in Theorem
1 we obtain the result due to Krishna and Ramreddy (see [16]), while for α = β = 1,
we get the result of Krishna et al. (see [17]). Further, choosing α = β = p = 1,
we obtain the result of Janteng et al. [11]. For letting α = 0, β = p = 1 we get
|a2a4−a23| ≤ 1. This inequalities is sharp and it coincide with the result of Janteng
et al.[12]( also see [14, 15]). Now we are working on to find the upper bound for
the class Mp(α, β) using third Hankel determinant.

Acknowledgement: The author thanks the referees for their valuable com-
ments to improve the paper in the present form.
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