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ALGEBRA OF MULTISPLIT NUMBERS

FARID MESSELMI

Abstract. The purpose of this paper is to contribute to the development of
a general theory of multisplit numbers. We start by introducing the notion
of multisplit numbers and their algebraic operations. In addition, we consider
the concept of matrix representation of multisplit numbers and we prove many
properties basing on the theory of circulant matrices. Moreover, we de�ne the
generalized hyperbolic functions.

1. Introduction

The concept of multicomplex numbers has been introduced by many mathemati-
cians and Physicists. The starting point is the introduction of a generator i; such
that in = �1 and create the space of multicomplex numbers of order n; MCn: In
keeping with the case n = 2 of usual complex numbers and their trigonometric
functions, an associated extended trigonometry follows. It is characterized by spe-
ci�c �angular� functions dubbed multisine (mus): A collection of useful relations
exists between the mus-functions: additions, derivatives, etc, see for more details
about multicomplex numbers the references [1, 6, 7, 8, 15, 18].
More recently, the theory becomes one of the important impulses for developing

some new concept of quantum mechanics and cosmology.
Let us mention that the generalisation of dual numbers and their functions have

been already studied in the reference [13]. The idea was to assume the existence
of an element satisfying "n = 0: Several results concerning the algebra of mul-
tidual numbers have been obtained and the concept of hyperholomorphicity was
generalized for their functions.
The purpose of this paper is to contribute to the development of the split (hyper-

bolic) analogous, by generalizing the notion of split numbers in higher dimensions.
The main key point is to introduce the multisplit unit number satisfying hn = 1: In
details, we begin by generalizing the notion of multisplit numbers. To this end, as in
multicomplex and multidual algebras, we give the de�nition of multisplit numbers
and some properties. In order to discover more properties of multi split numbers
we will focus on the concept of circulant matrices allowing us to give another rep-
resentation of multisplit numbers. Also, we show the relations which exist between
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complex and multisplit numbers, by establishing the di¤erent isomorphisms exist-
ing between them. In addition, we will try to answer the natural question: is there
a way to extended exponential function to the multisplit algebra, and if so, it is
possible to build a generalized Euler formula looking like that of multicomplex and
multi dual cases. As an application, we provide a generalisation of the usual hy-
perbolic functions in higher dimension and we show the link that exists with the
generalized trigonometric functions.
The outline of the paper is as follows. In Section 2 we concentrate on the

development of multisplit numbers and their algebraic properties. Section 3 is
devoted to the study of the multisplit exponential function and the generalization
of hyperbolic functions in higher dimensions was carried.
In this work, we only process with the pure mathematical theory and we have

not tried to �nd physical applications of the concepts presented here. However, we
will try to �nd future applications.

2. Multisplit Numbers

We introduce the concept of multisplit numbers, as follows.
A multisplit number z is an ordered n�tuple of real numbers (x0; x1; :::; xn�1)

associated with the real unit 1 and the powers of the multisplit unit hn�1; such
that hn�1 satis�es hnn�1 = 1 where it di¤ers from the real roots of the equation
sn = 1: A multisplit number is usually denoted in the form

z =
n�1X
i=0

xih
i
n�1: (2.1)

for which we admit that h0n�1 = 1:
We denote by MHn�1 the set of multisplit numbers given by

MHn�1 =

(
z =

n�1X
i=0

xih
i
n�1 j xi 2 R and hnn�1 = 1

)
(2.2)

Furthermore, every element z =
n�1P
i=0

xih
i
n�1 of MHn�1 can be also written

z = V (z)tHn�1; (2.3)

where V (z) is the real vector associated to the multisplit number z given by

V (z) =

2666664
x0
x1
x2
...

xn�1

3777775 ; (2.4)

and Hn�1 represents the following vector, said to be the unit multisplit vector,

Hn�1 =

2666664
1

hn�1
h2n�1
...

hn�1n�1

3777775 : (2.5)
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There are many ways to choose the multisplit unit number hn�1: As simple
example, we can take the real anti-diagonal matrix

hn�1 =

2666666664

0 1 0 : : : 0 0
0 0 1 0 : : : 0

0 0 0
. . .

. . .
...

...
...
...
. . . 1 0

0 0 0 : : : 0 1
1 0 0 : : : 0 0

3777777775
: (2.6)

We can add and multiply any two multisplit numbers by assuming that the usual
rules of arithmetic apply, as well as stipulating that hnn�1 = 1: Doing so enables us
to write down immediately the rules for addition and multiplication

n�1X
i=0

xih
i
n�1 +

n�1X
i=0

yih
i
n�1 =

n�1X
i=0

(xi + yi)h
i
n�1; (2.7)

 
n�1X
i=0

xih
i
n�1

!
:

 
n�1X
i=0

yih
i
n�1

!
=

 
x0y0 +

n�1X
i=1

xn�iyi

!
+

n�2X
i=1

0@ iX
j=1

xi�jyj +
n�1X
j=i+1

xn+i�jyj

1Ahin�1 +
0@n�1X
j=0

xn�j�1yj

1Ahn�1n�1: (2.8)

If z =
n�1P
i=0

xih
i
n�1 is a multisplit number, we will denote by real (z) the real part

of z given by

real (z) = x0; (2.9)

and x0; x1; :::; xn�1 are called the multisplit components of z:
Thus, the multisplit numbers form a commutative ring with characteristic 0:

Moreover the inherited multiplication gives the multisplit numbers the structure of
n�dimensional associative, commutative and unitary generalized Cli¤ord Algebra.
In abstract algebra terms, the algebra of multisplit numbers can be described as

the quotient of the polynomial ring R [X] by the ideal generated by the polynomial
Xn � 1; meaning that

MHn�1 � R [X] =Xn � 1: (2.10)

If n = 1; MH0 = R and if n = 2; MH1 is the Cli¤ord algebra of hyperbolic num-
bers or split numbers, see for more details regarding split numbers the references
[2, 16, 19].
It is also interesting to show that every multisplit number has another represen-

tation, using circulant matrices.
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To this aim, let us denote by Cn (R) the subset ofMn (R) constituted of circulant
matrices, it means that

Cn (R) =

8>>>>><>>>>>:
A = (aij) 2Mn (R) j A =

2666664
a1 an an�1 : : : a2
a2 a1 an : : : a3
a3 a2 a1 : : : a4
...

...
...

. . .
...

an an�1 an�2 : : : a1

3777775
where aij 2 R; 1 � i; j � ng : (2.11)

It is well known that Cn (R) is a subring ofMn (R) which forms a n�dimensional
associative, commutative and unitary Algebra, see [11].
Introducing now the map8>>>>>>><>>>>>>>:

R :MHn�1 �! Cn (R) ;

R
�
n�1P
i=0

xih
i
n�1

�
=

2666664
x0 xn�1 xn�2 : : : x1
x1 x0 xn�1 : : : x2
x2 x1 x0 : : : x3
...

...
...

. . .
...

xn�1 xn�2 xn�3 : : : x0

3777775
(2.12)

This map will be called the matrix representation of multisplit numbers. The fol-
lowing results are immediate consequences of the de�nitions of Cn (R) and MHn�1:
Theorem 1 R is an isomorphism of Algebras.
Denoting by C0n (R) the subset of Cn (R) de�ned as

C0n (R) = fA 2 Cn (R) j det (A) = 0g : (2.13)

Hence, Cn (R)� C0n (R) is a multiplicative subgroup of GL (n) :
Let us consider the subset Dn�1; said to be the null part of MHn�1; given by

Dn�1 = R�1 �C0n (R)� : (2.14)

Denoting by MH�n�1 the set MHn�1 �Dn�1: Hence, MH�n�1 is a multiplicative
group. The following result holds.
Theorem 2 There exists

�
n
2

�
+ 1 prime ideals of the ring MHn�1; denoted by

Jk; where b:c represents the �oor function, such that

Dn�1 =
bn2 c[
k=0

Jk; (2.15)

Proof. It is well known, see [11], that the determinant of the circulant matrix
R (z) can be computed by the formula

det (R (z)) =
n�1Y
k=0

 
n�1X
i=0

xi exp

�
2ik�j

n

�!
: (2.16)

where j is the usual complex imaginary unit such that j2 = �1:
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Then an element z =
n�1P
i=0

xih
i
n�1 of MHn�1 belongs to Dn�1 if and only if the

following equation holds

n�1Y
k=0

 
n�1X
i=0

xi exp

�
2ik�j

n

�!
= 0: (2.17)

If we admit at present that n is odd, then Dn�1 =
n�1S
k=0

Jk such that

J0 =

(
z =

n�1X
i=0

xih
i
n�1 2MHn�1 j

n�1X
i=0

xi = 0

)
: (2.18)

and for k = 1; :::; n� 1

Jk =

(
z =

n�1X
i=0

xih
i
n�1 2MHn�1 j

n�1X
i=0

xiRe
�
!ki
�
= 0

and
n�1X
i=0

xiRe
�
!ki
�
= 0

)
: (2.19)

whither !n = exp
�
2�
n j
�
:

Indeed, since det (R (z)) =
n�1Q
k=0

�
n�1P
i=0

xi!
ki
n

�
= 0; it follows that

 
n�1X
i=0

xi

! n�1
2Y

k=1

 
n�1X
i=0

xi!
ki
n

! 
n�1X
i=0

xi!n
ki

!
= 0; (2.20)

So,

Dn�1 =
n�1
2[

k=0

Jk: (2.21)

Suppose now that n is even, then Dn�1 =
n�1S
k=0

Jk where Jk are de�ned by

J0 =

(
z =

n�1X
i=0

xih
i
n�1 2 Hn�1 j

n�1X
i=0

xi = 0

)
: (2.22)

Jn
2
=

(
z =

n�1X
i=0

xih
i
n�1 2 Hn�1 j

n�1X
i=0

(�1)n�1 xi = 0
)
: (2.23)

and for k = 1; :::; n2 � 1;
n
2 + 1; :::; n� 1

Jk =

(
z =

n�1X
i=0

xih
i
n�1 2MHn�1 j

n�1X
i=0

Re
�
!kin
�
xk = 0

and
n�1X
i=0

Im
�
!kin
�
xk = 0

)
: (2.24)
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Moreover, since det (R (z)) =
n�1Q
k=0

�
n�1P
i=0

xkii !n

�
= 0; we �nd

 
n�1X
i=0

xi

!24 n
2�1Y

k=1; k 6=n
2

 
n�1X
i=0

xi!
ki
n

! 
n�1X
i=0

xi!n
ki

!35 n�1X
i=0

(�1)i xi

!
= 0: (2.25)

Then

Dn�1 =
n
2[

k=0

Jk: (2.26)

Thus, from (2.21) and (2.26), (2.15) follows
Our next task is to verify that the sets Jk absorb multiplication by elements of

the ringMHn�1: For this purpose, let us consider two numbers z =
n�1P
i=0

xih
i
n�1 2 Jk

and t =
n�1P
i=0

yih
i
n�1 2MHn�1:

We remark from the de�nition of Jk that z 2 Jk if and only if V (z) �Wk = 0;
where Wk is the complex vector

Wk =

2666664
1
!kn
!2kn
...

!
(n�1)k
n

3777775 : (2.27)

Let e1 be the �rst element in the canonical basis of Rn: Indeed, to prove that
zt = 0 it is enough to verify that V (zt) �Wk = 0: For this , we proceed as follows

V (zt) �Wk = (R (zt) e1) �Wk

= (R (z)R (t) e1) �Wk

=

n�1X
m=0

 
n�1X
l=0

Rml (z)Rl0 (t)

!
!mkn

=
n�1X
l=0

 
n�1X
m=0

Rml (z)!
mk
n

!
Rl0 (t)

=
n�1X
l=0

 
l�1X
m=0

xn+m�l!
mk
n +

n�1X
m=l

xm�l!
mk
n

!
yl

=
n�1X
l=0

 
n�1X

m0=n�l
xm0!

(m0�n+l)k
n +

n�l�1X
m0=0

xm0!
(m0+l)k
n

!
yl:

Since !nkn = 1; we can infer that

V (zt) �Wk =
n�1X
l=0

 
n�1X
m0=0

xm0!m
0k

n

!
yl!

lk
n :

Hence, the fact that z 2 Jk leads to

V (zt) �Wk = 0: (2.28)
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Which permits us to deduce that zt 2 Jk: Consequently, Jk; k = 0; :::; n � 1; is
an ideal of MHn�1:

Moreover, if we suppose that there exists z =
n�1P
i=0

xih
i
n�1 2

bn2 cT
k=0

Jk; then it

veri�es the system26666664
1 1 1 : : : 1
1 !n !2n : : : !n�1n

1 !2n !4n : : : !
2(n�1)
n

...
...

...
. . .

...

1 !n�1n !
2(n�1)
n : : : !

(n�1)2
n

37777775

2666664
x0
x1
x2
...

xn�1

3777775 = 0: (2.29)

(The above matrix is called the Fourier matrix). We know that his determinant
is not equal to zero. Thus, z = 0 and so

bn2 c\
k=0

Jk = f0g : (2.30)

Also, it is easy to see that

Jk * Jk0 8k; k0 = 0; :::; n� 1: (2.31)

From another side, if zt 2 Jk for k = 0; :::; n�1; we get det (R (z)) det (R (t)) = 0;
and so det (R (z)) = 0 or det (R (t)) = 0: Suppose that det (R (z)) = 0; then there
exists k0 = 0; :::; n � 1 such that z 2 Jk0 : Thus, zt 2 Jk0 ; which gives, taking into
account (2.31), k = k0:We conclude that Jk; k = 0; :::; n�1; is prime. In particular,
we can assert that MHn�1=Jk; k = 0; :::; n� 1 is an integral domain. Which allows
us to achieve the proof of the Theorem.
In addition and as consequence it is straightforward to see that the ideals Jk are

pairwise coprime. Thus, in view of the Chinese remainder Theorem, it becomes

MHn�1 �
bn2 cO
k=0

MHn�1=Jk; (2.32)

via the following map

z 7�!
�
z + J0; :::; z + Jbn2 c

�
: (2.33)

Further, the concept of conjugation can be also generalized to multisplit numbers.
This is the object of the following de�nition.
Proposition 3 For all z 2 MHn�1; the conjugate of z denoted by �z is the

multisplit number that veri�es

z�z = det (R (z)) : (2.34)

The below result shows some useful properties of the conjugate.
Proposition 4 The following statements hold
1. det (R (�z)) = det (R (z))n�1 :
2. R (�z) = adj (R (z)) ; where adj (R (z)) is the adjugate matrix of R (z) :
3. �z can be calculated via the formula

�z =
1

n

 
@ det (R (z))

@x0
+
n�1X
i=1

@ det (R (z))
@xn�i

hin�1

!
: (2.35)
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4. The mapping �
MH�n�1;�

�
�!

�
MH�n�1;�

�
;

z 7�! �z; (2.36)

is an automorphism.
The third statement is an immediate consequence of Jacobi�s formula regarding

the derivative of determinants.
The concept of conjugate enables us to construct a structure of modulus over

the multisplit algebra MHn�1; given by n�ubic form�
P :MHn�1 �! R+;

P (z) = det (R (z)) = z�z: (2.37)

There is no chance that the modulus P induces a norm over the algebraMHn�1:
However, we can, basing on the formula (2.37), build a seminorm as

kzkMHn�1 = jz�zj
1
n (2.38)

It is obvious that k:kMHn�1 satis�es the following properties8><>:
kzkMHn�1 = jdet (R (z))j

1
n 8z 2MHn�1:

kz1z2kMHn�1 = kz1kMHn�1 kz2kMHn�1 8z1; z2 2MHn�1;
kzkMHn�1 = 0 i¤ z 2 Dn�1:

(2.39)

It induces, in particular, a structure of seminormed space over the algebra
MHn�1:
Thus, we can de�ne the multisplit disk and multisplit sphere of centre t =

n�1P
i=0

yih
i
n�1 2 Hn�1 and radius r > 0; respectively, by

DMHn�1 (t; r) =

(
z =

n�1X
i=0

xih
i
n�1 2MHn�1 j kz � tkMHn�1 < r

)
; (2.40)

SMHn�1 (t; r) =

(
z =

n�1X
i=0

xih
i
n�1 2MHn j kz � tkMHn�1 = r

)
: (2.41)

SMHn�1 (t; r) can be also called the generalized hyperbolic sphere, see the references
[16, 19] for the particular case n = 2:
It is worth noting that the algebraMHn�1 endowed with the topology generated

by the seminorm k:kMHn�1 is not Hausdor¤ space. The vanishing of the seminorm
induces an identi�cation equivalence relation that converts the seminormed space
into a full-�edged normed space. This is done by de�ning

8z; t 2MHn�1; z v t i¤ 9i = 0; :::;
jn
2

k
: z � t 2 Ji: (2.42)

Denoting by k:k�MHn�1 the map de�ned in the topological space MHn�1= v by
k[z]k�MHn�1=v = kzkMHn�1 ; then de�nes k:k

�
MHn�1=v is a norm over MHn�1= v and�

MHn�1= v; k:k�MHn�1=v
�
is a well-de�ned normed space.

By virtue of the de�nition (2.38), we can a¢ rm the following.
Lemma 5
1.
hin�1MHn�1 = 1 8i = 0; :::; n� 1:
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2. kzkMHn�1 �
n�1P
i=0

jxij 8z 2MHn�1:

3. The map � �
MH�n�1;�

�
�!

�
R�+;�

�
;

z 7�! kzkMHn�1 ;
(2.43)

is a homomorphism of groups where his kernel is given by

ker
�
k:kMHn�1

�
= SMHn�1 (0; 1) : (2.44)

We introduce now the concepts of positive and negatives parts of MHn�1 as
follows.

MH+n�1 =
�
z 2MH�n�1 j det (R (z)) > 0

	
: (2.45)

MH�n�1 =
�
z 2MH�n�1 j det (R (z)) < 0

	
: (2.46)

Note that these de�nitions are di¤erent from the standard notions of positive
and negative numbers in the real case. After above notations, we will state the
following proposition, which can be easily obtained.
Proposition 6
1. MHn�1 has the decomposition

MHn�1 =MH�n�1 [ Dn�1 [MH+n�1: (2.47)

2.
�
MH+n�1;�

�
is a subgroup of

�
MH�n�1;�

�
:

3. If z1; z2 2MH�n�1 then z1z2 2MH+n�1:
4. If n is even then z 2MH+n�1 implies �z 2MH+n�1 and if n is odd z 2MH+n�1

implies �z 2MH�n�1:

Otherwise, it is clear that if z =
n�1P
i=0

xih
i
n�1 2 MHn�1; the eigenvalues of the

matrix R (z) are solution of the system

2666664
�0
�1
�2
...

�n�1

3777775 =
26666664
1 1 1 : : : 1
1 !n !2n : : : !n�1n

1 !2n !4n : : : !
2(n�1)
n

...
...

...
. . .

...

1 !n�1n !
2(n�1)
n : : : !

(n�1)2
n

37777775

2666664
x0
x1
x2
...

xn�1

3777775 : (2.48)

Thus, the Jordan canonical form of the matrix R (z) will be given by
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M (z) =

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

2666664
n�1P
i=0

xi

M1 (z) 0

0
. . .

Mn�1
2
(z)

3777775 if n is odd,

26666666664

n�1P
i=0

xi

M1 (z) 0
. . .

0 Mn
2�1 (z)

n�1P
i=0

(�1)i xi

37777777775
if n is even.

(2.49)
whither the matrixMk (z) is such that

Mk (z) =

2664
n�1P
i=0

xiRe
�
!kin
�

0

0
n�1P
i=0

xi Im
�
!kin
�
3775 : (2.50)

As an immediate consequence, we have all the necessary tools to present the
following.
Proposition 7 There are

�
n
2

�
+ 1 nontrivial elements ei 2MHn�1; satisfying

ei 2 Dn�1 and eni = ei; (2.51)

and for which if z =
n�1P
i=0

xih
i
n�1 is a multisplit number then z can be written in the

basis
n
e0; :::ebn2 c

o
8>>><>>>:

z =
n�1P
i=0

xie0 +

n�1
2P

k=1

�
n�1P
i=0

xi!
ki
n

�
ek if n is odd,

z =
n�1P
i=0

xie0 +

n
2�1P
k=1

�
n�1P
i=0

xi!
ki
n

�
ek +

n�1P
i=0

(�1)i xien2 if n is even.
(2.52)

Here
n
e0; :::ebn2 c

o
is called the diagonal null basis.

For example, if n = 3; it comes that e0 = 1
3

�
1 + h+ h2

�
and e1 = 1

3

�
2� h� h2

�
:

If n = 4; one �nds e0 = 1
4

�
1 + h+ h2 + h3

�
; e1 =

1
4

�
3� h� h2 � h3

�
and

e1 =
1
4

�
1� h+ h2 � h3

�
:

Suppose that n is odd, if we denote by z = �e0 +
n�1
2P
i=1

�iei for a real number �

and complex numbers �i; then multisplit multiplication is given by�
�; �1; :::; � n�1

2

��
�0; �01; :::; �

0
n�1
2

�
=
�
��0; �1�

0
1; :::; � n�1

2
�0n�1

2

�
: (2.53)

Thus, the algebra MHn�1 may be considered as the direct sum

MHn�1 � R� C
n�1
2 ; (ring-isomorphic). (2.54)
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In the same way if we suppose that n is even and denoting by z = �1e0 +
n
2�1P
i=1

�iei + �2en2 for a real numbers �1 and �2 and complex numbers �i; then

multisplit multiplication is given by�
�1; �1; :::; � n

2�1; �2

��
�01; �

0
1; :::; �

0
n
2�1; �

0
2

�
=
�
�1�

0
1; �1�

0
1; :::; � n

2�1�
0
n
2�1; �2�

0
2

�
:

(2.55)
It becomes clear that

MHn�1 � R� C
n
2�1 � R; (ring-isomorphic). (2.56)

It is also interest to see that in the diagonal null basis the modulus can computed
by 8>>><>>>:

P
�
�; �1; :::; � n�1

2

�
= �

n�1
2Q
i=1

k�ik
2 if n is odd,

P
�
�1; �1; :::; � n

2�1; �2

�
= �1�2

n
2�1Q
i=1

k�ik
2 if n is even.

(2.57)

Some additional properties result. We list them in the below Corollary.
Corollary 8

1. Dn�1 �

8><>:
�
f0Rg � C

n�1
2

�
[
�
R�

n
0
C
n�1
2

o�
if n is odd�

f0Rg � C
n
2�1 � R

�
[
�
R�

�
0C

n
2
�1
	
� R

�
[�

R� Cn
2�1 � f0Rg

�
if n is even

2. If n is odd then SMHn�1 (0; 1) � S where S is the hypersurface of C
n�1
2 � R

given by the equation 0@n�1
2Y
i=1

k�ik
2

1A j�j = 1: (2.58)

If n is even then SMHn�1 (0; 1) � S where S is the hypersurface of R�C
n�1
2 �R

satisfying the equation

j�1j

0@n�1
2Y
i=1

k�ik
2

1A j�2j = 1: (2.59)

3. Exponential Function

The multisplit exponential function can be obtained as extension of the expo-
nential real function to the algebra of multisplit numbers. Nevertheless, is some
technical di¢ culties to work with such de�nition. To this end, we prefer to use the
exponential of matrices.
Let A 2 Cn (R) and suppose that kAk < +1 for some norm. It is well known

that the exponential of A can be de�ned by the series

exp (A) = eA =
+1X
m=0

1

m!
Am: (3.1)

In addition, the series converges normally in each bounded domain of Cn (R) :
Since A 2 Cn (R) ; we can a¢ rm that for all m 2 N we have Am 2 Cn (R) : Thus,

by passage to the limit it comes

exp (A) 2 Cn (R) : (3.2)
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Introducing now the function E of multisplit variable de�ned for each z 2MHn�1
by

E (z) =
�
R�1 � exp �R

�
(z) : (3.3)

Thanks to this de�nition, one has

R (E (z)) = exp (R (z)) ; (3.4)

De�niton 1 The multisplit exponential function is well-de�ned by�
E :MHn�1 �!MHn�1
z 7�! E (z) 8z 2MHn�1:

(3.5)

Some properties of the multisplit exponential function are collected in the fol-
lowing.
Proposition 9
1. E (z1 + z2) = E (z1)E (z2) 8z1; z2 2MHn�1:
2. E (0) = 1:
3. E (�z) = 1

E(z) 8z 2MHn�1:
4. E (z) = ez 8z 2 R:
5. E (z) 2MH+n�1 8z 2MHn�1:
Proof. 1. For all z1; z2 2MHn�1 we get, keeping in mind formula (3.4)

R (E (z1 + z2)) = eR(z1+z2):
Since, R (z1)R (z2) = R (z2)R (z1) ; we �nd

R (E (z1 + z2)) = eR(z1)eR(z2)

= R (E (z1))R (E (z2))
= R (E (z1)E (z2)) :

Therefore, the proof of the �rst statement is completed.
2. We have

R (E (0)) = eR(0)

= In = R (1) :
3. For every z 2MHn�1; it follows by the use of the previous statements

1 = E (z)E (�z) :
Which allows us to deduce the third one.
4. If z 2 R; one can �nd

R (E (z)) = ezIn

= ezIn

= ezR (1)
= R (ez) :

So, E (z) = ez:
5. Since detR (E (z)) = det eR(z); we get

detR (E (z)) = etr(R(z)

= en real(z) > 0:

Thus, E (z) 2MH+n�1:
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From now on we will denote by ez the multisplit exponential of z instead of
E (z) :
We introduce now the concept of generalized hyperbolic functions, generalizing

the hyperbolic functions cosh and sinh in higher dimensions. To do this, we write

the exponential of z =
n�1P
i=0

xih
i
n�1 2 MHn�1 in term of its real and multisplit

components as

e

n�1P
i=0

xih
i
n�1

=
n�1X
i=0

�i (x0; :::; xn�1)h
i
n�1: (3.6)

Proposition 10 The following properties are ful�lled
1. r

�
V (ez)t

�
= R (ez) :

2.
n�1P
i=0

�i (x0; :::; xn�1) = e

n�1P
i=0

xi
:

Proof. 1. By di¤erentiating the formula (3.6) with respect to the real variable
xj ; j = 0; :::; n� 1 we get

hje

n�1P
i=0

xih
i
n�1

=
n�1X
i=0

@�i
@xj

(x0; :::; xn�1)h
i
n�1:

So
n�1X
i=0

�i (x0; :::; xn�1)h
i+j
n�1 =

n�1X
i=0

@�i
@xj

(x0; :::; xn�1)h
i
n�1:

Hence, if follows that (
@�i
@xj

= �i�j if i � j;
@�i
@xj

= �n+i�j if i < j:

This can be written in matrix form26666664

@�0
@x0

@�0
@x1

@�0
@x2

: : : @�0
@xn�1

@�1
@x0

@�1
@x1

@�1
@x2

: : : @�1
@xn�1

@�2
@x0

@�2
@x1

@�2
@x2

: : : @�2
@xn�1

...
...

...
. . .

...
@�n�1
@x0

@�n�1
@x1

@�n�1
@x2

: : : @�n�1
@x2

37777775 =
2666664

�0 �n�1 �n�2 : : : �1
�1 �0 �n�1 : : : �2
�2 �1 �0 : : : �3
...

...
...

. . .
...

�n�1 �n�2 �n�3 : : : �0

3777775 :

This gives

r
�
V (ez)t

�
= R (ez) :

2. We deduce using the previous property that

@

@xj

n�1X
i=0

�i =
n�1X
i=0

�i 8j = 0; :::; n� 1:

Which permits us to achieve the proof, using some algebraic manipulations and
taking into account the fact that �0 (0; :::; 0) = 1 and �i (0; :::; 0) = 1; i = 1; :::; n�1:
We are ready now to introduce the concept of generalized hyperbolic functions.

For this purpose, let us denote by muhn;i; i = 0; :::; n� 1 the real functions de�ned
on Rn�1 by

muhn;i (x1; :::; xn�1) = �i (0; x1; :::; xn�1) 8 (x1; :::; xn�1) 2 Rn�1: (3.7)
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The functions muhn;i are called the generalized hyperbolic functions.
In particular, if n = 2 we �nd the usual real hyperbolic functions, i.e.

muh2;0 (x) = coshx and muh2;1 (x) = sinhx 8x 2 R: (3.8)

Employing the formula (3.6) one can write

e

n�1P
i=0

xih
i
n�1

= ex0
n�1X
i=0

muhn;i (x1; :::; xn�1)h
i
n�1: (3.9)

Of course, all that has been done for the function �i is equally valid for an
arbitrary the generalized hyperbolic functions and we can cite the following results
listing the main properties of the generalized hyperbolic functions. The �rst one is
an immediate consequence of from the proposition 10.
Proposition 11 The generalized hyperbolic functions satisfy

1.

(
@muhn;i
@xj

= muhn;i�j if i � j � 1;
@muhn;i
@xj

= muhn;n+i�j if 0 � i < j:

2.
n�1P
i=0

muhn;i (x1; :::; xn�1) = e

n�1P
i=1

xi
:

The second one is given by.
Proposition 12
1. @nmuhn;i

@xnj
= muhn;i; i = 0; :::; n� 1 and j = 1; :::; n� 1:

2. If n = pj; then @pmuhn;i
@xpj

= muhn;i; i = 0; :::; n� 1:
Proof. 1. Making use the formula (3.9) we get

e

n�1P
i=1

xih
i
n�1

=

n�1X
i=0

muhn;i (x1; :::; xn�1)h
i
n�1: (3.10)

By taking n times the derivate of the two hand side of the expression (3.10) with
respect to the variable xj we deduce that

hnje

n�1P
i=1

xih
i
n�1

=
n�1X
i=0

@nmuhn;i
@xnj

(x1; :::; xn�1)h
i
n�1:

Which implies, using again (3.10), that
n�1X
i=0

@nmuhn;i
@xnj

(x1; :::; xn�1)h
i
n�1 =

n�1X
i=0

muhn;i (x1; :::; xn�1)h
i
n�1 8i = 0; :::; n�1:

Hence, the �rst statement done.
2. Suppose that n = pj; di¤erentiating p times the two hand side of the expres-

sion (3.10) with respect to the variable xj one obtains

hpje

n�1P
i=1

xih
i
n�1

=
n�1X
i=0

@pmuhn;i
@xpj

(x1; :::; xn�1)h
i
n�1:

This permits us to conclude the proof.
Elsewhere, since

det

 
R
 
n�1X
i=0

muhn;i (x1; :::; xn�1)h
i
n�1

!!
= e

tr

 
R
 
n�1P
i=1

xih
i
n�1

!!
:
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We can infer

det

 
R
 
n�1X
i=0

muhn;i (x1; :::; xn�1)h
i
n�1

!!
= 1 8 (x1; :::; xn�1) 2 Rn�1: (3.11)

This suggests us a generalization of the standard hyperbolic identity cosh2 x �
sinh2 x = 1 in higher dimensions:
For the particular case n = 3; one can �nd

muh33;0 (x1; x2; x3) +muh
3
3;1 (x1; x2; x3) +muh

3
3;2 (x1; x2; x3)�

3muh3;0 (x1; x2; x3)muh3;1 (x1; x2; x3)muh3;2 (x1; x2; x3) = 1:

Particularly, we can a¢ rm that for all (x1; :::; xn�1) 2 Rn�1 we have

R

0@en�1Pi=1 xihin�1
1A 2 SL (n;R) : (3.12)

The below result also holds.
Proposition 13 The mapping de�ned by8><>:

�
Rn�1;+

�
�!

�
SMHn�1 (0; 1) ;�

�
;

(x1; :::; xn�1) 7�! e

n�1P
i=1

xih
i
n�1

=
n�1P
i=0

muhn;i (x1; :::; xn�1)h
i
n�1;

(3.13)

is an injective homomorphism of groups.
Furthermore, since

e

n�1P
k=1

xih
i
n�1

=
n�1Y
i=1

X
m�0

1

m
xmi h

mi
n�1; (3.14)

it is easy to verify that the generalized hyperbolic functions can be represented only
using suitable combinations of the real functions

�n;q (t) =
X
m�0

tnm+q

(nm+ q)!
; n � 2 and q = 0; :::; n� 1: (3.15)

As example, if n = 2; we have�
muh2;0 (x) = �2;0 (x) ;
muh2;1 (x) = �2;1 (x) ;

(3.16)

and if n = 3; we �nd8<: muh3;0 (x1; x2) = �3;0 (x1)�3;0 (x2) + �3;1 (x1)�3;1 (x2) + �3;2 (x1)�3;2 (x2) ;
muh3;1 (x1; x2) = �3;0 (x1)�3;2 (x2) + �3;1 (x1)�3;0 (x2) + �3;2 (x1)�3;1 (x2) ;
muh3;2 (x1; x2) = �3;0 (x1)�3;1 (x2) + �3;1 (x1)�3;2 (x2) + �3;2 (x1)�3;0 (x2) :

(3.17)
Various properties of the functions �n;q have been given in the references [3, 18],

using standard arguments of real analysis. Additionally, the theory of multisplit
numbers allows us to show that the functions �n;q possess some other interesting
properties analogous to those of the real hyperbolic functions cosh and sinh. This
is illustrated in the following.
Proposition 14
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1. For every t 2 R; we have�����������

�n;0 (t) �n;n�1 (t) �n;n�2 (t) : : : �n;1 (t)
�n;1 (t) �n;0 (t) �n;n�1 (t) : : : �n;2 (t)
�n;2 (t) �n;1 (t) �n;0 (t) : : : �n;3 (t)
...

...
...

. . .
...

�n;n�1 (t) �n;n�2 (t) �n;n�3 (t) : : : �n;0 (t)

�����������
= 1: (3.18)

2. For every t; s 2 R; we have

�n;0 (t+ s) = �n;0 (t)�n;0 (s) +
n�1X
i=1

�n;n�i (t)�n;i (s) :

�n;i (t+ s) =
iX

j=1

�n;i�j (t)�n;j (s) +
n�1X
j=i+1

�n;n+i�j (t)�n;j (s) if i = 1; :::; n� 2:

�n;n�1 (t+ s) =
n�1X
j=0

�n;n�j�1 (t)�n;j (s) :

Proof. 1. Denoting by � the function de�ned by8<:
� : R �!MHn�1;

t 7�! � (t) =
n�1P
i=0

�n;i (t)h
i
n�1:

Observing preliminarily, by construction of the functions �n;q; that(
d�n;q
dt = �n;p�1 (t) if q = 1; :::; n� 1;

d�n;0
dt = �n;n�1 (t) :

This yields

d�

dt
= �n;n�1 (t) +

n�1X
i=1

�n;i�1 (t)h
i
n�1:

So,

d�

dt
= h

 
hn�1n�1�n;n�1 (t) + hn�1

n�1X
i=1

�n;i�1 (t)h
i�1
n�1

!
= hn�1� (t) :

Which leads, taking into account the fact that � (0) = 1; to

� (t) = ethn�1 :

Then, we can infer

detR (� (t)) = detR
�
ethn�1

�
= det eR(thn�1)

= etrR(thn�1)

= 1:

Consequently, (3.18) follows.
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2. Let t; s 2 R; it is easy to check that
n�1X
i=0

�n;i (t+ s)h
i
n�1 = � (t+ s)

= � (t)� (s)

=

 
n�1X
i=0

�n;i (t)h
i
n�1

! 
n�1X
i=0

�n;i (s)h
i
n�1

!
:

So, thanks to (2.8), the second statement follows.
We present in the following result the link existing between the generalized hy-

perbolic functions and the generalized trigonometric functions. To this aim, we
shall start by recalling, according to the references [1, 6, 7, 8, 15, 18], the concept of
multicomplex numbers. Denoting by in�1 the unit multicomplex number satisfying
inn�1 = �1 and by MCn�1 the algebra of multicomplex numbers given by

MCn�1 =

(
z =

n�1X
k=0

xki
k
n�1 j xk 2 R and inn�1 = 1

)
: (3.19)

We also remember the generalized trigonometric functions de�ned via the gen-
eralized Euler formula

e

n�1P
k=1

xih
i
n�1

=
n�1X
k=1

musn�1;k (x1; :::; xn�1) i
k
n�1: (3.20)

The desired result is the content of the following
Proposition 15 The following formula holds.

muhk
�
in�1x1; i

2
n�1x2; :::; i

n�1
n�1xn�1

�
= ikn�1musk (x1; x2; :::; xn�1) ; k = 0; :::; n�1:

(3.21)
Proof. We get keeping in mind formula (3.10)

e

n�1P
k=1

xki
k
n�1h

k
n�1

=

n�1X
k=1

muhk
�
in�1x1; i

2
n�1x2; :::; i

n�1
n�1xn�1

�
hkn�1: (3.22)

On the other hand, one can easily check that inn�1h
n
n�1 = �1; then in�1hn�1 is

another unit multicomplex number. So, from formula (3.20), we can infer

e

n�1P
k=1

xki
k
n�1h

k
n�1

=
n�1X
k=1

musk (x1; :::; xn�1) i
k
n�1h

k
n�1: (3.23)

Consequently, by (3.22) and (3.23), formula (3.23) immediately follows
This formula generalizes the usual identities

cosh (ix) = cosx if sinh (ix) = i sinx: (3.24)
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