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NONLINEAR DEGENERATED PARABOLIC EQUATIONS WITH

LOWER ORDER TERMS

J. BENNOUNA , M. HAMMOUMI AND A. ABERQI

Abstract. We prove an existence result of a renormalized solution for a class
of nonlinear degenerated parabolic problems with L1(Ω× (0, T ))-data.

1. Introduction

In this paper we study the existence of solutions for the following class of non-
linear parabolic problems

∂b(u)

∂t
− div a(x, t, u,∇u) + div(ϕ(x, t, u)) = f in QT

u(x, t) = 0 on ∂Ω× (0, T )
b(u(x, 0)) = b(u0(x)) in Ω,

(1)

where Ω is a bounded open subset of RN , N ≥ 3, QT = Ω × (0, T ), T > 0, b is a
strictly increasing C1-function and div a(x, t, u,∇u) is a Leray-Lions type operator

defined on the weighted Sobolev space W 1,p
0 (Ω, ν) (see assumptions (15)-(17) of

Section 2). The function ϕ(x, t, u) is a Carathéodory function with suitable assump-
tions (see assumptions (18)-(20)). The right-hand side belongs to L1(QT ). Let us
point out, the difficulties that arise in problem (1) are due to the following facts:
the data f and b(u0) only belong to L1(QT ) and L1(Ω) respectively, the function
ϕ(x, t, u) is just satisfies the following codition |ϕ(x, t, s)| ≤ c(x, t)|s|γν(x), and the
presence of the weighted function ν (see assumptions (4)-(5).

Under our assumptions, problem (1) does not admit, in general, a weak solution
since the term ϕ(x, t, u) may not belong (L1

loc(Q))N . In order to overcome this
difficulty, we work with the framework of renormalized solutions (see definition
(3.1)). This notion was introduced by R.-J. DiPerna and P.-L. Lions [21] in their
study of the Boltzmann equation. This notion was then adapted to an elliptic
version of (1) by L. Boccardo and al (see [14]) when the right hand side is in

W−1,p′
(Ω) and by J.-M. Rakotoson (see [26]) when the right hand side is in L1(Ω),

and finally by G. Dal Maso, F. Murat, L. Orsina and A. Prignet [17]
The existence and uniqueness of a renormalized solution for parabolic problems

in the classical space has been proved by D. Blanchard and F. Murat [10] in the
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case where a(x, t, s, ξ) is independent of s, and with ϕ = 0 and by D. Blanchard, F.
Murat and H. Redwane with the nonstricte monotonicity on a with ν = 1 (see [11]
condition (7)).
For the degenerated parabolic equations the existence of weak solutions have been
proved by L. Aharouch and al [1] in the case where a is strictly monotone, ϕ = 0

and f ∈ Lp′
(0, T,W−1,p′

(Ω, ν1−p′
)). See also the existence of renormalized solution

proved by Y. Akdim and al [6] in the case where a(x, t, s, ξ) is independent of s and
ϕ = 0.

In the case where b(u) = u and ν = 1 the existence of renormalized solutions
for (1) has been established by R.-Di Nardo (see [19]). For the degenerated para-
bolic equation with b(u) = u, div(ϕ(x, t, u)) = H(x, t, u,∇u) and f ∈ L1(Q), the
existence of renormalized solution has been proved by Y. Akdim and al (see [3]).

The case where b(u) = b(x, u), div(ϕ(x, t, u)) = H(x, t, u,∇u) and f ∈ L1(Q),
the existence of renormalized solutions has been established by H. Redwane (see
[28]) in the classical Sobolev space (ν = 1) and by Y. Akdim and al (see [2]) in the
degenerate Sobolev space.

Note that, this paper can be seen as a generalization of ([4], [19]) in weighted
case, and we prove the existence of a renormalized solution of (1)

The plan of the paper is as follows: In Section 2 we give some preliminaries and
we make precise all the assumptions on a, ϕ, f, and b(u0). In Section 3 we give
the definition of a renormalized solution of (1), and we establish (Theorem 3.1) the
existence of such a solution.

2. Preliminaries and auxiliary results

We recall here some standard notations, properties and results which will be
used through the paper.
Let Ω be a bounded open set of RN and QT = Ω × (0, T ), T is a positive real
number. Let ν(x) be a nonnegative function on Ω such that ν(x) ∈ Lr(Ω), r ≥ 1,
ν(x)−1 ∈ Lt(Ω), p ≥ 1 + 1/t. We denote by Lp(Ω, ν), or simply Lp(ν) if there is no
confusion, p ≥ 1, the space of measurable functions u on Ω such that

∥u∥Lp(ν) =
(∫

Ω

|u|pν(x)dx
) 1

p

< +∞, (2)

and by W 1,p(ν) the completion of the space C1(Ω) with respect to the norm

∥u∥W 1,p(ν) = ∥u∥Lp(ν) + ∥∇u∥Lp(ν). (3)

Moreover we denote byW 1,p
0 (ν) the closure of C1

0 (Ω) inW
1,p(ν), provided with the

induced topology defined by the induced norm, and by W−1,p′
(ν1−p′

), p′ = p
p−1 ,

its dual space. W 1,p(ν) and W 1,p
0 (ν) are reflexive Banach spaces if 1 < p <∞, (see

[25]).

Denote V =W 1,p
0 (ν), H = L2(ν) and V ∗ =W−1,p′

0 (ν1−p′
), with p ≥ 2. The dual

space of X := Lp(0, T ;W 1,p
0 (ν)) denoted X∗ is identified to Lp′

(0, T ;V ∗). Define
W 1

p (0, T, V,H) = {v ∈ X : v′ ∈ X∗}. Endowed with the norm

∥u∥W 1
p
= ∥u∥X + ∥u′∥X∗ ,
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W 1
p (0, T, V,H) is a Banach space. Here u′ stands for the generalized time derivative

of u, that is, ∫ T

0

u′(t)φ(t)dt = −
∫ T

0

u(t)φ′(t)dt for all φ ∈ C∞
0 (0, T ).

Lemma 2.1. [30]

(1) The evolution triple V ↪→ H ↪→ V ∗ is verified.
(2) The imbedding W 1

p (0, T, V,H) ↪→ C(0, T,H) is continuous.

(3) The imbedding W 1
p (0, T, V,H) ↪→ Lp(QT , ν) is compact.

Lemma 2.2. [1]
Let g ∈ Lr(Q, ν) and let gn ∈ Lr(Q, ν), with ∥gn∥Lr(Q,ν) ≤ C, with 1 < r < +∞. If
gn(x) → g(x) a.e in Q then gn ⇀ g in Lr(Q, ν)

Lemma 2.3. [1] Let {vn} be a bounded sequence in Lp(0, T ;V ) such that

∂vn
∂t

= αn + βn in D′(Q),

with {αn} and {βn} two bounded sequences respectively in X∗ and in L1(Q). Then
vn → v in Lp

loc(Q, ν). Furthermore, vn → v strongly in L1(Q).

From now on, we assume that the following assumptions hold true

ν(x)−1 ∈ Lt(Ω), t ≥ N

p
, 1 +

1

t
< p < N(1 +

1

t
), (4)

ν(x) ∈ Lr(Ω), r >
Nt

pt−N
, (5)

An important tool that we will use here, is the following weighted version of the
Sobolev inequality (see Theorem 3.1 and Corollary 3.5 in [25]).

Proposition 2.1. [25] Assume that (4) and (5) hold true. Let p̃ denote the number
associated to p defined by

1

p̃
= r′

(1
p
(1 +

1

t
)− 1

N

)
.

Then the imbedding of W 1,p
0 (ν) into Lp̃(ν) is continuous. moreover, there exists a

constant C0 > 0 depending on N, p, ν, t, such that

∥u∥Lp̃(ν) ≤ C0∥|∇u|∥Lp(ν),∀u ∈W 1,p
0 (ν). (6)

Using this proposition, we can prove the following interpolation result.

Proposition 2.2. Assume that (4) and (5) hold true. Let v be a function in

W 1,p
0 (ν)∩Ls(Ω) with 2 ≤ p < N and s > r′. Then there exists a positive constante

C, depending on N, p, ν, t and q, such that

∥v∥Lσ(ν) ≤ C∥∇v∥1−θ
Lp(ν)∥v∥

θ
Ls(Ω)

for every θ and σ satisfying

0 ≤ θ ≤ 1, 1 ≤ σ ≤ +∞,
1

σ
= θ + r′(1− θ)

(
(1 +

1

t
)
1

p
− 1

N

)
, r >

Nt

pt−N
.
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Proof. For every 1 ≤ σ ≤ p̃, we can write
1

σ
= θ +

1− θ

p̃
for some 0 ≤ θ ≤ 1. So

that by the Hölder inequality and (6), one has

∥v∥Lσ(ν) ≤ C0∥|∇v|∥1−θ
Lp(ν)∥v∥

θ
L1(ν)

≤ C0∥|∇v|∥1−θ
Lp(ν)∥ν∥

θ
Ls′ (Ω)

∥v∥θLs(Ω),

which gives the desired result. �

An immediate consequence of the previous result, we get

Corollary 2.1. Let v ∈ Lp((0, T ),W 1,p
0 (ν)) ∩ L∞((0, T ), Ls(Ω)), with 2 ≤ p < N

and s > r′. Then v ∈ Lσ(ν) with σ = pp̃+p̃−p
p̃ . Moreover,∫

QT

ν(x)|v|σdxdt ≤ C ∥ v ∥
p̃−p
p̃

L∞(0,T,Ls(Ω))

∫
QT

ν(x)|∇v|pdxdt.

Proof. By virtue of Proposition 2.2, we can write∫
Ω

ν(x)|v|σdx ≤ C∥|∇v|∥(1−θ)σ
Lp(ν) ∥ v ∥θσLs(Ω) .

Integrating between 0 and T, we get∫ T

0

∫
Ω

ν(x)|v|σdxdt ≤ C

∫ T

0

∥|∇v|∥(1−θ)σ
Lp(ν) ∥v∥θσLs(Ω)dt. (7)

Since v ∈ Lp((0, T ),W 1,p
0 (ν)) ∩ L∞((0, T ), Ls(Ω)), we have∫ T

0

∫
Ω

ν(x)|v|σdxdt ≤ C∥v∥θσL∞(0,T,Ls(Ω))

∫ T

0

∥|∇v(t)|∥(1−θ)σ
Lp(ν) dt.

Now we choose θ such that

(1− θ)σ = p and θσ =
p̃− p

p̃
.

This choice yields

θ =
p̃− p

pp̃+ p̃− p
and σ =

pp̃+ p̃− p

p̃

Then, (7) becomes∫ T

0

∫
Ω

ν(x)|v|σdxdt ≤ C ∥ v ∥
p̃−p
p̃

L∞(0,T,Ls(Ω))

∫ T

0

∥|∇v(t)|∥pLp(ν)dt.

�

In order to prove our existence result, we shall prove a technical lemma, fol-
lowing the same method used in [7]) that yields two estimates for |un|p−1 and

|∇un|p−1 in the Lorentz spaces L
2pp̃−p̃−p
2p̃(p−1)

,∞(QT ) and L
p(2pp̃−p̃−p)

(p−1)(2pp̃+p̃−p)
,∞(QT ) respec-

tively. Moreover by imbedding theorems, these a priori bounds imply two esti-

mates in the Lebesgue spaces Lm(QT ) and Ls(QT ) with m <
2pp̃− p̃− p

2p̃(p− 1)
and

s <
p(2pp̃− p̃− p)

(p− 1)(2pp̃+ p̃− p)
. In what follows, we define

measνE =

∫
E

ν(x)dx,
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for any measurable set E ⊆ RN . Tus, we can define the weighted Lorentz spaces
Lr,∞(ν), 1 ≤ r ≤ +∞ as the set of measurable functions u defined on Ω such that

∥u∥Lr,∞(ν) = sup
t>0

tmeasν{x ∈ Ω : |u| > t} 1
r < +∞.

Throughout the paper, Tk, k > 0, denotes the truncation function at level k defined
on R by Tk(r) = max(−k,min(k, r)).

Lemma 2.4. Assume that Ω is an open subset of RN of finite measure, 2 ≤ p < N,
and that (4) and 5 hold true. Let u be a measurable function satisfying

Tk(u) ∈ Lp(0, T,W 1,p
0 (ν)) ∩ L∞(0, T, L2(Ω)) for every k > 0 and such that:

sup
t∈(0,T )

∫
Ω

|Tk(u)|2dx+

∫
QT

ν(x)|∇Tk(u)|pdxdt ≤Mk, ∀k > 0, (8)

where M is a positive constant. Then we get |u|p−1 ∈ L
2pp̃−p̃−p
2p̃(p−1)

,∞(QT ), and |∇u|p−1 ∈
L

p(2pp̃−p̃−p)
(p−1)(2pp̃+p̃−p)

,∞(QT ), Moreover, we have the following estimates

∥|u|p−1∥
L

2pp̃−p̃−p
2p̃(p−1)

,∞
(QT )

≤ CM ( p̃−p
2p̃ +1)

2p̃(p−1)
2pp̃−p̃−p , (9)

∥|∇u|p−1∥
L

p(2pp̃−p̃−p)
(p−1)(2pp̃+p̃−p)

,∞
(QT )

≤ CM
2pp̃+2p̃−2p
2pp̃+p̃−p (10)

where C is a constant depend only on N, p, ν, and t.

Proof. We first prove (9). For any k0 > 0, we can write

∥|u|p−1∥
L

2pp̃−p̃−p
2p̃(p−1)

,∞
(QT )

≤ sup
0<k<k0

k
[
measν{(x, t) ∈ QT : |u|p−1 > k}

] 2p̃(p−1)
2pp̃−p̃−p

+ sup
k≥k0

k
[
measν{(x, t) ∈ QT : |u|p−1 > k}

] 2p̃(p−1)
2pp̃−p̃−p

≤ k0|QT |
2p̃(p−1)
2pp̃−p̃−p + sup

k≥k0

k
[
measν{(x, t) ∈ QT : |u|p−1 > k}

] 2p̃(p−1)
2pp̃−p̃−p

.

(11)
By corollary (2.1) and (8) we have

k
pp̃+p̃−p

p̃ measν{(x, t) ∈ QT : |u| > k}

≤
∫
QT

ν(x)|Tk(u)|
pp̃+p̃−p

p̃ dxdt

≤ C sup
t∈(0,T )

(∫
Ω

|Tk(u)|2dx
) p̃−p

2p̃

∫
QT

ν(x)|∇Tk(u)|pdxdt

≤ C(Mk)
p̃−p
2p̃ +1.

Hence,

measν{(x, t) ∈ QT : |u|p−1 > k} ≤ CM
p̃−p
2p̃ +1k−

2pp̃−p̃−p
2p̃(p−1) . (12)

By (12) we deduce that |u|p−1 ∈ L
2pp̃−p̃−p
2p̃(p−1)

,∞(QT ). Furthermore, putting (12) in

(11) and taking k0 = M
(
p̃−p
2p̃

+1)
2p̃(p−1)
2pp̃−p̃−p

|QT |
2p̃(p−1)

p(2pp̃−p̃−p)

we get (9). We now prove the estimate

involving the gradient of u. For every λ > 0 and every k > 0, we have

measν{(x, t) ∈ QT : |∇u| > λ} ≤ measν{(x, t) ∈ QT : |∇u| > λ and |u| ≤ k}
+measν{(x, t) ∈ QT : |∇u| > λ and |u| > k}.
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By (8) we know that

Mk ≥
∫
QT

ν(x)|∇Tk(u)|pdxdt ≥
∫
{|u|≤k}∩{|∇u|>λ}

λpν(x)dx

≥ λpmeasν{(x, t) ∈ QT : |∇u| > λ and |u| ≤ k},

which implies

measν{(x, t) ∈ QT : |∇u|(p−1) > λ and |u| ≤ k} ≤ Mk

λp′ .

The above formula together with (12) allow us to obtain

measν{(x, t) ∈ QT : |∇u|(p−1) > λ} ≤ Mk

λp′ + CM
p̃−p
2p̃ +1k−

2pp̃−p̃−p
2p̃ . (13)

If we take k =M
p̃−p

2pp̃+p̃−pλ
2pp̃

(p−1)(2pp̃+p̃−p) , (13) becomes

measν{(x, t) ∈ QT : |∇u|(p−1) > λ} ≤ C
M

2(pp̃+p̃−p)
2pp̃+p̃−p

λ
p(2pp̃−p̃−p)

(p−1)(2pp̃+p̃−p)

, (14)

which proves (10). �

2.1. Assumptions and main result. We now make precise assumptions on each
part of problem (1). Let Ω be a bounded open subset of RN , N ≥ 2, QT = Ω×(0, T ),
T > 0, and 2 ≤ p < +∞. Let ν(x) be a nonnegative function satisfying (4) and (5).
Suppose that b : R → R is a strictly increasing C1-function, such that b(0) = 0 and
b′ > β > 0 for some β > 0, and for almost every (x, t) ∈ QT , for every s ∈ R and
every ξ ∈ RN

|a(x, t, s, ξ)| ≤ ν(x)
(
h(x, t) + |s|p−1 + |ξ|p−1

)
, h(x, t) ∈ Lp′

(ν), (15)

a(x, t, s, ξ)ξ ≥ αν(x)|ξ|p, with α > 0, (16)

(a(x, t, s, ξ)− a(x, t, s, η) · (ξ − η) > 0, ξ ̸= η, (17)

|ϕ(x, t, s)| ≤ c(x, t)|s|γν(x), (18)

c(x, t) ∈ (Lτ (QT , ν))
N , τ =

p(3p̃− p)

(p− 1)(p̃− p)
, (19)

γ =
2(p− 1)(pp̃+ p̃− p)

p(3p̃− p)
(20)

f ∈ L1(QT ) (21)

and

u0 ∈ L1(Ω) such that b(u0) ∈ L1(Ω). (22)

We have to seek for a solution to problem (1) in the following sense.

Definition 2.1. A measurable function u is a renormalized solution to problem
(1), if

b(u) ∈ L∞((0, T ), L1(Ω)). (23)

Tk(u) ∈ Lp((0, T ),W 1,p
0 (Ω)), for any k > 0, (24)

lim
m→+∞

1

m

∫
{(x,t)∈QT :|u(x,t)|≤m}

a(x, t, u,∇u)∇u dx dt = 0, (25)
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and if for every function S in W 2,∞(R) which is piecewise C1 and such that S′ has
a compact support

∂BS(u)

∂t
− div

(
a(x, t, u,∇u)S′(u)

)
+ S

′′
(u)a(x, t, u,∇u)∇u

+ div
(
ϕ(x, t, u)S′(u)

)
− S′′(u)ϕ(x, t, u)∇u = fS′(u) in D

′
(Ω)

(26)

and

BS(u)(t = 0) = BS(u0) in Ω, (27)

where BS(z) =

∫ z

0

b
′
(s)S

′
(s)ds.

Remark 2.1. Equation (26) is formally obtained through multiplication of (1) by
S′(u). However while a(x, t, u,∇u) and ϕ(x, t, u) does not in general make sense
in (1), all the terms in (26) have a meaning in D′(QT ). Indeed, if M is such that

suppS
′ ⊂ [−M,M ], the following identifications are made in (26):

• BS(u) belongs to L∞(QT ) since S is a bounded function and

DBS(u) = S′(u)b′(TM (u))DTM (u).

• S′(u)a(x, t, u,∇u) identifies with S′(u)a(x, t, TM (u),∇TM (u)) a.e in QT . Since
we have |TM (u)| ≤ M a.e in QT and S′(u) ∈ L∞(QT ), we obtain from (15) and
(24) that

S′(u)a(x, t, TM (u),∇TM (u)) ∈ (Lp′
(QT , ν

1−p′
))N

• S′′(u)a(x, t, u,∇u)∇u identifies with S′′(u)a(x, t, TM (u),∇TM (u))∇TM (u) a.e.
in QT and

S′′(u)a(x, t, TM (u),∇TM (u))∇TM (u) ∈ L1(QT ).

• S′′(u)ϕ(x, t, u)∇u and S′(u)ϕ(x, t, u) are respectively identify with the two terms
S′′(u)ϕ(x, t, TM (u))∇TM (u) and S′(u)ϕ(x, t, TM (u)) a.e. in QT .

The above consideration shows that equation (26) hold in D′(Ω), ∂BS(u)
∂t belongs to

L1(Q)+Lp′
(0, T,W−1,p′

(QT , ν
1−p′

)) and BS(u) ∈ Lp(0, T,W 1,p
0 (Ω, ν))∩L∞(Q). It

follows that BS(u) belongs to C0([0, T ], L1(Ω)) so the initial condition (27) makes
sense.

Theorem 2.1. Assume that (4), (5) and (15)-(22) hold true. Then, there exists
at least a renormalized solution of the problem (1).

Remark 2.2. The result of Theorem 2.1 extends to the weighted case the analogous
in [4] (with ν = 1), in [5] (with ϕ(x, t, u) = ϕ(u)) and in [19] (with b(u) = u, ν = 1).

Remark 2.3. Similar result can be obtained if the datum is of the forme f − divF,
with f ∈ L1(Ω) and F ∈ (Lp′

(Ω, ν1−p′
))N .

3. Proof of Theorem 2.1

We divide the proof is divided into six steps.
Step 1: Approximate problem and a priori estimates.

For each n > 0, let us define the following approximation of b, a, ϕ, f, and u0;

bn(r) = Tn(b(r)) +
1

n
r. ∀ r ∈ R, (28)
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an(x, t, s, ξ) = a(x, t, Tn(s), ξ).a.e in Q ∀ s ∈ R, ∀ ξ ∈ RN , (29)

ϕn(x, t, r) = ϕ(x, t, Tn(r)) a.e. (x, t) ∈ QT , ∀ r ∈ R. (30)

fn ∈ Lp′
(QT ) such that fn → f strongly in L1(QT ) (31)

and

u0n ∈ D(Ω) such that bn(u0n) → b(u0) a.e. (x, t) ∈ Ω strongly in L1(Ω), (32)

Let us consider the approximate problem :
∂bn(un)

∂t
− div(an(x, t, un,∇un)) + div(ϕn(x, t, un)) = fn in D′(QT ),

un(x, t) = 0 on ∂Ω× (0, T )
bn(un(x, 0)) = bn(u0n(x)) in Ω.

(33)

As a consequence, proving existence of a weak solution un ∈ Lp((0, T ),W 1,p
0 (ν)) of

(33) is an easy task (See [1], [24] and [27]).
Step 2: The estimates derived in this step rely on standard techniques for

problems of type (33).
Using in (33), the test function Tk(un)χ(0,τ1), we get, for every τ1 ∈ [0, T ], we
integrate between (0, τ1) and by the condition (30) we have∫

Ω

Bn
k (un(τ1))dx+

∫
Qτ1

an(x, t, un,∇un)∇Tk(un) dx dt

≤
∫
Qτ1

c(x, t)|un|γν(x)|∇Tk(un)| dx dt+
∫
Qτ1

fnTk(un) dx dt+

∫
Ω

Bn
k (u0n)dx,

(34)

where Bn
k (r) =

∫ r

0

Tk(s)b
′
n(s)ds. Due to definition of Bn

k we have:

0 ≤
∫
Ω

Bn
k (u0n)dx ≤ k

∫
Ω

|bn(u0n)|dx ≤ k||b(u0)||L1(Ω) ∀k > 0 (35)

Using (34) and (16) we obtain:∫
Ω

Bn
k (un(τ1))dx+ α

∫
Qτ1

ν(x)|∇Tk(un)|p dx dt

≤
∫
Qτ1

c(x, t)|un|γν(x)|∇Tk(un)| dx dt+ k(||b(u0)||L1(Ω) + ||fn||L1(Q)) (36)

If we take the supremum for t ∈ (0, τ1) and we define M = sup(||fn||L1(Q)) +
||b(u0)||L1(Ω), we deduce from that above inequality (34) and (35)

β

2

∫
Ω

|Tk(un)|2 dx+α
∫
Qt

ν(x)|∇Tk(un)|p dx dt ≤Mk+

∫
Qt

c(x, t)|un|γν(x)|∇Tk(un)| dx dt.

(37)



242 J. BENNOUNA , M. HAMMOUMI AND A. ABERQI EJMAA-2016/4(2)

By Corollary 2.1 and Young inequality we have:∫
Qt

c(x, t)|un|γν(x)|∇Tk(un)| dx dt

≤ C
γ(p̃− p)

2(pp̃+ p̃− p)
||c(x, t)||Lτ (Qτ1 ,ν)

sup
t∈(0,τ1)

∫
Ω

|Tk(un)|2 dx

+C
2pp̃+ (2− γ)(p̃− p)

2(pp̃+ p̃− p)
||c(x, t)||Lτ (Qτ1 ,ν)

×
(∫

Qτ1

ν(x)|∇Tk(un)|p dx dt
)( 1

p+
γp̃

pp̃+p̃−p )
2(pp̃+p̃−p)

2pp̃+(2−γ)(p̃−p)

.

(38)

Using the value γ = 2(p−1)(pp̃+p̃−p)
p(3p̃−p) , (37) and (38), we obtain

β

2

∫
Ω

|Tk(un)|2 dx+ α

∫
Qt

ν(x)|∇Tk(un)|p dx dt

≤Mk + C
γ(p̃− p)

2(pp̃+ p̃− p)
||c(x, t)||Lτ (Qτ1 ,ν)

sup
t∈(0,τ1)

∫
Ω

|Tk(un)|2 dx

+C
2pp̃+ (2− γ)(p̃− p)

2(pp̃+ p̃− p)
||c(x, t)||Lτ (Qτ1 ,ν)

∫
Qτ1

ν(x)|∇Tk(un)|p dx dt

Which is equivalent to(β
2
− C

γ(p̃− p)

2(pp̃+ p̃− p)
||c(x, t)||Lτ (Qτ1 ,ν)

)
sup

t∈(0,τ1)

∫
Ω

|Tk(un)|2 dx+

(
α− C

2pp̃+ (2− γ)(p̃− p)

2(pp̃+ p̃− p)
||c(x, t)||Lτ (Qτ1 ,ν)

)∫
Qτ1

ν(x)|∇Tk(un)|p dx dt ≤Mk

If we choose τ1 such that(β
2
− C

γ(p̃− p)

2(pp̃+ p̃− p)
||c(x, t)||Lτ (Qτ1 ,ν)

)
≥ 0, (39)

and (
α− C

2pp̃+ (2− γ)(p̃− p)

2(pp̃+ p̃− p)
||c(x, t)||Lτ (Qτ1 ,ν)

)
≥ 0, (40)

then, let us denote by C the minimum between (39) and (40), we obtain

sup
t∈(0,τ1)

∫
Ω

|Tk(un)|2 dx+

∫
Qτ1

ν(x)|∇Tk(un)|p dx dt ≤ CMk (41)

By (41) it follows that

Tk(un) is bounded in Lp(0, T ;W 1,p
0 (ν)) (42)

and

Tk(un) is bounded in L∞(0, T ;L2(Ω)) (43)

Moreover, proceeding as in [10], [12] is possible to prove that for any S ∈W 2,∞(R)
with S′ has a compact support, the term

∂S(un)

∂t
is bounded in L1(QT ) + Lp′

(0, T ;W−1,p′

0 (ν1−p′
)), (44)
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On the other hand, the boundedness of Tk(un) (42), (44) and the apriori estimate
of un, in the Lorentz spaces imply that there exists a subsequence, still denoted by
un, such that

un → u a.e. in QT , (45)

where u is a measurable function defined on QT (see [9], lemma 2 p. 224).
We turn now to prove the almost every convergence of bn(un). Let gk ∈ C2(R)

such that gk(s) = s for |s| ≤ k
2 and gk(s) = k for |s| ≥ k. Multiplying the

approximate equation (33) by g′k(bn(un)) we get

∂gk(bn(un))

∂t
− div

(
an(x, t, un,∇un)g′k(bn(un))

)
(46)

+an(x, t, un,∇un)g′′k (bn(un))b′n(un)∇un + div
(
ϕn(x, t, un)g

′
k(bn(un)

)
−g′′k (bn(un))b′n(un)ϕn(x, t, un)∇un = fng

′
k(bn(un)) in D

′(Ω)

Now each term in (46) is taking into account because of (15), (29)and Tk(un) is

bounded in Lp(0, T,W 1,p
0 (ν)), we deduce that:

−div
(
an(x, t, un,∇un)g

′

k(bn(un))
)
+an(x, t, un,∇un)g

′′

k (bn(un))b
′

n(un)∇un+fng
′

kbn(un)

is bounded in L1(QT ) + Lp′
(0, T,W−1,p′

(ν1−p′
)) independently of n as soon as

k < n. Due to definition of b and bn, it is clear that {|bn(un)| ≤ k} ⊂ {|un| ≤ k∗}
where k∗ is a constant independent of n. As a first consequence we have:

Dgk(bn(un)) = g
′

k(bn(un))b
′

n(Tk∗(un))DTk∗(un) a.e in Q (47)

as soon as k < n. Secondly the following estimate hold true:

||g
′

k(bn(un))b
′

n(Tk∗(un))||L∞(Q) ≤ ||g
′

k||L∞(Q)( max
|r|≤k∗

(b′(r) + 1)).

As a consequence of (41), (47) , we then obtain:

gk(bn(un)) is bounded in Lp(0, T,W 1,p
0 (ν)). (48)

Since supp(g′k) and supp(g
′′
k ) are both included in [-k,k] by (30) it follows that for

all k < n we have∣∣∣ ∫
QT

ϕn(x, t, un)
p′
g′k(bn(un))

p′
ν1−p′

(x) dx dt
∣∣∣

≤
∫
QT

c(x, t)p
′
|Tn(un)|p

′γ |g′k(bn(un))|p
′
ν(x) dx dt

=

∫
{|un|≤k∗}

c(x, t)p
′
|Tk∗(un)|p

′γ |g′k(bn(un))|p
′
ν(x) dx dt

Furthermore, by Hölder and corollary 2.1, it results∫
{|un|≤k∗}

c(x, t)p
′
|Tk∗(un)|p

′γ |g′k(bn(un))|p
′
ν(x) dx dt

≤ ∥g′k∥L∞(R)||c(x, t)||p
′

Lτ (QT ,ν)

[
sup

t∈(0,T )

(∫
Ω

|Tk∗(un)|2 dx
) p̃−p

2p̃

+

∫
QT

ν(x)n|∇Tk∗(un)|p dx dt
]
≤ ck∗
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where ck∗ is a constant independently of n which will vary from line to line.
In the same by (30) we have:∣∣∣ ∫

QT

ϕn(x, t, un)
p′
(g′′k (bn(un)b

′
n(un)∇un)p

′
ν1−p′

(x) dx dt
∣∣∣ (49)

≤
∫
QT

(g′′k (bn(un))
p′
b′n(un)

p′
|c(x, t)|p

′
|Tn(un)|p

′γν(x)|∇un|p
′
dx dt.

Furthermore, by Hölder and corollary 2.1 ,we obtain for k∗ < n:∫
QT

(g′′k (bn(un))
p′
b′n(un)

p′
|c(x, t)|p

′
|Tn(un)|p

′γν(x)|∇un|p
′
dx dt

=

∫
QT

(g′′k (bn(un))
p′
b′n(un)

p′
|c(x, t)|p

′
|Tk(un)|p

′γν(x)|∇Tk∗(un)|p
′
dx dt

≤ ∥g′′k∥L∞(R) × sup
|r|≤k∗

|b′(r)|
∫
QT

|c(x, t)|p
′
|Tk∗(un)|p

′γν(x)|∇Tk(un)|p
′
dx dt ≤ ck∗

We conclude by (46) that

∂gk(bn(un))

∂t
is bounded in L1(Q) + Lp′

(0, T,W−1,p′
(ν1−p′

)). (50)

As mentioned above, from ((48)) and ((50)), we deduce that for a subsequence,
still indexed by n, bn(un) converges almost everywhere, as n goes to in infinity,
to a measurable function χ defined on Q. Now since b−1 is continuous on R, b−1

n

converges everywhere to b−1 when n goes to in infinity, so that :

un → u = b−1(χ) a.e. QT , (51)

bn(un) → b(u) a.e. QT , (52)

and with the help of((44))

Tk(un)⇀ Tk(u) in Lp(0, T,W 1,p
0 (ν)) (53)

for any k ≥ 0 as n tends to infinity
Which implies, by using ((15)) , for all k > 0 that there exists a function

σk ∈ (Lp′
(ν1−p′

))N , such that

a(x, t, Tk(un),∇Tk(un))⇀ σk in (Lp′
(ν1−p′

))N (54)

Actually b(u) belongs to L∞((0, T ), L1(Ω)). Indeed using Tk(bn(un)) as test
function in ((33)), by ((30)) we have∫

Ω

Bn
k (un)dx+

∫
QT

an(x, t, un,∇un)∇Tk(bn(un)) dx dt (55)

≤
∫
QT

|c(x, t)||Tn(un)|γν(x)|∇Tk(bn(un))| dx dt+ k (||fn||L1(QT ) + ||b(u0)||L1(Ω)).

with Bk(r) =

∫ b(r)

0

Tk(s)ds. On the other hand, we have∫
QT

an(x, t, un,∇un)∇Tk(bn(un)) dx dt (56)

=

∫
{|bn(un)|≤k}

an(x, t, un,∇un)T ′
k(bn(un))b

′
n(un)∇un dx dt ≥ 0.

Since b′(s) ≥ β, then for k < n and for almost t ∈ (0, T ), we have
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∫
QT

|c(x, t)||Tn(un)|γν(x)|∇Tk(bn(un))|dxdt ≤ max
|s|≤ k

β

b′(s)||c(x, t)||Lτ (QT ,ν)

× sup
t∈(0,T )

(∫
Ω

|T k
β
(un)|2 dx

) (p−1)(p̃−p)
p(3p̃−p) × ||∇T k

β
(un)||

2pp̃+p̃−p
3p̃−p

Lp(QT ,ν) ≤ ck.

(57)

Using ((35)), ((57)) and ((55)) in ((56)), we have∫
Ω

Bn
k (un(t)) ≤ ck + k

(
||fn||L1(QT ) + ||b(u0)||L1(Ω)

)
Passing to limit-inf as n→ +∞, we obtain that:∫

Ω

Bk(u(t)) dx ≤ ck + k
(
||fn||L1(QT )) + ||b(u0)||L1(Ω)

)
for almost t ∈ (0, T ).

Due to definition of Bk, we have

k

∫
Ω

|b(u(x, t))| dx ≤
∫
Ω

Bk(u(t)) dx+
3

2
k2meas(Ω)

≤ k
(
||fn||L1(QT )) + ||b(u0)||L1(Ω)

)
+ ck +

3

2
k2meas(Ω).

shows that b(u) belong to L∞((0, T ), L1(Ω))

Lemma 3.1. The subsequence of un defined in Step 1 satisfies

lim
m→+∞

lim sup
n→+∞

1

m

∫
{|un|≤m}

a(x, t, un,∇un)∇un dx dt = 0. (58)

Proof. Using ψm(un) =
Tm(un)

m as a test function in ((33)), by ((30)) we get∫ T

0

<
∂bn(un)

∂t
, ψm(un) > dt+

∫
QT

an(x, t, un,∇un)∇ψm(un) dx dt (59)

≤
∫
QT

c(x, t)|Tn(un)|γν(x)|∇ψm(un)| dx dt+
∫
QT

fnψm(un) dx dt

hence ∫
Ω

Bm(un)(T )dx+

∫
QT

an(x, t, un,∇un)∇ψm(un) dx dt

≤
∫
QT

c(x, t)|Tn(un)|γν(x)|∇ψm(un)| dx dt+
∫
Ω

Bm(u0)ndx+

∫
QT

fnψm(un) dx dt,

where Bm(r) =

∫ r

0

b′n(s)ψm(s)ds. Since Bm(un)(T ) ≥ 0, then for every m < n, we

have

an(x, t, un,∇un)∇ψm(un) =
1

m
a(x, t, un,∇un)∇un a.e. in Q

As a consequence

1

m

∫
{|un|<m}

a(x, t, un,∇un)∇un dx dt ≤
1

m

∫
QT

c(x, t)|Tm(un)|γν(x)|∇Tm(un)| dx dt

(60)

+

∫
Ω

Bm(u0n)dx+
1

m

∫
QT

fnTm(un) dx dt.
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Proceeding as in ([11], [20]), using Young inequality and Corollary (2.1) we obtain
for all R < m :

1

m

∫
{|un|<m}

a(x, t, un,∇un)∇un dx dt (61)

≤ c1
m
∥c(x, t)χ{|un|≥R}∥Lτ (ν)

(
sup

t∈(0,T )

∫
Ω

|Tm(un)|2dx
) 1

τ
(∫

QT

ν(x)|∇Tm(un)|pdxdt
) 2pp̃+p̃−p

p(3p̃−p)

+
1

m

∫
{|un|≤R}

c(x, t)|TR(un)|γν(x)|∇TR(un)| dx dt

+

∫
Ω

Bm(u0n)dx+
1

m

∫
QT

fnTm(un) dx dt.

Recalling that un is bounded in L∞((0, T );L1(Ω)), we obtain

1

m

∫
{|un|<m}

a(x, t, un,∇un)∇un dx dt (62)

≤ c2∥c(x, t)χ{|un|≥R}∥τLτ (ν) +
α

2m

∫
QT

ν(x)|∇Tm(un)|pdxdt

+
1

m

∫
{|un|≤R}

c(x, t)|TR(un)|γν(x)|∇TR(un)| dx dt

+

∫
Ω

Bm(u0n)dx+
1

m

∫
QT

fnTm(un) dx dt.

where c2 is independent on m and R. Note that Tm(un) converges to Tm(u) in
L∞(QT ) weak-∗, and u is finit almost everywhere in QT , then

1
mTm(u) converges

to zero almost everywhere in QT . Using the elliptic condition on a and in view of
(62), we deduce that

1

2m

∫
{|un|<m}

a(x, t, un,∇un)∇un dx dt (63)

≤ c2∥c(x, t)χ{|un|≥R}∥τLτ (ν) +
1

m

∫
{|un|≤R}

c(x, t)|TR(un)|γν(x)|∇TR(un)| dx dt

+

∫
Ω

Bm(u0n)dx+
1

m

∫
QT

fnTm(un) dx dt.

Since TR(un) ∈ Lp((0, T );W 1,p
0 (Ω)) it follows that

lim
m→+∞

lim sup
n→+∞

1

m

∫
{|un|≤R}

c(x, t)|TR(un)|γν(x)|∇TR(un)| dx dt = 0,∀R > 0.

(64)
In view of (21), (31), (32), (45), (53), using Lebesgue’s convergence theorem and
passing to limit in (63) as n tends to +∞, then m tends to +∞ and then R tends
to +∞, is an easy task and it allows us to obtain (58)

�

Step 4: In this step we introduce a time regularization of the Tk(u) for k > 0
in order to perform the monotonicity method. This kind regularization has been
introduced at the first time by R. Landes in [23]. Let vκ0 be a sequence of function in

L∞(Ω)∩W 1,p
0 (Ω) such that ∥vκ0 ∥L∞(Ω) ≤ k for all κ > 0 and vκ0 converges to Tk(u0)
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a.e. in Ω and 1
κ∥v

κ
0 ∥Lp(Ω) converges to 0. For k ≥ 0 and κ > 0, let us consider the

unique solution (Tk(u))κ ∈ L∞(Q) ∩ Lp(0, T :W 1,p
0 (Ω)) of the monotone problem:

∂(Tk(u))κ
∂t

+ κ((Tk(u))κ − Tk(u)) = 0 in D′(Ω),

(Tk(u))κ(t = 0) = υκ0 in Ω.

Remark that (Tk(u))κ → Tk(u) a.e. in QT , weakly-∗ in L∞(Q) and strongly in
Lp((0, T ),W p

0 (Ω)) as κ→ +∞

||(Tk(u))κ||L∞(Q) ≤ max(||(Tk(u))||L∞(Q), ||υκ0 ||L∞(Ω)) ≤ k, ∀ κ > 0 ,∀ k > 0

Lemma 3.2. Let k ≥ 0 be fixed. Let S be an increasing C∞(R)−function such
that S(r) = r for |r| ≤ k, and suppS′ is compact. Then

lim inf
κ→+∞

lim
n→0

∫ T

0

∫ t

0

<
∂bn(un)

∂t
, S′(un)(Tk(un)− (Tk(u))κ) >≥ 0.

where < ., . > denotes the duality pairing between L1(Ω) + W−1,p′
(ν1−p′

) and
L∞(Ω) ∩W 1,p(ν).

Proof. see H. Redwane [13] �

Step 5: We prove the following lemma which is the critical point in the development
of the monotonicity method.

Lemma 3.3. The subsequence of un satisfies for any k ≥ 0

lim sup
n→+∞

∫ T

0

∫ t

0

∫
Ω

a(x, t, un,∇Tk(un))∇Tk(un) ≤
∫ T

0

∫ t

0

∫
Ω

σk∇Tk(u).

where σk is defined in ( (54)).

Proof. Let Sm be a sequence of increasing C∞-function such that Sm(r) = r for
|r| ≤ m, supp(S′

m) ⊂ [−2m, 2m] and ∥S′′
m∥L∞(R) ≤ 3

m for any m ≥ 1. We use the
sequence (Tk(u))κ of approximation of Tk(u), and plug the test function
S′
m(un)(Tk(un) − (Tk(u))κ) for m > 0 and κ > 0. For fixed k ≥ 0, let Wn

κ =
Tk(un)− (Tk(u))κ we obtain upon integration over (0, t) and then over (0, T ) :∫ T

0

∫ t

0

<
∂bn(un)

∂t
, S′

m(un)W
n
κ > dt ds+

∫ T

0

∫ t

0

∫
Ω

an(x, t, un,∇un)S′
m(un)∇Wn

κ dx ds dt

+

∫ T

0

∫ t

0

∫
Ω

an(x, t, un,∇un)S′′
m(un)∇unWn

κ dx ds dt (65)

−
∫ T

0

∫ t

0

∫
Ω

ϕn(x, t, un)S
′
m(un)∇Wn

κ dx ds dt

−
∫ T

0

∫ t

0

∫
Ω

S′′
m(un)ϕn(x, t, un)∇unWn

κ dx ds dt =

∫ T

0

∫ t

0

∫
Ω

fnS
′
m(un)W

n
κ dx ds dt.

Now we pass to the limit in ((65)) as n → +∞, κ → +∞ and then m → +∞ for
k real number fixed. In order to perform this task we prove below the following
results for any fixed k ≥ 0

lim inf
κ→+∞

lim
n→+∞

∫ T

0

∫ t

0

<
∂bn(un)

∂t
,Wn

κ > ds dt ≥ 0 for any m ≥ k, (66)
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lim
κ→+∞

lim
n→+∞

∫ T

0

∫ t

0

∫
Ω

ϕn(x, t, un)S
′
m(un)∇Wn

κ dx ds dt = 0 for any m ≥ 1,

(67)

lim
κ→+∞

lim
n→+∞

∫ T

0

∫ t

0

∫
Ω

S′′
m(un)ϕn(x, t, un)∇unWn

κ dx ds dt = 0 for any m ≥ 1,

(68)

lim
m→+∞

lim sup
κ→+∞

lim sup
n→+∞

∣∣∣ ∫ T

0

∫ t

0

∫
Ω

an(x, t, un,∇un)S′′
m(un)∇unWn

κ dx ds dt
∣∣∣ = 0

(69)

lim
κ→+∞

lim
n→+∞

∫ T

0

∫ t

0

∫
Ω

fnS
′
m(un)W

n
κ dx ds dt = 0. (70)

Proof of ((66)): The function Sm belongs C∞(R) and is increasing. we have
m ≥ k, Sm(r) = r for |r| ≤ k while suppS′

m is compact. In view of the definition
of Wn

κ and lemma (3.2) applies with S = Sm for fixed m ≥ k. As a consequence
((66)) holds true.
Proof of ((67)): Let us recall the main properties of Wn

κ . For fixed κ > 0 : Wn
κ

converges to Tk(u) − (Tk(u))κ weakly in Lp(0, T,W 1,p
0 (ν)) as n → +∞. Remark

that

||Wn
κ ||L∞(QT ) ≤ 2k for any n > 0, κ > 0, (71)

then we e deduce that

Wn
κ ⇀ Tk(u)− (Tk(u))κ a.e in QT and L∞(QT ) (72)

weakly-∗ when n → +∞. one has suppS′′
m ⊂ [−2m,−m] ∪ [m, 2m] for any fixed

m ≥ 1 and n > 2m.

ϕn(x, t, un)S
′
m(un)∇Wn

κ = ϕn(x, t, T2m(un))S
′
m(un)∇Wn

κ a.e. in QT

since suppS′ ⊂ [−2m, 2m], on the other hand

ϕn(x, t, T2m(un))S
′
m(un) → ϕ(x, t, T2m(u))S′

m(u) a.e. in QT

and

|ϕn(x, t, T2m(un))S
′
m(un)| ≤ ν(x)c(x, t)(2m)γ for m ≥ 1

by ((72)) and strongly convergence of (Tk(un))κ in Lp(0, T,W 1,p
0 (ν)) we obtain

((67)).
Proof of ((68)): For any fixed m ≥ 1 and n > 2m.

ϕn(x, t, un)S
′′
m(un)∇unWn

κ = ϕn(x, t, T2m(un))S
′′
m(un)∇Tm+1(un)W

n
κ a.e. inQT

as in the previous step it is possible to pass to the limit for n→ +∞ since by ((71))
and ((72))

ϕn(x, t, T2m(un))S
′′
m(un)W

n
κ → ϕ(x, t, T2m(u))S′′

m(u)Wκ a.e. in QT .

Since |ϕ(x, t, T2m(u))S′′
m(u)Wκ| ≤ 2kν(x)|c(x, t)|(2m)γ a.e. in QT and (Tk(u))κ

converges to 0 in Lp(0, T ;W 1,p
0 (ν)), we obtain ((68)).

Proof of ((69)): In view of the definition of Sm we have suppS′′ ⊂ [−2m,−m] ∪
[m, 2m] for any m ≥ 1, as a consequence∣∣∣ ∫ T

0

∫ t

0

∫
Ω

an(x, t, un,∇un)S′′
m(un)∇unWn

κ dx ds dt
∣∣∣
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≤ T∥S′′
m(un)∥L∞(R)∥Wn

κ ∥L∞(QT )

∫
m≤|un|≤2m

a(x, t, un,∇un)∇un dx ds dt

for any m ≥ 1, any n > 2m any κ > 0. By ((58)) it is possible to establish ((69)).
Proof of ((70)): Lebesgue’s convergence theorem implies that for any κ > 0 and
any m ≥ 1

lim
n→+∞

∫ T

0

∫ t

0

∫
Ω

fnS
′
m(u)(Tk(u)− (Tk(u))κ)dxdsdt

=

∫ T

0

∫ t

0

∫
Ω

fS′
m(u)(Tk(u)− (Tk(u))κ).

Now for fixedm ≥ 1, using that ||(Tk(u))κ||L∞(Q) ≤ max(||(Tk(u))||L∞(Q), ||υκ0 ||L∞(Ω)) ≤
k, ∀κ > 0, ∀k > 0 (see[23]), it possible to pass to the limit as κ tends to +∞ in
the above inequality.
Now we turn back to the proof of lemma (3.3). Due to ((66))-((70)) we can to pass
to the limit-sup when κ tends to +∞ and to the limit as m tends to +∞ in ((65)).
using the definition of Wn

κ we deduce that for any k ≥ 0

lim
m→+∞

lim sup
κ→+∞

lim sup
n→+∞

∫ T

0

∫ t

0

∫
Ω

S′
m(un)an(x, t, un,∇un)(∇Tk(un)−∇(Tk(u)κ)dxdsdt

≤ 0.

Since S′
m(un)an(x, t, un,∇un)∇Tk(un) = a(x, t, un,∇un)∇Tk(un) for k ≤ n and

k ≤ m, using the properties of S′
m the above inequality implies that for k ≤ m:

lim sup
n→+∞

∫ T

0

∫ t

0

∫
Ω

an(x, t, un,∇un)(∇Tk(un)) dx ds dt (73)

≤ lim
n→+∞

lim sup
κ→+∞

lim sup
n→+∞

∫ T

0

∫ t

0

∫
Ω

S′
m(un)an(x, t, un,∇un)∇(Tk(u)κ dx ds dt

On the other hand, for 2m < n

S′
m(un)an(x, t, un,∇un) = S′

m(un)a(x, t, T2m(un),∇T2m(un)) a.e. in QT .

Furthermore we have

an(x, t, un,∇un)⇀ σk weakly in (Lp′
(QT , ν

1−p′
))N (74)

it follows that for a fixed m ≥ 1

S′
m(un)an(x, t, un,∇un) → S′

m(un)σm+1 weakly in (Lp′
(QT , ν

1−p′
))N

when n tends to +∞. Finally, using the strong convergence of (Tk(u)κ) to Tk(u)

in Lp(0, T,W 1,p
0 (ν)) as κ tends to +∞, we get

lim
κ→+∞

lim
n→+∞

∫ T

0

∫ t

0

∫
Ω

S′
m(un)an(x, t, un,∇un)∇(Tk(un)κ dx ds dt (75)

=

∫ T

0

∫ t

0

∫
Ω

S′
m(un)σm+1∇Tk(u) dx ds dt

as soon as k ≤ m. Now for k ≤ m we have

a(x, t, Tm+1(un),∇Tm+1(un))χ{|un|≤k} = a(x, t, Tk(un),∇Tk(un))χ{|un|≤k} a.e. inQT

which implies that, by ((51)), ((74)), and by passing to the limit when n tends to
+∞,

σm+1χ|u|≤k = σkχ{|u|≤k} a.e. in QT − {|u| = k} for k ≤ m (76)
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Finally, by ((76)) and ((74)) we have for k ≤ m : σm+1∇Tk(u) = σk∇Tk(u) a.e. in
QT . Recalling ((73)), ((75)) the proof of the lemma is complete. �
Step 6: In this step we prove that the weak limit σk of a(x, t, Tk(un),∇Tk(un))
can be identified with a(x, t, Tk(u),∇Tk(u)). In order to prove this result we recall
the following monotonicity estimates:

Lemma 3.4. the subsequence of un defined in Step 1 satisfies for any k ≥ 0

lim
n→+∞

∫ T

0

∫ t

0

∫
Ω

(
a(x, t, Tk(un),∇Tk(un))− a(x, t, Tk(un),∇Tk(u))

)
·
(
∇Tk(un)−∇Tk(u)

)
= 0

(77)

Proof. Using ((17)) we have

lim
n→+∞

∫ T

0

∫ t

0

∫
Ω

(
a(x, t, Tk(un),∇Tk(un))− a(x, t, Tk(un),∇Tk(u))

)
·
(
∇Tk(un)−∇Tk(u)

)
≥ 0.

(78)

Furthermore, by ((15)), ((51)) we have

a(x, t, Tk(un),∇Tk(u))) → a(x, t, Tk(u),∇Tk(u))) a.e. in QT ,

and

|a(x, t, Tk(un),∇Tk(un)))| ≤ ν(x)[h(x, t)+|Tk(un)|p−1+|∇Tk(un)|p−1] a.e. inQT ,

uniformly with respect to n. As a consequence

a(x, t, Tk(un),∇Tk(u))) → a(x, t, Tk(u),∇Tk(u))) strongly in (Lp′
(QT , ν

1−p′
))N .
(79)

Finally, using ((51)), ((74)) and ((79)) make it possible to pass to the limit-sup as
n tends to +∞ in ((78)) and to obtain the result. �

In this lemma we identify the weak limit σk and we prove the weak-L1 con-
vergence of the ”truncated” energy a(x, t, Tk(un),∇Tk(un))∇Tk(un) as n tends to
+∞.

Lemma 3.5. For fixed k ≥ 0, we have

σk = a(x, t, Tk(u),∇Tk(u))) a.e. in QT , (80)

and as n tends to +∞
a(x, t, Tk(un),∇Tk(un))∇Tk(un)⇀ a(x, t, Tk(u),∇Tk(u)))∇Tk(u) (81)

weakly in L1(QT ).

Proof. We observe that for any k > 0, any n > k and any ξ ∈ RN :

an(x, t, Tk(un), ξ) = a(x, t, Tk(un), ξ) a.e. in QT .

Since
Tk(un)⇀ Tk(u) weakly in Lp((0, T ),W p

0 (ν)), (82)

and by ((77)) we obtain

lim
n→+∞

∫ T

0

∫ t

0

∫
Ω

a(x, t, Tk(un),∇Tk(un))∇Tk(un) dx ds dt

=

∫ T

0

∫ t

0

∫
Ω

σk∇Tk(u) dx ds dt.
(83)
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Since, for fixed k > 0, the function a(x, t, s, ξ) is continuous and bounded with
respect to s, the usual Minty’s argument applies in view of ((82)), ((74)) and
((83)). It follows that ((80)) holds true. In order to prove ((83)), by ((16)), ((77))
and proceeding as in [11, 12] it’s easy to show ((81)). �

Taking the limit as n tends to +∞ in ((58)) and using ((81)) show that u satisfies
((25)). Our aim is to prove that u satisfies ((26)) and ((27)). Now we want to prove
that u satisfies the equation ((26)).
Let S be a function in W 2,∞(R) such that suppS′ ⊂ [−k, k] where k is a real
positive number. Pointwise multiplication of the approximate equation ((33)) by
S′(un) leads to

∂Bn
S(un)

∂t
− div

(
an(x, t, un,∇un)S′(un)

)
+ S′′(un)a(x, t, un,∇un)∇un (84)

+ div
(
ϕn(x, t, un)S

′(un)
)
− S′′(un)ϕn(x, t, un)∇un = fnS

′(un) in D′(QT ).

In what follows we pass to the limit as n tends to +∞ in each term of ((84)).
Since S is bounded and continuous, un converges to u a.e. in QT implies that

Bn
S(un) converge to BS(u) a.e. in QT and L∞(QT ) weak-∗, Then

∂Bn
S

∂t
converges to

∂BS

∂t
in D′(Ω). We observe that the term an(x, t, un,∇un)S′(un) can be identified

with a(x, t, Tk(un),∇Tk(un))S′(un) for n ≥ k, so using the pointwise convergence
of un → u in QT , the weakly convergence of Tk(un)⇀ Tk(u) in L

p((0, T ),W p
0 (ν)),

we get

an(x, t, un,∇un)S′(un)⇀ a(x, t, Tk(un),∇Tk(u))S′(u) in Lp′
(QT , ν

1−p′
),

and

S′′(un)an(x, t, un,∇un)∇un ⇀ S′′(u)a(x, t, Tk(un),∇Tk(u))∇Tk(u) in L1(QT ).

Furthermore, since ϕn(x, t, un)S
′(un) = ϕn(x, t, Tk(un))S

′(un) a.e. in QT . By
((30)) we obtain |ϕn(x, t, Tk(un))S′(un)| ≤ ν(x)|c(x, t)|kγ , it follows that

ϕn(x, t, Tk(un))S
′(un) → ϕn(x, t, Tk(u))S

′(u) strongly in Lp′
(QT , ν

1−p′
).

In a similar way, it results

S′′(un)ϕn(x, t, un)∇un = S′′(Tk(un))ϕn(x, t, Tk(un))∇Tk(un) a.e. in QT .

Using the weakly convergence of Tk(un) in L
p((0, T );W p

0 (ν)) it is possible to prove
that

S′′(un)ϕn(x, t, un)∇un → S′′(u)ϕ(x, t, u)∇u in L1(QT ).

Finally by ((31)) we deduce that fnS
′(un) converges to fS

′(u) in L1(QT ).
It remains to prove that BS(u) satisfies the initial condition BS(t = 0) = BS(u0)

in Ω. To this end, firstly remark that S being bounded, Bn
S(un) is bounded in

L∞(Q). Secondly the above considerations of the behavior of the terms of this

equation show that
∂Bϵ

S(uϵ)
∂t is bounded in L1(QT ) + Lp′

(0, T ;W−1,p′
(ν1−p′

)). As
a consequence, an Aubin’s type lemma (See e.g [29]) implies that Bn

S(un) lies in a
compact set of C0([0, T ], L1(Ω)). On the other hand, the smoothness of of S implies
that BS(t = 0) = BS(u0) in Ω.
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