NONLINEAR DEGENERATED PARABOLIC EQUATIONS WITH LOWER ORDER TERMS

J. BENNOUNA , M. HAMMOUMI AND A. ABERQI

Abstract

We prove an existence result of a renormalized solution for a class of nonlinear degenerated parabolic problems with $L^{1}(\Omega \times(0, T))$-data.

1. Introduction

In this paper we study the existence of solutions for the following class of nonlinear parabolic problems

$$
\begin{cases}\frac{\partial b(u)}{\partial t}-\operatorname{div} a(x, t, u, \nabla u)+\operatorname{div}(\phi(x, t, u))=f & \text { in } Q_{T} \tag{1}\\ u(x, t)=0 & \text { on } \partial \Omega \times(0, T) \\ b(u(x, 0))=b\left(u_{0}(x)\right) & \text { in } \Omega,\end{cases}
$$

where Ω is a bounded open subset of $\mathbb{R}^{N}, N \geq 3, Q_{T}=\Omega \times(0, T), T>0, b$ is a strictly increasing C^{1}-function and div $a(x, t, u, \nabla u)$ is a Leray-Lions type operator defined on the weighted Sobolev space $W_{0}^{1, p}(\Omega, \nu)$ (see assumptions (15)-(17) of Section 2). The function $\phi(x, t, u)$ is a Carathéodory function with suitable assumptions (see assumptions (18)-(20)). The right-hand side belongs to $L^{1}\left(Q_{T}\right)$. Let us point out, the difficulties that arise in problem (1) are due to the following facts: the data f and $b\left(u_{0}\right)$ only belong to $L^{1}\left(Q_{T}\right)$ and $L^{1}(\Omega)$ respectively, the function $\phi(x, t, u)$ is just satisfies the following codition $|\phi(x, t, s)| \leq c(x, t)|s|^{\gamma} \nu(x)$, and the presence of the weighted function ν (see assumptions (4)-(5).

Under our assumptions, problem (1) does not admit, in general, a weak solution since the term $\phi(x, t, u)$ may not belong $\left(L_{l o c}^{1}(Q)\right)^{N}$. In order to overcome this difficulty, we work with the framework of renormalized solutions (see definition (3.1)). This notion was introduced by R.-J. DiPerna and P.-L. Lions [21] in their study of the Boltzmann equation. This notion was then adapted to an elliptic version of (1) by L. Boccardo and al (see [14]) when the right hand side is in $W^{-1, p^{\prime}}(\Omega)$ and by J.-M. Rakotoson (see [26]) when the right hand side is in $L^{1}(\Omega)$, and finally by G. Dal Maso, F. Murat, L. Orsina and A. Prignet [17]

The existence and uniqueness of a renormalized solution for parabolic problems in the classical space has been proved by D. Blanchard and F. Murat [10] in the

[^0]case where $a(x, t, s, \xi)$ is independent of s, and with $\phi=0$ and by D. Blanchard, F. Murat and H . Redwane with the nonstricte monotonicity on a with $\nu=1$ (see [11] condition (7)).
For the degenerated parabolic equations the existence of weak solutions have been proved by L. Aharouch and al [1] in the case where a is strictly monotone, $\phi=0$ and $f \in L^{p^{\prime}}\left(0, T, W^{-1, p^{\prime}}\left(\Omega, \nu^{1-p^{\prime}}\right)\right)$. See also the existence of renormalized solution proved by Y. Akdim and al [6] in the case where $a(x, t, s, \xi)$ is independent of s and $\phi=0$.

In the case where $b(u)=u$ and $\nu=1$ the existence of renormalized solutions for (1) has been established by R.-Di Nardo (see [19]). For the degenerated parabolic equation with $b(u)=u$, $\operatorname{div}(\phi(x, t, u))=H(x, t, u, \nabla u)$ and $f \in L^{1}(Q)$, the existence of renormalized solution has been proved by Y. Akdim and al (see [3]).

The case where $b(u)=b(x, u), \operatorname{div}(\phi(x, t, u))=H(x, t, u, \nabla u)$ and $f \in L^{1}(Q)$, the existence of renormalized solutions has been established by H. Redwane (see [28]) in the classical Sobolev space $(\nu=1)$ and by Y. Akdim and al (see [2]) in the degenerate Sobolev space.

Note that, this paper can be seen as a generalization of ([4], [19]) in weighted case, and we prove the existence of a renormalized solution of (1)

The plan of the paper is as follows: In Section 2 we give some preliminaries and we make precise all the assumptions on a, ϕ, f, and $b\left(u_{0}\right)$. In Section 3 we give the definition of a renormalized solution of (1), and we establish (Theorem 3.1) the existence of such a solution.

2. Preliminaries and auxiliary Results

We recall here some standard notations, properties and results which will be used through the paper.
Let Ω be a bounded open set of \mathbb{R}^{N} and $Q_{T}=\Omega \times(0, T), T$ is a positive real number. Let $\nu(x)$ be a nonnegative function on Ω such that $\nu(x) \in L^{r}(\Omega), r \geq 1$, $\nu(x)^{-1} \in L^{t}(\Omega), p \geq 1+1 / t$. We denote by $L^{p}(\Omega, \nu)$, or simply $L^{p}(\nu)$ if there is no confusion, $p \geq 1$, the space of measurable functions u on Ω such that

$$
\begin{equation*}
\|u\|_{L^{p}(\nu)}=\left(\int_{\Omega}|u|^{p} \nu(x) d x\right)^{\frac{1}{p}}<+\infty \tag{2}
\end{equation*}
$$

and by $W^{1, p}(\nu)$ the completion of the space $C^{1}(\bar{\Omega})$ with respect to the norm

$$
\begin{equation*}
\|u\|_{W^{1, p}(\nu)}=\|u\|_{L^{p}(\nu)}+\|\nabla u\|_{L^{p}(\nu)} . \tag{3}
\end{equation*}
$$

Moreover we denote by $W_{0}^{1, p}(\nu)$ the closure of $C_{0}^{1}(\bar{\Omega})$ in $W^{1, p}(\nu)$, provided with the induced topology defined by the induced norm, and by $W^{-1, p^{\prime}}\left(\nu^{1-p^{\prime}}\right), p^{\prime}=\frac{p}{p-1}$, its dual space. $W^{1, p}(\nu)$ and $W_{0}^{1, p}(\nu)$ are reflexive Banach spaces if $1<p<\infty$, (see [25]).

Denote $V=W_{0}^{1, p}(\nu), H=L^{2}(\nu)$ and $V^{*}=W_{0}^{-1, p^{\prime}}\left(\nu^{1-p^{\prime}}\right)$, with $p \geq 2$. The dual space of $X:=L^{p}\left(0, T ; W_{0}^{1, p}(\nu)\right)$ denoted X^{*} is identified to $L^{p^{\prime}}\left(0, T ; V^{*}\right)$. Define $W_{p}^{1}(0, T, V, H)=\left\{v \in X: v^{\prime} \in X^{*}\right\}$. Endowed with the norm

$$
\|u\|_{W_{p}^{1}}=\|u\|_{X}+\left\|u^{\prime}\right\|_{X^{*}},
$$

$W_{p}^{1}(0, T, V, H)$ is a Banach space. Here u^{\prime} stands for the generalized time derivative of u, that is,

$$
\int_{0}^{T} u^{\prime}(t) \varphi(t) d t=-\int_{0}^{T} u(t) \varphi^{\prime}(t) d t \text { for all } \varphi \in C_{0}^{\infty}(0, T)
$$

Lemma 2.1. [30]
(1) The evolution triple $V \hookrightarrow H \hookrightarrow V^{*}$ is verified.
(2) The imbedding $W_{p}^{1}(0, T, V, H) \hookrightarrow C(0, T, H)$ is continuous.
(3) The imbedding $W_{p}^{1}(0, T, V, H) \hookrightarrow L^{p}\left(Q_{T}, \nu\right)$ is compact.

Lemma 2.2. [1]
Let $g \in L^{r}(Q, \nu)$ and let $g_{n} \in L^{r}(Q, \nu)$, with $\left\|g_{n}\right\|_{L^{r}(Q, \nu)} \leq C$, with $1<r<+\infty$. If $g_{n}(x) \rightarrow g(x)$ a.e in Q then $g_{n} \rightharpoonup g$ in $L^{r}(Q, \nu)$
Lemma 2.3. [1] Let $\left\{v_{n}\right\}$ be a bounded sequence in $L^{p}(0, T ; V)$ such that

$$
\frac{\partial v_{n}}{\partial t}=\alpha_{n}+\beta_{n} \text { in } \mathcal{D}^{\prime}(Q)
$$

with $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ two bounded sequences respectively in X^{*} and in $L^{1}(Q)$. Then $v_{n} \rightarrow v$ in $L_{l o c}^{p}(Q, \nu)$. Furthermore, $v_{n} \rightarrow v$ strongly in $L^{1}(Q)$.

From now on, we assume that the following assumptions hold true

$$
\begin{gather*}
\nu(x)^{-1} \in L^{t}(\Omega), t \geq \frac{N}{p}, 1+\frac{1}{t}<p<N\left(1+\frac{1}{t}\right) \tag{4}\\
\nu(x) \in L^{r}(\Omega), r>\frac{N t}{p t-N} \tag{5}
\end{gather*}
$$

An important tool that we will use here, is the following weighted version of the Sobolev inequality (see Theorem 3.1 and Corollary 3.5 in [25]).

Proposition 2.1. [25] Assume that (4) and (5) hold true. Let \tilde{p} denote the number associated to p defined by

$$
\frac{1}{\tilde{p}}=r^{\prime}\left(\frac{1}{p}\left(1+\frac{1}{t}\right)-\frac{1}{N}\right)
$$

Then the imbedding of $W_{0}^{1, p}(\nu)$ into $L^{\tilde{p}}(\nu)$ is continuous. moreover, there exists a constant $C_{0}>0$ depending on N, p, ν, t, such that

$$
\begin{equation*}
\|u\|_{L^{\tilde{p}}(\nu)} \leq C_{0}\| \| \nabla u \|_{L^{p}(\nu)}, \forall u \in W_{0}^{1, p}(\nu) \tag{6}
\end{equation*}
$$

Using this proposition, we can prove the following interpolation result.
Proposition 2.2. Assume that (4) and (5) hold true. Let v be a function in $W_{0}^{1, p}(\nu) \cap L^{s}(\Omega)$ with $2 \leq p<N$ and $s>r^{\prime}$. Then there exists a positive constante C, depending on N, p, ν, t and q, such that

$$
\|v\|_{L^{\sigma}(\nu)} \leq C\|\nabla v\|_{L^{p}(\nu)}^{1-\theta}\|v\|_{L^{s}(\Omega)}^{\theta}
$$

for every θ and σ satisfying

$$
0 \leq \theta \leq 1,1 \leq \sigma \leq+\infty, \frac{1}{\sigma}=\theta+r^{\prime}(1-\theta)\left(\left(1+\frac{1}{t}\right) \frac{1}{p}-\frac{1}{N}\right), r>\frac{N t}{p t-N}
$$

Proof. For every $1 \leq \sigma \leq \tilde{p}$, we can write $\frac{1}{\sigma}=\theta+\frac{1-\theta}{\tilde{p}}$ for some $0 \leq \theta \leq 1$. So that by the Hölder inequality and (6), one has

$$
\begin{aligned}
\|v\|_{L^{\sigma}(\nu)} & \leq C_{0}\| \| v \mid\left\|_{L^{p}(\nu)}^{1-\theta}\right\| v \|_{L^{1}(\nu)}^{\theta} \\
& \leq C_{0}\|\nabla v \mid\|\left\|_{L^{p}(\nu)}^{1-\theta}\right\| \nu\left\|_{L^{s^{\prime}}(\Omega)}^{\theta}\right\| v \|_{L^{s}(\Omega)}^{\theta},
\end{aligned}
$$

which gives the desired result.
An immediate consequence of the previous result, we get
Corollary 2.1. Let $v \in L^{p}\left((0, T), W_{0}^{1, p}(\nu)\right) \cap L^{\infty}\left((0, T), L^{s}(\Omega)\right)$, with $2 \leq p<N$ and $s>r^{\prime}$. Then $v \in L^{\sigma}(\nu)$ with $\sigma=\frac{p \tilde{p}+\tilde{p}-p}{\tilde{p}}$. Moreover,

$$
\int_{Q_{T}} \nu(x)|v|^{\sigma} d x d t \leq C\|v\|_{L^{\infty}\left(0, T, L^{s}(\Omega)\right)}^{\frac{\tilde{p}-p}{\tilde{p}}} \int_{Q_{T}} \nu(x)|\nabla v|^{p} d x d t .
$$

Proof. By virtue of Proposition 2.2, we can write

$$
\int_{\Omega} \nu(x)|v|^{\sigma} d x \leq C\||\nabla v|\|_{L^{p}(\nu)}^{(1-\theta) \sigma}\|v\|_{L^{s}(\Omega)}^{\theta \sigma} .
$$

Integrating between 0 and T, we get

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega} \nu(x)|v|^{\sigma} d x d t \leq C \int_{0}^{T}\||\nabla v|\|_{L^{p}(\nu)}^{(1-\theta) \sigma}\|v\|_{L^{s}(\Omega)}^{\theta \sigma} d t \tag{7}
\end{equation*}
$$

Since $v \in L^{p}\left((0, T), W_{0}^{1, p}(\nu)\right) \cap L^{\infty}\left((0, T), L^{s}(\Omega)\right)$, we have

$$
\int_{0}^{T} \int_{\Omega} \nu(x)|v|^{\sigma} d x d t \leq C\|v\|_{L^{\infty}\left(0, T, L^{s}(\Omega)\right)}^{\theta \sigma} \int_{0}^{T}\|\mid \nabla v(t)\|_{L^{p}(\nu)}^{(1-\theta) \sigma} d t .
$$

Now we choose θ such that

$$
(1-\theta) \sigma=p \text { and } \theta \sigma=\frac{\tilde{p}-p}{\tilde{p}}
$$

This choice yields

$$
\theta=\frac{\tilde{p}-p}{p \tilde{p}+\tilde{p}-p} \text { and } \sigma=\frac{p \tilde{p}+\tilde{p}-p}{\tilde{p}}
$$

Then, (7) becomes

$$
\int_{0}^{T} \int_{\Omega} \nu(x)|v|^{\sigma} d x d t \leq C\|v\|_{L^{\infty}\left(0, T, L^{s}(\Omega)\right)}^{\frac{\tilde{\tilde{p}-p}}{\tilde{p}}} \int_{0}^{T}\|\mid \nabla v(t)\|_{L^{p}(\nu)}^{p} d t
$$

In order to prove our existence result, we shall prove a technical lemma, following the same method used in [7]) that yields two estimates for $\left|u_{n}\right|^{p-1}$ and $\left|\nabla u_{n}\right|^{p-1}$ in the Lorentz spaces $L^{\frac{2 p \tilde{\tilde{p}}-\tilde{p}-p}{2 \tilde{p}(p-1)}, \infty}\left(Q_{T}\right)$ and $L^{\frac{p(2 p \tilde{\tilde{p}}-\tilde{\tilde{p}}-p)}{(p-1)(2 p \bar{p}+p)}, \infty}\left(Q_{T}\right)$ respectively. Moreover by imbedding theorems, these a priori bounds imply two estimates in the Lebesgue spaces $L^{m}\left(Q_{T}\right)$ and $L^{s}\left(Q_{T}\right)$ with $m<\frac{2 p \tilde{p}-\tilde{p}-p}{2 \tilde{p}(p-1)}$ and $s<\frac{p(2 p \tilde{p}-\tilde{p}-p)}{(p-1)(2 p \tilde{p}+\tilde{p}-p)}$. In what follows, we define

$$
\operatorname{meas}_{\nu} E=\int_{E} \nu(x) d x
$$

for any measurable set $E \subseteq \mathbb{R}^{N}$. Tus, we can define the weighted Lorentz spaces $L^{r, \infty}(\nu), 1 \leq r \leq+\infty$ as the set of measurable functions u defined on Ω such that

$$
\|u\|_{L^{r, \infty}(\nu)}=\sup _{t>0} \operatorname{tmeas}_{\nu}\{x \in \Omega:|u|>t\}^{\frac{1}{r}}<+\infty
$$

Throughout the paper, $T_{k}, k>0$, denotes the truncation function at level k defined on \mathbb{R} by $T_{k}(r)=\max (-k, \min (k, r))$.

Lemma 2.4. Assume that Ω is an open subset of \mathbb{R}^{N} of finite measure, $2 \leq p<N$, and that (4) and 5 hold true. Let u be a measurable function satisfying $T_{k}(u) \in L^{p}\left(0, T, W_{0}^{1, p}(\nu)\right) \cap L^{\infty}\left(0, T, L^{2}(\Omega)\right)$ for every $k>0$ and such that:

$$
\begin{equation*}
\sup _{t \in(0, T)} \int_{\Omega}\left|T_{k}(u)\right|^{2} d x+\int_{Q_{T}} \nu(x)\left|\nabla T_{k}(u)\right|^{p} d x d t \leq M k, \quad \forall k>0 \tag{8}
\end{equation*}
$$

where M is a positive constant. Then we get $|u|^{p-1} \in L^{\frac{2 p \tilde{p}-\tilde{p}-p}{2 \tilde{p}(p-1)}, \infty}\left(Q_{T}\right)$, and $|\nabla u|^{p-1} \in$ $L^{\frac{p(2 p \tilde{p}-\bar{p}-p)}{(p-1)(2 p \bar{p}+\bar{p}-p)}}, \infty\left(Q_{T}\right)$, Moreover, we have the following estimates

$$
\begin{align*}
& \left\||u|^{p-1}\right\|_{L^{\frac{2 \tilde{p}-\tilde{p}-p}{2 \tilde{p}(p-1)}, \infty}\left(Q_{T}\right)} \leq C M^{\left(\frac{\tilde{p}-p}{2 \tilde{p}}+1\right)^{\frac{2 \tilde{p}(p-1)}{2 p \tilde{p}-\tilde{p}-p}}} \tag{9}\\
& \left\||\nabla u|^{p-1}\right\|_{L^{\frac{p(2 p \tilde{\tilde{p}}-\tilde{\tilde{p}}-p)}{(p-1)(2 p \bar{p}+\tilde{p}-p)}, \infty}\left(Q_{T)} \leq C M^{\frac{2 p \tilde{p}+2 \tilde{p}-2 p}{2 p \tilde{p}+\tilde{p}-p}}\right.} \tag{10}
\end{align*}
$$

where C is a constant depend only on N, p, ν, and t.
Proof. We first prove (9). For any $k_{0}>0$, we can write

$$
\begin{align*}
& \left\||u|^{p-1}\right\|_{L^{\frac{2 p \tilde{p}-\tilde{p}-p}{2 \tilde{p}(p-1)}, \infty}\left(Q_{T}\right)} \leq \sup _{0<k<k_{0}} k\left[\operatorname{meas}_{\nu}\left\{(x, t) \in Q_{T}:|u|^{p-1}>k\right\}\right]^{\frac{2 \tilde{\tilde{p}}(p-1)}{2 p \tilde{p}-\tilde{p}-p}} \\
& +\sup _{k \geq k_{0}} k\left[\operatorname{meas}_{\nu}\left\{(x, t) \in Q_{T}:|u|^{p-1}>k\right\}\right]^{\frac{2 \tilde{p}(p-1)}{2 \tilde{p}-\tilde{p}-p}} \\
& \leq k_{0}\left|Q_{T}\right|^{\frac{2 \tilde{p}(p-1)}{2 p \tilde{p}-\tilde{p}-p}}+\sup _{k \geq k_{0}} k\left[\operatorname{meas}_{\nu}\left\{(x, t) \in Q_{T}:|u|^{p-1}>k\right\}\right]^{\frac{2 \tilde{p}(p-1)}{2 p \tilde{p}-\tilde{p}-p}} \tag{11}
\end{align*}
$$

By corollary (2.1) and (8) we have

$$
\begin{aligned}
& k^{\frac{p \tilde{p}+\tilde{p}-p}{\tilde{p}}} \operatorname{meas}_{\nu}\left\{(x, t) \in Q_{T}:|u|>k\right\} \\
& \leq \int_{Q_{T}} \nu(x)\left|T_{k}(u)\right|^{\frac{p \tilde{p}+\tilde{p}-p}{\tilde{p}}} d x d t \\
& \leq C \sup _{t \in(0, T)}\left(\int_{\Omega}\left|T_{k}(u)\right|^{2} d x\right)^{\frac{\tilde{p}-p}{2 \tilde{p}}} \int_{Q_{T}} \nu(x)\left|\nabla T_{k}(u)\right|^{p} d x d t \\
& \leq C(M k)^{\frac{\tilde{p}-p}{2 \tilde{p}}+1}
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\operatorname{meas}_{\nu}\left\{(x, t) \in Q_{T}:|u|^{p-1}>k\right\} \leq C M^{\frac{\tilde{p}-p}{2 \tilde{p}}+1} k^{-\frac{2 p \tilde{p}-\tilde{p}-p}{2 \tilde{p}(p-1)}} \tag{12}
\end{equation*}
$$

By (12) we deduce that $|u|^{p-1} \in L^{\frac{2 p \tilde{p}-\tilde{p}-p}{2 \tilde{p}(p-1)}, \infty}\left(Q_{T}\right)$. Furthermore, putting (12) in (11) and taking $k_{0}=\frac{M^{\left(\frac{\tilde{p}-p}{2 \tilde{p}}+1\right) \frac{2 \tilde{p}(p-1)}{2 p p-p} p}}{\left\lvert\, Q_{T} \frac{\tilde{p} \bar{p} p-1)}{p(2 p \tilde{p}-\tilde{p}-p)}\right.}$ we get (9). We now prove the estimate involving the gradient of u. For every $\lambda>0$ and every $k>0$, we have

$$
\begin{aligned}
\operatorname{meas}_{\nu}\left\{(x, t) \in Q_{T}:|\nabla u|>\lambda\right\} & \leq \operatorname{meas}_{\nu}\left\{(x, t) \in Q_{T}:|\nabla u|>\lambda \text { and }|u| \leq k\right\} \\
& +\operatorname{meas}_{\nu}\left\{(x, t) \in Q_{T}:|\nabla u|>\lambda \text { and }|u|>k\right\} .
\end{aligned}
$$

By (8) we know that

$$
\begin{aligned}
M k \geq \int_{Q_{T}} \nu(x)\left|\nabla T_{k}(u)\right|^{p} d x d t & \geq \int_{\{|u| \leq k\} \cap\{|\nabla u|>\lambda\}} \lambda^{p} \nu(x) d x \\
& \geq \lambda^{p} \operatorname{meas}_{\nu}\left\{(x, t) \in Q_{T}:|\nabla u|>\lambda \text { and }|u| \leq k\right\}
\end{aligned}
$$

which implies

$$
\operatorname{meas}_{\nu}\left\{(x, t) \in Q_{T}:|\nabla u|^{(p-1)}>\lambda \quad \text { and } \quad|u| \leq k\right\} \leq \frac{M k}{\lambda^{p^{\prime}}}
$$

The above formula together with (12) allow us to obtain

$$
\begin{equation*}
\operatorname{meas}_{\nu}\left\{(x, t) \in Q_{T}:|\nabla u|^{(p-1)}>\lambda\right\} \leq \frac{M k}{\lambda^{p^{\prime}}}+C M^{\frac{\tilde{p}-p}{2 \tilde{p}}+1} k^{-\frac{2 p \tilde{p}-\tilde{\tilde{p}}-p}{2 \tilde{p}}} \tag{13}
\end{equation*}
$$

If we take $k=M^{\frac{\tilde{p}-p}{2 p \tilde{p}+\tilde{p}-p}} \lambda^{\frac{2 p \tilde{p}}{(p-1)(2 p \tilde{p}+\tilde{p}-p)}},(13)$ becomes

$$
\begin{equation*}
\operatorname{meas}_{\nu}\left\{(x, t) \in Q_{T}:|\nabla u|^{(p-1)}>\lambda\right\} \leq C \frac{M^{\frac{2(p \tilde{p}+\tilde{p}-p)}{2 p \tilde{p}+\tilde{p}-p}}}{\lambda^{\frac{p(2 p \tilde{p}-p)}{(p-1)(2 p)}(2 p \bar{p}+\tilde{p}-p)}}, \tag{14}
\end{equation*}
$$

which proves (10).
2.1. Assumptions and main result. We now make precise assumptions on each part of problem (1). Let Ω be a bounded open subset of $\mathbb{R}^{N}, N \geq 2, Q_{T}=\Omega \times(0, T)$, $T>0$, and $2 \leq p<+\infty$. Let $\nu(x)$ be a nonnegative function satisfying (4) and (5). Suppose that $b: \mathbb{R} \rightarrow \mathbb{R}$ is a strictly increasing C^{1}-function, such that $b(0)=0$ and $b^{\prime}>\beta>0$ for some $\beta>0$, and for almost every $(x, t) \in Q_{T}$, for every $s \in \mathbb{R}$ and every $\xi \in \mathbb{R}^{N}$

$$
\begin{gather*}
|a(x, t, s, \xi)| \leq \nu(x)\left(h(x, t)+|s|^{p-1}+|\xi|^{p-1}\right), h(x, t) \in L^{p^{\prime}}(\nu), \tag{15}\\
a(x, t, s, \xi) \xi \geq \alpha \nu(x)|\xi|^{p}, \text { with } \alpha>0 \tag{16}\\
(a(x, t, s, \xi)-a(x, t, s, \eta) \cdot(\xi-\eta)>0, \xi \neq \eta \tag{17}\\
|\phi(x, t, s)| \leq c(x, t)|s|^{\gamma} \nu(x) \tag{18}\\
c(x, t) \in\left(L^{\tau}\left(Q_{T}, \nu\right)\right)^{N}, \quad \tau=\frac{p(3 \tilde{p}-p)}{(p-1)(\tilde{p}-p)} \tag{19}\\
\gamma=\frac{2(p-1)(p \tilde{p}+\tilde{p}-p)}{p(3 \tilde{p}-p)} \tag{20}\\
f \in L^{1}\left(Q_{T}\right) \tag{21}
\end{gather*}
$$

and

$$
\begin{equation*}
u_{0} \in L^{1}(\Omega) \text { such that } b\left(u_{0}\right) \in L^{1}(\Omega) \tag{22}
\end{equation*}
$$

We have to seek for a solution to problem (1) in the following sense.
Definition 2.1. A measurable function u is a renormalized solution to problem (1), if

$$
\begin{gather*}
b(u) \in L^{\infty}\left((0, T), L^{1}(\Omega)\right) \tag{23}\\
T_{k}(u) \in L^{p}\left((0, T), W_{0}^{1, p}(\Omega)\right), \text { for any } k>0 \tag{24}\\
\lim _{m \rightarrow+\infty} \frac{1}{m} \int_{\left\{(x, t) \in Q_{T}:|u(x, t)| \leq m\right\}} a(x, t, u, \nabla u) \nabla u d x d t=0, \tag{25}
\end{gather*}
$$

and if for every function S in $W^{2, \infty}(\mathbb{R})$ which is piecewise C^{1} and such that S^{\prime} has a compact support

$$
\begin{align*}
& \frac{\partial B_{S}(u)}{\partial t}-\operatorname{div}\left(a(x, t, u, \nabla u) S^{\prime}(u)\right)+S^{\prime \prime}(u) a(x, t, u, \nabla u) \nabla u \tag{26}\\
& +\operatorname{div}\left(\phi(x, t, u) S^{\prime}(u)\right)-S^{\prime \prime}(u) \phi(x, t, u) \nabla u=f S^{\prime}(u) \quad \text { in } \quad D^{\prime}(\Omega)
\end{align*}
$$

and

$$
\begin{equation*}
B_{S}(u)(t=0)=B_{S}\left(u_{0}\right) \quad \text { in } \quad \Omega \tag{27}
\end{equation*}
$$

where $B_{S}(z)=\int_{0}^{z} b^{\prime}(s) S^{\prime}(s) d s$.
Remark 2.1. Equation (26) is formally obtained through multiplication of (1) by $S^{\prime}(u)$. However while $a(x, t, u, \nabla u)$ and $\phi(x, t, u)$ does not in general make sense in (1), all the terms in (26) have a meaning in $D^{\prime}\left(Q_{T}\right)$. Indeed, if M is such that supp $S^{\prime} \subset[-M, M]$, the following identifications are made in (26):

- $B_{S}(u)$ belongs to $L^{\infty}\left(Q_{T}\right)$ since S is a bounded function and

$$
D B_{S}(u)=S^{\prime}(u) b^{\prime}\left(T_{M}(u)\right) D T_{M}(u)
$$

- $S^{\prime}(u) a(x, t, u, \nabla u)$ identifies with $S^{\prime}(u) a\left(x, t, T_{M}(u), \nabla T_{M}(u)\right)$ a.e in Q_{T}. Since we have $\left|T_{M}(u)\right| \leq M$ a.e in Q_{T} and $S^{\prime}(u) \in L^{\infty}\left(Q_{T}\right)$, we obtain from (15) and (24) that

$$
S^{\prime}(u) a\left(x, t, T_{M}(u), \nabla T_{M}(u)\right) \in\left(L^{p^{\prime}}\left(Q_{T}, \nu^{1-p^{\prime}}\right)\right)^{N}
$$

- $S^{\prime \prime}(u) a(x, t, u, \nabla u) \nabla u$ identifies with $S^{\prime \prime}(u) a\left(x, t, T_{M}(u), \nabla T_{M}(u)\right) \nabla T_{M}(u)$ a.e. in Q_{T} and

$$
S^{\prime \prime}(u) a\left(x, t, T_{M}(u), \nabla T_{M}(u)\right) \nabla T_{M}(u) \in L^{1}\left(Q_{T}\right)
$$

- $S^{\prime \prime}(u) \phi(x, t, u) \nabla u$ and $S^{\prime}(u) \phi(x, t, u)$ are respectively identify with the two terms $S^{\prime \prime}(u) \phi\left(x, t, T_{M}(u)\right) \nabla T_{M}(u)$ and $S^{\prime}(u) \phi\left(x, t, T_{M}(u)\right)$ a.e. in Q_{T}.
The above consideration shows that equation (26) hold in $D^{\prime}(\Omega), \frac{\partial B_{S}(u)}{\partial t}$ belongs to $L^{1}(Q)+L^{p^{\prime}}\left(0, T, W^{-1, p^{\prime}}\left(Q_{T}, \nu^{1-p^{\prime}}\right)\right)$ and $B_{S}(u) \in L^{p}\left(0, T, W_{0}^{1, p}(\Omega, \nu)\right) \cap L^{\infty}(Q)$. It follows that $B_{S}(u)$ belongs to $C^{0}\left([0, T], L^{1}(\Omega)\right)$ so the initial condition (27) makes sense.

Theorem 2.1. Assume that (4), (5) and (15)-(22) hold true. Then, there exists at least a renormalized solution of the problem (1).
Remark 2.2. The result of Theorem 2.1 extends to the weighted case the analogous in [4] (with $\nu=1$), in [5] (with $\phi(x, t, u)=\phi(u)$) and in [19] (with $b(u)=u, \nu=1$).

Remark 2.3. Similar result can be obtained if the datum is of the forme $f-\operatorname{divF}$, with $f \in L^{1}(\Omega)$ and $F \in\left(L^{p^{\prime}}\left(\Omega, \nu^{1-p^{\prime}}\right)\right)^{N}$.

3. Proof of Theorem 2.1

We divide the proof is divided into six steps.
Step 1: Approximate problem and a priori estimates.
For each $n>0$, let us define the following approximation of b, a, ϕ, f, and u_{0};

$$
\begin{equation*}
b_{n}(r)=T_{n}(b(r))+\frac{1}{n} r . \quad \forall r \in \mathbb{R} \tag{28}
\end{equation*}
$$

$$
\begin{gather*}
a_{n}(x, t, s, \xi)=a\left(x, t, T_{n}(s), \xi\right) \text {.a.e in } Q \quad \forall s \in \mathbb{R}, \forall \xi \in \mathbb{R}^{N}, \tag{29}\\
\phi_{n}(x, t, r)=\phi\left(x, t, T_{n}(r)\right) \text { a.e. }(x, t) \in Q_{T}, \forall r \in \mathbb{R} . \tag{30}\\
f_{n} \in L^{p^{\prime}}\left(Q_{T}\right) \text { such that } f_{n} \rightarrow f \text { strongly in } L^{1}\left(Q_{T}\right) \tag{31}
\end{gather*}
$$

and

$$
\begin{equation*}
u_{0 n} \in D(\Omega) \text { such that } b_{n}\left(u_{0 n}\right) \rightarrow b\left(u_{0}\right) \text { a.e. }(x, t) \in \Omega \text { strongly in } L^{1}(\Omega) \tag{32}
\end{equation*}
$$

Let us consider the approximate problem :

$$
\left\{\begin{array}{l}
\frac{\partial b_{n}\left(u_{n}\right)}{\partial t}-\operatorname{div}\left(a_{n}\left(x, t, u_{n}, \nabla u_{n}\right)\right)+\operatorname{div}\left(\phi_{n}\left(x, t, u_{n}\right)\right)=f_{n} \quad \text { in } \quad D^{\prime}\left(Q_{T}\right), \tag{33}\\
u_{n}(x, t)=0 \quad \text { on } \partial \Omega \times(0, T) \\
b_{n}\left(u_{n}(x, 0)\right)=b_{n}\left(u_{0 n}(x)\right) \text { in } \Omega
\end{array}\right.
$$

As a consequence, proving existence of a weak solution $u_{n} \in L^{p}\left((0, T), W_{0}^{1, p}(\nu)\right)$ of (33) is an easy task (See [1], [24] and [27]).

Step 2: The estimates derived in this step rely on standard techniques for problems of type (33).
Using in (33), the test function $T_{k}\left(u_{n}\right) \chi_{\left(0, \tau_{1}\right)}$, we get, for every $\tau_{1} \in[0, T]$, we integrate between $\left(0, \tau_{1}\right)$ and by the condition (30) we have

$$
\begin{gather*}
\int_{\Omega} B_{k}^{n}\left(u_{n}\left(\tau_{1}\right)\right) d x+\int_{Q_{\tau_{1}}} a_{n}\left(x, t, u_{n}, \nabla u_{n}\right) \nabla T_{k}\left(u_{n}\right) d x d t \\
\leq \int_{Q_{\tau_{1}}} c(x, t)\left|u_{n}\right|^{\gamma} \nu(x)\left|\nabla T_{k}\left(u_{n}\right)\right| d x d t+\int_{Q_{\tau_{1}}} f_{n} T_{k}\left(u_{n}\right) d x d t+\int_{\Omega} B_{k}^{n}\left(u_{0 n}\right) d x \tag{34}
\end{gather*}
$$

where $B_{k}^{n}(r)=\int_{0}^{r} T_{k}(s) b_{n}^{\prime}(s) d s$. Due to definition of B_{k}^{n} we have:

$$
\begin{equation*}
0 \leq \int_{\Omega} B_{k}^{n}\left(u_{0 n}\right) d x \leq k \int_{\Omega}\left|b_{n}\left(u_{0 n}\right)\right| d x \leq k\left\|b\left(u_{0}\right)\right\|_{L^{1}(\Omega)} \quad \forall k>0 \tag{35}
\end{equation*}
$$

Using (34) and (16) we obtain:

$$
\begin{gather*}
\int_{\Omega} B_{k}^{n}\left(u_{n}\left(\tau_{1}\right)\right) d x+\alpha \int_{Q_{\tau_{1}}} \nu(x)\left|\nabla T_{k}\left(u_{n}\right)\right|^{p} d x d t \\
\leq \int_{Q_{\tau_{1}}} c(x, t)\left|u_{n}\right|^{\gamma} \nu(x)\left|\nabla T_{k}\left(u_{n}\right)\right| d x d t+k\left(\left\|b\left(u_{0}\right)\right\|_{L^{1}(\Omega)}+\left\|f_{n}\right\|_{L^{1}(Q)}\right) \tag{36}
\end{gather*}
$$

If we take the supremum for $t \in\left(0, \tau_{1}\right)$ and we define $M=\sup \left(\left\|f_{n}\right\|_{L^{1}(Q)}\right)+$ $\left\|b\left(u_{0}\right)\right\|_{L^{1}(\Omega)}$, we deduce from that above inequality (34) and (35)
$\frac{\beta}{2} \int_{\Omega}\left|T_{k}\left(u_{n}\right)\right|^{2} d x+\alpha \int_{Q_{t}} \nu(x)\left|\nabla T_{k}\left(u_{n}\right)\right|^{p} d x d t \leq M k+\int_{Q_{t}} c(x, t)\left|u_{n}\right|^{\gamma} \nu(x)\left|\nabla T_{k}\left(u_{n}\right)\right| d x d t$.

By Corollary 2.1 and Young inequality we have:

$$
\begin{align*}
& \int_{Q_{t}} c(x, t)\left|u_{n}\right|^{\gamma} \nu(x)\left|\nabla T_{k}\left(u_{n}\right)\right| d x d t \\
& \leq C \frac{\gamma(\tilde{p}-p)}{2(p \tilde{p}+\tilde{p}-p)}\|c(x, t)\|_{L^{\tau}\left(Q_{\tau_{1}}, \nu\right)} \sup _{t \in\left(0, \tau_{1}\right)} \int_{\Omega}\left|T_{k}\left(u_{n}\right)\right|^{2} d x \\
& +C \frac{2 p \tilde{p}+(2-\gamma)(\tilde{p}-p)}{2(p \tilde{p}+\tilde{p}-p)}\|c(x, t)\|_{L^{\tau}\left(Q_{\tau_{1}}, \nu\right)} \tag{38}\\
& \times\left(\int_{Q_{\tau_{1}}} \nu(x)\left|\nabla T_{k}\left(u_{n}\right)\right|^{p} d x d t\right)^{\left(\frac{1}{p}+\frac{\tilde{p}}{p \tilde{p}+\tilde{p}-p}\right) \frac{2(p \tilde{p}+\tilde{p}-p)}{2 p \tilde{p}+(2-\gamma)(\tilde{p}-p)}} .
\end{align*}
$$

Using the value $\gamma=\frac{2(p-1)(p \tilde{p}+\tilde{p}-p)}{p(3 \tilde{p}-p)},(37)$ and (38), we obtain

$$
\begin{gathered}
\frac{\beta}{2} \int_{\Omega}\left|T_{k}\left(u_{n}\right)\right|^{2} d x+\alpha \int_{Q_{t}} \nu(x)\left|\nabla T_{k}\left(u_{n}\right)\right|^{p} d x d t \\
\leq M k+C \frac{\gamma(\tilde{p}-p)}{2(p \tilde{p}+\tilde{p}-p)}\|c(x, t)\|_{L^{\tau}\left(Q_{\tau_{1}}, \nu\right)} \sup _{t \in\left(0, \tau_{1}\right)} \int_{\Omega}\left|T_{k}\left(u_{n}\right)\right|^{2} d x \\
+C \frac{2 p \tilde{p}+(2-\gamma)(\tilde{p}-p)}{2(p \tilde{p}+\tilde{p}-p)}\|c(x, t)\|_{L^{\tau}\left(Q_{\tau_{1}}, \nu\right)} \int_{Q_{\tau_{1}}} \nu(x)\left|\nabla T_{k}\left(u_{n}\right)\right|^{p} d x d t
\end{gathered}
$$

Which is equivalent to

$$
\begin{gathered}
\left(\frac{\beta}{2}-C \frac{\gamma(\tilde{p}-p)}{2(p \tilde{p}+\tilde{p}-p)}\|c(x, t)\|_{L^{\tau}\left(Q_{\tau_{1}}, \nu\right)}\right) \sup _{t \in\left(0, \tau_{1}\right)} \int_{\Omega}\left|T_{k}\left(u_{n}\right)\right|^{2} d x+ \\
\left(\alpha-C \frac{2 p \tilde{p}+(2-\gamma)(\tilde{p}-p)}{2(p \tilde{p}+\tilde{p}-p)}\|c(x, t)\|_{L^{\tau}\left(Q_{\tau_{1}}, \nu\right)}\right) \int_{Q_{\tau_{1}}} \nu(x)\left|\nabla T_{k}\left(u_{n}\right)\right|^{p} d x d t \leq M k
\end{gathered}
$$

If we choose τ_{1} such that

$$
\begin{equation*}
\left(\frac{\beta}{2}-C \frac{\gamma(\tilde{p}-p)}{2(p \tilde{p}+\tilde{p}-p)}\|c(x, t)\|_{L^{\tau}\left(Q_{\tau_{1}}, \nu\right)}\right) \geq 0 \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\alpha-C \frac{2 p \tilde{p}+(2-\gamma)(\tilde{p}-p)}{2(p \tilde{p}+\tilde{p}-p)}\|c(x, t)\|_{L^{\tau}\left(Q_{\tau_{1}}, \nu\right)}\right) \geq 0 \tag{40}
\end{equation*}
$$

then, let us denote by C the minimum between (39) and (40), we obtain

$$
\begin{equation*}
\sup _{t \in\left(0, \tau_{1}\right)} \int_{\Omega}\left|T_{k}\left(u_{n}\right)\right|^{2} d x+\int_{Q_{\tau_{1}}} \nu(x)\left|\nabla T_{k}\left(u_{n}\right)\right|^{p} d x d t \leq C M k \tag{41}
\end{equation*}
$$

By (41) it follows that

$$
\begin{equation*}
T_{k}\left(u_{n}\right) \text { is bounded in } L^{p}\left(0, T ; W_{0}^{1, p}(\nu)\right) \tag{42}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{k}\left(u_{n}\right) \text { is bounded in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \tag{43}
\end{equation*}
$$

Moreover, proceeding as in [10], [12] is possible to prove that for any $S \in W^{2, \infty}(\mathbb{R})$ with S^{\prime} has a compact support, the term

$$
\begin{equation*}
\frac{\partial S\left(u_{n}\right)}{\partial t} \text { is bounded in } L^{1}\left(Q_{T}\right)+L^{p^{\prime}}\left(0, T ; W_{0}^{-1, p^{\prime}}\left(\nu^{1-p^{\prime}}\right)\right) \tag{44}
\end{equation*}
$$

On the other hand, the boundedness of $T_{k}\left(u_{n}\right)(42),(44)$ and the apriori estimate of u_{n}, in the Lorentz spaces imply that there exists a subsequence, still denoted by u_{n}, such that

$$
\begin{equation*}
u_{n} \rightarrow u \text { a.e. in } Q_{T}, \tag{45}
\end{equation*}
$$

where u is a measurable function defined on Q_{T} (see [9], lemma 2 p .224).
We turn now to prove the almost every convergence of $b_{n}\left(u_{n}\right)$. Let $g_{k} \in C^{2}(\mathbb{R})$ such that $g_{k}(s)=s$ for $|s| \leq \frac{k}{2}$ and $g_{k}(s)=k$ for $|s| \geq k$. Multiplying the approximate equation (33) by $g_{k}^{\prime}\left(b_{n}\left(u_{n}\right)\right)$ we get

$$
\begin{gather*}
\frac{\partial g_{k}\left(b_{n}\left(u_{n}\right)\right)}{\partial t}-\operatorname{div}\left(a_{n}\left(x, t, u_{n}, \nabla u_{n}\right) g_{k}^{\prime}\left(b_{n}\left(u_{n}\right)\right)\right) \tag{46}\\
+a_{n}\left(x, t, u_{n}, \nabla u_{n}\right) g_{k}^{\prime \prime}\left(b_{n}\left(u_{n}\right)\right) b_{n}^{\prime}\left(u_{n}\right) \nabla u_{n}+\operatorname{div}\left(\phi_{n}\left(x, t, u_{n}\right) g_{k}^{\prime}\left(b_{n}\left(u_{n}\right)\right)\right. \\
-g_{k}^{\prime \prime}\left(b_{n}\left(u_{n}\right)\right) b_{n}^{\prime}\left(u_{n}\right) \phi_{n}\left(x, t, u_{n}\right) \nabla u_{n}=f_{n} g_{k}^{\prime}\left(b_{n}\left(u_{n}\right)\right) \text { in } D^{\prime}(\Omega)
\end{gather*}
$$

Now each term in (46) is taking into account because of (15), (29) and $T_{k}\left(u_{n}\right)$ is bounded in $L^{p}\left(0, T, W_{0}^{1, p}(\nu)\right)$, we deduce that:

$$
-\operatorname{div}\left(a_{n}\left(x, t, u_{n}, \nabla u_{n}\right) g_{k}^{\prime}\left(b_{n}\left(u_{n}\right)\right)\right)+a_{n}\left(x, t, u_{n}, \nabla u_{n}\right) g_{k}^{\prime \prime}\left(b_{n}\left(u_{n}\right)\right) b_{n}^{\prime}\left(u_{n}\right) \nabla u_{n}+f_{n} g_{k}^{\prime} b_{n}\left(u_{n}\right)
$$

is bounded in $L^{1}\left(Q_{T}\right)+L^{p^{\prime}}\left(0, T, W^{-1, p^{\prime}}\left(\nu^{1-p^{\prime}}\right)\right)$ independently of n as soon as $k<n$. Due to definition of b and b_{n}, it is clear that $\left\{\left|b_{n}\left(u_{n}\right)\right| \leq k\right\} \subset\left\{\left|u_{n}\right| \leq k^{*}\right\}$ where k^{*} is a constant independent of n. As a first consequence we have:

$$
\begin{equation*}
D g_{k}\left(b_{n}\left(u_{n}\right)\right)=g_{k}^{\prime}\left(b_{n}\left(u_{n}\right)\right) b_{n}^{\prime}\left(T_{k^{*}}\left(u_{n}\right)\right) D T_{k^{*}}\left(u_{n}\right) \quad \text { a.e in } Q \tag{47}
\end{equation*}
$$

as soon as $k<n$. Secondly the following estimate hold true:

$$
\left\|g_{k}^{\prime}\left(b_{n}\left(u_{n}\right)\right) b_{n}^{\prime}\left(T_{k^{*}}\left(u_{n}\right)\right)\right\|_{L^{\infty}(Q)} \leq\left\|g_{k}^{\prime}\right\|_{L^{\infty}(Q)}\left(\max _{|r| \leq k^{*}}\left(b^{\prime}(r)+1\right)\right)
$$

As a consequence of $(41),(47)$, we then obtain:

$$
\begin{equation*}
g_{k}\left(b_{n}\left(u_{n}\right)\right) \text { is bounded in } L^{p}\left(0, T, W_{0}^{1, p}(\nu)\right) . \tag{48}
\end{equation*}
$$

Since $\operatorname{supp}\left(g_{k}^{\prime}\right)$ and $\operatorname{supp}\left(g_{k}^{\prime \prime}\right)$ are both included in $[-\mathrm{k}, \mathrm{k}]$ by (30) it follows that for all $k<n$ we have

$$
\begin{aligned}
& \left|\int_{Q_{T}} \phi_{n}\left(x, t, u_{n}\right)^{p^{\prime}} g_{k}^{\prime}\left(b_{n}\left(u_{n}\right)\right)^{p^{\prime}} \nu^{1-p^{\prime}}(x) d x d t\right| \\
& \leq \int_{Q_{T}} c(x, t)^{p^{\prime}}\left|T_{n}\left(u_{n}\right)\right|^{p^{\prime} \gamma}\left|g_{k}^{\prime}\left(b_{n}\left(u_{n}\right)\right)\right|^{p^{\prime}} \nu(x) d x d t \\
& =\int_{\left\{\left|u_{n}\right| \leq k^{*}\right\}} c(x, t)^{p^{\prime}}\left|T_{k^{*}}\left(u_{n}\right)\right|^{p^{\prime} \gamma}\left|g_{k}^{\prime}\left(b_{n}\left(u_{n}\right)\right)\right|^{p^{\prime}} \nu(x) d x d t
\end{aligned}
$$

Furthermore, by Hölder and corollary 2.1, it results

$$
\begin{aligned}
& \int_{\left\{\left|u_{n}\right| \leq k^{*}\right\}} c(x, t)^{p^{\prime}}\left|T_{k^{*}}\left(u_{n}\right)\right|^{p^{\prime} \gamma}\left|g_{k}^{\prime}\left(b_{n}\left(u_{n}\right)\right)\right|^{p^{\prime}} \nu(x) d x d t \\
& \leq\left\|g_{k}^{\prime}\right\|_{L^{\infty}(\mathbb{R})}\|c(x, t)\|_{L^{\tau}\left(Q_{T}, \nu\right)}^{p^{\prime}}\left[\sup _{t \in(0, T)}\left(\int_{\Omega}\left|T_{k^{*}}\left(u_{n}\right)\right|^{2} d x\right)^{\frac{\tilde{p}-p}{2 \tilde{p}}}\right. \\
& \left.+\int_{Q_{T}} \nu(x) n\left|\nabla T_{k^{*}}\left(u_{n}\right)\right|^{p} d x d t\right] \leq c_{k^{*}}
\end{aligned}
$$

where $c_{k^{*}}$ is a constant independently of n which will vary from line to line. In the same by (30) we have:

$$
\begin{align*}
& \mid \int_{Q_{T}} \phi_{n}\left(x, t, u_{n}\right)^{p^{\prime}}\left(g_{k}^{\prime \prime}\left(b_{n}\left(u_{n}\right) b_{n}^{\prime}\left(u_{n}\right) \nabla u_{n}\right)^{p^{\prime}} \nu^{1-p^{\prime}}(x) d x d t \mid\right. \tag{49}\\
\leq & \int_{Q_{T}}\left(g_{k}^{\prime \prime}\left(b_{n}\left(u_{n}\right)\right)^{p^{\prime}} b_{n}^{\prime}\left(u_{n}\right)^{p^{\prime}}|c(x, t)|^{p^{\prime}}\left|T_{n}\left(u_{n}\right)\right|^{p^{\prime} \gamma} \nu(x)\left|\nabla u_{n}\right|^{p^{\prime}} d x d t\right.
\end{align*}
$$

Furthermore, by Hölder and corollary 2.1 , we obtain for $k^{*}<n$:

$$
\begin{gathered}
\int_{Q_{T}}\left(g_{k}^{\prime \prime}\left(b_{n}\left(u_{n}\right)\right)^{p^{\prime}} b_{n}^{\prime}\left(u_{n}\right)^{p^{\prime}}|c(x, t)|^{p^{\prime}}\left|T_{n}\left(u_{n}\right)\right|^{p^{\prime} \gamma} \nu(x)\left|\nabla u_{n}\right|^{p^{\prime}} d x d t\right. \\
=\int_{Q_{T}}\left(g_{k}^{\prime \prime}\left(b_{n}\left(u_{n}\right)\right)^{p^{\prime}} b_{n}^{\prime}\left(u_{n}\right)^{p^{\prime}}|c(x, t)|^{p^{\prime}}\left|T_{k}\left(u_{n}\right)\right|^{p^{\prime} \gamma} \nu(x)\left|\nabla T_{k^{*}}\left(u_{n}\right)\right|^{p^{\prime}} d x d t\right. \\
\leq\left\|g_{k}^{\prime \prime}\right\|_{L^{\infty}(\mathbb{R})} \times \sup _{|r| \leq k^{*}}\left|b^{\prime}(r)\right| \int_{Q_{T}}|c(x, t)|^{p^{\prime}}\left|T_{k^{*}}\left(u_{n}\right)\right|^{p^{\prime} \gamma} \nu(x)\left|\nabla T_{k}\left(u_{n}\right)\right|^{p^{\prime}} d x d t \leq c_{k^{*}}
\end{gathered}
$$

We conclude by (46) that

$$
\begin{equation*}
\frac{\partial g_{k}\left(b_{n}\left(u_{n}\right)\right)}{\partial t} \text { is bounded in } L^{1}(Q)+L^{p^{\prime}}\left(0, T, W^{-1, p^{\prime}}\left(\nu^{1-p^{\prime}}\right)\right) \tag{50}
\end{equation*}
$$

As mentioned above, from ((48)) and ((50)), we deduce that for a subsequence, still indexed by $n, b_{n}\left(u_{n}\right)$ converges almost everywhere, as n goes to in infinity, to a measurable function χ defined on Q. Now since b^{-1} is continuous on \mathbb{R}, b_{n}^{-1} converges everywhere to b^{-1} when n goes to in infinity, so that :

$$
\begin{gather*}
u_{n} \rightarrow u=b^{-1}(\chi) \text { a.e. } Q_{T} \tag{51}\\
b_{n}\left(u_{n}\right) \rightarrow b(u) \text { a.e. } Q_{T} \tag{52}
\end{gather*}
$$

and with the help of((44))

$$
\begin{equation*}
T_{k}\left(u_{n}\right) \rightharpoonup T_{k}(u) \quad \text { in } \quad L^{p}\left(0, T, W_{0}^{1, p}(\nu)\right) \tag{53}
\end{equation*}
$$

for any $k \geq 0$ as n tends to infinity
Which implies, by using ((15)), for all $k>0$ that there exists a function $\sigma_{k} \in\left(L^{p^{\prime}}\left(\nu^{1-p^{\prime}}\right)\right)^{N}$, such that

$$
\begin{equation*}
a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \rightharpoonup \sigma_{k} \quad \text { in }\left(L^{p^{\prime}}\left(\nu^{1-p^{\prime}}\right)\right)^{N} \tag{54}
\end{equation*}
$$

Actually $b(u)$ belongs to $L^{\infty}\left((0, T), L^{1}(\Omega)\right)$. Indeed using $T_{k}\left(b_{n}\left(u_{n}\right)\right)$ as test function in $((33))$, by $((30))$ we have

$$
\begin{gather*}
\int_{\Omega} B_{k}^{n}\left(u_{n}\right) d x+\int_{Q_{T}} a_{n}\left(x, t, u_{n}, \nabla u_{n}\right) \nabla T_{k}\left(b_{n}\left(u_{n}\right)\right) d x d t \tag{55}\\
\leq \int_{Q_{T}}\left|c(x, t) \| T_{n}\left(u_{n}\right)\right|^{\gamma} \nu(x)\left|\nabla T_{k}\left(b_{n}\left(u_{n}\right)\right)\right| d x d t+k\left(\left\|f_{n}\right\|_{L^{1}\left(Q_{T}\right)}+\left\|b\left(u_{0}\right)\right\|_{L^{1}(\Omega)}\right)
\end{gather*}
$$

with $B_{k}(r)=\int_{0}^{b(r)} T_{k}(s) d s$. On the other hand, we have

$$
\begin{gather*}
\int_{Q_{T}} a_{n}\left(x, t, u_{n}, \nabla u_{n}\right) \nabla T_{k}\left(b_{n}\left(u_{n}\right)\right) d x d t \tag{56}\\
=\int_{\left\{\left|b_{n}\left(u_{n}\right)\right| \leq k\right\}} a_{n}\left(x, t, u_{n}, \nabla u_{n}\right) T_{k}^{\prime}\left(b_{n}\left(u_{n}\right)\right) b_{n}^{\prime}\left(u_{n}\right) \nabla u_{n} d x d t \geq 0 .
\end{gather*}
$$

Since $b^{\prime}(s) \geq \beta$, then for $k<n$ and for almost $t \in(0, T)$, we have

$$
\begin{align*}
& \int_{Q_{T}}|c(x, t)|\left|T_{n}\left(u_{n}\right)\right|^{\gamma} \nu(x)\left|\nabla T_{k}\left(b_{n}\left(u_{n}\right)\right)\right| d x d t \leq \max _{|s| \leq \frac{k}{\beta}} b^{\prime}(s)\|c(x, t)\|_{L^{\tau}\left(Q_{T}, \nu\right)} \\
& \times \sup _{t \in(0, T)}\left(\int_{\Omega}\left|T_{\frac{k}{\beta}}\left(u_{n}\right)\right|^{2} d x\right)^{\frac{(p-1)(\tilde{p}-p)}{p(3 \tilde{p}-p)}} \times\left\|\nabla T_{\frac{k}{\beta}}\left(u_{n}\right)\right\|_{L^{p}\left(Q_{T}, \nu\right)}^{\frac{2 p \tilde{p}+\tilde{p}-p}{p \bar{p}}} \leq c_{k} . \tag{57}
\end{align*}
$$

Using $((35)),((57))$ and $((55))$ in ((56)), we have

$$
\int_{\Omega} B_{k}^{n}\left(u_{n}(t)\right) \leq c_{k}+k\left(\left\|f_{n}\right\|_{L^{1}\left(Q_{T}\right)}+\left\|b\left(u_{0}\right)\right\|_{L^{1}(\Omega)}\right)
$$

Passing to limit-inf as $n \rightarrow+\infty$, we obtain that:

$$
\left.\int_{\Omega} B_{k}(u(t)) d x \leq c_{k}+k\left(\left\|f_{n}\right\|_{L^{1}\left(Q_{T}\right)}\right)+\left\|b\left(u_{0}\right)\right\|_{L^{1}(\Omega)}\right) \text { for almost } t \in(0, T) .
$$

Due to definition of B_{k}, we have

$$
\begin{aligned}
& k \int_{\Omega}|b(u(x, t))| d x \leq \int_{\Omega} B_{k}(u(t)) d x+\frac{3}{2} k^{2} \operatorname{meas}(\Omega) \\
\leq & \left.k\left(\left\|f_{n}\right\|_{L^{1}\left(Q_{T}\right)}\right)+\left\|b\left(u_{0}\right)\right\|_{L^{1}(\Omega)}\right)+c_{k}+\frac{3}{2} k^{2} \operatorname{meas}(\Omega) .
\end{aligned}
$$

shows that $b(u)$ belong to $L^{\infty}\left((0, T), L^{1}(\Omega)\right)$
Lemma 3.1. The subsequence of u_{n} defined in Step 1 satisfies

$$
\begin{equation*}
\lim _{m \rightarrow+\infty} \limsup _{n \rightarrow+\infty} \frac{1}{m} \int_{\left\{\left|u_{n}\right| \leq m\right\}} a\left(x, t, u_{n}, \nabla u_{n}\right) \nabla u_{n} d x d t=0 . \tag{58}
\end{equation*}
$$

Proof. Using $\psi_{m}\left(u_{n}\right)=\frac{T_{m}\left(u_{n}\right)}{m}$ as a test function in ((33)), by ((30)) we get

$$
\begin{align*}
\int_{0}^{T} & <\frac{\partial b_{n}\left(u_{n}\right)}{\partial t}, \psi_{m}\left(u_{n}\right)>d t+\int_{Q_{T}} a_{n}\left(x, t, u_{n}, \nabla u_{n}\right) \nabla \psi_{m}\left(u_{n}\right) d x d t \tag{59}\\
& \leq \int_{Q_{T}} c(x, t)\left|T_{n}\left(u_{n}\right)\right|^{\gamma} \nu(x)\left|\nabla \psi_{m}\left(u_{n}\right)\right| d x d t+\int_{Q_{T}} f_{n} \psi_{m}\left(u_{n}\right) d x d t
\end{align*}
$$

hence

$$
\begin{gathered}
\int_{\Omega} B_{m}\left(u_{n}\right)(T) d x+\int_{Q_{T}} a_{n}\left(x, t, u_{n}, \nabla u_{n}\right) \nabla \psi_{m}\left(u_{n}\right) d x d t \\
\leq \int_{Q_{T}} c(x, t)\left|T_{n}\left(u_{n}\right)\right|^{\gamma} \nu(x)\left|\nabla \psi_{m}\left(u_{n}\right)\right| d x d t+\int_{\Omega} B_{m}\left(u_{0}\right)_{n} d x+\int_{Q_{T}} f_{n} \psi_{m}\left(u_{n}\right) d x d t
\end{gathered}
$$

where $B_{m}(r)=\int_{0}^{r} b_{n}^{\prime}(s) \psi_{m}(s) d s$. Since $B_{m}\left(u_{n}\right)(T) \geq 0$, then for every $m<n$, we have

$$
a_{n}\left(x, t, u_{n}, \nabla u_{n}\right) \nabla \psi_{m}\left(u_{n}\right)=\frac{1}{m} a\left(x, t, u_{n}, \nabla u_{n}\right) \nabla u_{n} \text { a.e. in } Q
$$

As a consequence

$$
\begin{gather*}
\frac{1}{m} \int_{\left\{\left|u_{n}\right|<m\right\}} a\left(x, t, u_{n}, \nabla u_{n}\right) \nabla u_{n} d x d t \leq \frac{1}{m} \int_{Q_{T}} c(x, t)\left|T_{m}\left(u_{n}\right)\right|^{\gamma} \nu(x)\left|\nabla T_{m}\left(u_{n}\right)\right| d x d t \\
\quad+\int_{\Omega} B_{m}\left(u_{0 n}\right) d x+\frac{1}{m} \int_{Q_{T}} f_{n} T_{m}\left(u_{n}\right) d x d t \tag{60}
\end{gather*}
$$

Proceeding as in ([11], [20]), using Young inequality and Corollary (2.1) we obtain for all $R<m$:

$$
\begin{gather*}
\frac{1}{m} \int_{\left\{\left|u_{n}\right|<m\right\}} a\left(x, t, u_{n}, \nabla u_{n}\right) \nabla u_{n} d x d t \tag{61}\\
\leq \frac{c_{1}}{m}\left\|c(x, t) \chi_{\left\{\left|u_{n}\right| \geq R\right\}}\right\|_{L^{\tau}(\nu)}\left(\sup _{t \in(0, T)} \int_{\Omega}\left|T_{m}\left(u_{n}\right)\right|^{2} d x\right)^{\frac{1}{\tau}}\left(\int_{Q_{T}} \nu(x)\left|\nabla T_{m}\left(u_{n}\right)\right|^{p} d x d t\right)^{\frac{2 p \tilde{p}+\tilde{p}-p}{p(3 \bar{p}-p)}} \\
+\frac{1}{m} \int_{\left\{\left|u_{n}\right| \leq R\right\}} c(x, t)\left|T_{R}\left(u_{n}\right)\right|^{\gamma} \nu(x)\left|\nabla T_{R}\left(u_{n}\right)\right| d x d t \\
+\int_{\Omega} B_{m}\left(u_{0 n}\right) d x+\frac{1}{m} \int_{Q_{T}} f_{n} T_{m}\left(u_{n}\right) d x d t
\end{gather*}
$$

Recalling that u_{n} is bounded in $L^{\infty}\left((0, T) ; L^{1}(\Omega)\right)$, we obtain

$$
\begin{gather*}
\frac{1}{m} \int_{\left\{\left|u_{n}\right|<m\right\}} a\left(x, t, u_{n}, \nabla u_{n}\right) \nabla u_{n} d x d t \tag{62}\\
\leq c_{2}\left\|c(x, t) \chi_{\left\{\left|u_{n}\right| \geq R\right\}}\right\|_{L^{\tau}(\nu)}^{\tau}+\frac{\alpha}{2 m} \int_{Q_{T}} \nu(x)\left|\nabla T_{m}\left(u_{n}\right)\right|^{p} d x d t \\
+\frac{1}{m} \int_{\left\{\left|u_{n}\right| \leq R\right\}} c(x, t)\left|T_{R}\left(u_{n}\right)\right|^{\gamma} \nu(x)\left|\nabla T_{R}\left(u_{n}\right)\right| d x d t \\
+\int_{\Omega} B_{m}\left(u_{0 n}\right) d x+\frac{1}{m} \int_{Q_{T}} f_{n} T_{m}\left(u_{n}\right) d x d t
\end{gather*}
$$

where c_{2} is independent on m and R. Note that $T_{m}\left(u_{n}\right)$ converges to $T_{m}(u)$ in $L^{\infty}\left(Q_{T}\right)$ weak-*, and u is finit almost everywhere in Q_{T}, then $\frac{1}{m} T_{m}(u)$ converges to zero almost everywhere in Q_{T}. Using the elliptic condition on a and in view of (62), we deduce that

$$
\begin{gather*}
\frac{1}{2 m} \int_{\left\{\left|u_{n}\right|<m\right\}} a\left(x, t, u_{n}, \nabla u_{n}\right) \nabla u_{n} d x d t \tag{63}\\
\leq c_{2}\left\|c(x, t) \chi_{\left\{\left|u_{n}\right| \geq R\right\}}\right\|_{L^{\tau}(\nu)}^{\tau}+\frac{1}{m} \int_{\left\{\left|u_{n}\right| \leq R\right\}} c(x, t)\left|T_{R}\left(u_{n}\right)\right|^{\gamma} \nu(x)\left|\nabla T_{R}\left(u_{n}\right)\right| d x d t \\
+\int_{\Omega} B_{m}\left(u_{0 n}\right) d x+\frac{1}{m} \int_{Q_{T}} f_{n} T_{m}\left(u_{n}\right) d x d t
\end{gather*}
$$

Since $T_{R}\left(u_{n}\right) \in L^{p}\left((0, T) ; W_{0}^{1, p}(\Omega)\right)$ it follows that

$$
\begin{equation*}
\lim _{m \rightarrow+\infty} \limsup _{n \rightarrow+\infty} \frac{1}{m} \int_{\left\{\left|u_{n}\right| \leq R\right\}} c(x, t)\left|T_{R}\left(u_{n}\right)\right|^{\gamma} \nu(x)\left|\nabla T_{R}\left(u_{n}\right)\right| d x d t=0, \forall R>0 \tag{64}
\end{equation*}
$$

In view of (21), (31), (32), (45), (53), using Lebesgue's convergence theorem and passing to limit in (63) as n tends to $+\infty$, then m tends to $+\infty$ and then R tends to $+\infty$, is an easy task and it allows us to obtain (58)

Step 4: In this step we introduce a time regularization of the $T_{k}(u)$ for $k>0$ in order to perform the monotonicity method. This kind regularization has been introduced at the first time by R. Landes in [23]. Let v_{0}^{κ} be a sequence of function in $L^{\infty}(\Omega) \cap W_{0}^{1, p}(\Omega)$ such that $\left\|v_{0}^{\kappa}\right\|_{L^{\infty}(\Omega)} \leq k$ for all $\kappa>0$ and v_{0}^{κ} converges to $T_{k}\left(u_{0}\right)$
a.e. in Ω and $\frac{1}{\kappa}\left\|v_{0}^{\kappa}\right\|_{L^{p}(\Omega)}$ converges to 0 . For $k \geq 0$ and $\kappa>0$, let us consider the unique solution $\left(T_{k}(u)\right)_{\kappa} \in L^{\infty}(Q) \cap L^{p}\left(0, T: W_{0}^{1, p}(\Omega)\right)$ of the monotone problem:

$$
\begin{gathered}
\frac{\partial\left(T_{k}(u)\right)_{\kappa}}{\partial t}+\kappa\left(\left(T_{k}(u)\right)_{\kappa}-T_{k}(u)\right)=0 \text { in } D^{\prime}(\Omega) \\
\left(T_{k}(u)\right)_{\kappa}(t=0)=v_{0}^{\kappa} \text { in } \Omega
\end{gathered}
$$

Remark that $\left(T_{k}(u)\right)_{\kappa} \rightarrow T_{k}(u)$ a.e. in Q_{T}, weakly-* in $L^{\infty}(Q)$ and strongly in $L^{p}\left((0, T), W_{0}^{p}(\Omega)\right)$ as $\quad \kappa \rightarrow+\infty$

$$
\left\|\left(T_{k}(u)\right)_{\kappa}\right\|_{L^{\infty}(Q)} \leq \max \left(\left\|\left(T_{k}(u)\right)\right\|_{L^{\infty}(Q)},\left\|v_{0}^{\kappa}\right\|_{L^{\infty}(\Omega)}\right) \leq k, \quad \forall \kappa>0, \forall k>0
$$

Lemma 3.2. Let $k \geq 0$ be fixed. Let S be an increasing $C^{\infty}(\mathbb{R})$-function such that $S(r)=r$ for $|r| \leq k$, and supp S^{\prime} is compact. Then

$$
\liminf _{\kappa \rightarrow+\infty} \lim _{n \rightarrow 0} \int_{0}^{T} \int_{0}^{t}<\frac{\partial b_{n}\left(u_{n}\right)}{\partial t}, S^{\prime}\left(u_{n}\right)\left(T_{k}\left(u_{n}\right)-\left(T_{k}(u)\right)_{\kappa}\right)>\geq 0
$$

where $<., .>$ denotes the duality pairing between $L^{1}(\Omega)+W^{-1, p^{\prime}}\left(\nu^{1-p^{\prime}}\right)$ and $L^{\infty}(\Omega) \cap W^{1, p}(\nu)$.

Proof. see H. Redwane [13]
Step 5: We prove the following lemma which is the critical point in the development of the monotonicity method.

Lemma 3.3. The subsequence of u_{n} satisfies for any $k \geq 0$

$$
\limsup _{n \rightarrow+\infty} \int_{0}^{T} \int_{0}^{t} \int_{\Omega} a\left(x, t, u_{n}, \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}\left(u_{n}\right) \leq \int_{0}^{T} \int_{0}^{t} \int_{\Omega} \sigma_{k} \nabla T_{k}(u)
$$

where σ_{k} is defined in ((54)).
Proof. Let S_{m} be a sequence of increasing C^{∞}-function such that $S_{m}(r)=r$ for $|r| \leq m, \operatorname{supp}\left(S_{m}^{\prime}\right) \subset[-2 m, 2 m]$ and $\left\|S_{m}^{\prime \prime}\right\|_{L^{\infty}(\mathbb{R})} \leq \frac{3}{m}$ for any $m \geq 1$. We use the sequence $\left(T_{k}(u)\right)_{\kappa}$ of approximation of $T_{k}(u)$, and plug the test function $S_{m}^{\prime}\left(u_{n}\right)\left(T_{k}\left(u_{n}\right)-\left(T_{k}(u)\right)_{\kappa}\right)$ for $m>0$ and $\kappa>0$. For fixed $k \geq 0$, let $W_{\kappa}^{n}=$ $T_{k}\left(u_{n}\right)-\left(T_{k}(u)\right)_{\kappa}$ we obtain upon integration over $(0, t)$ and then over $(0, T)$:

$$
\begin{gather*}
\int_{0}^{T} \int_{0}^{t}<\frac{\partial b_{n}\left(u_{n}\right)}{\partial t}, S_{m}^{\prime}\left(u_{n}\right) W_{\kappa}^{n}>d t d s+\int_{0}^{T} \int_{0}^{t} \int_{\Omega} a_{n}\left(x, t, u_{n}, \nabla u_{n}\right) S_{m}^{\prime}\left(u_{n}\right) \nabla W_{\kappa}^{n} d x d s d t \\
\quad+\int_{0}^{T} \int_{0}^{t} \int_{\Omega} a_{n}\left(x, t, u_{n}, \nabla u_{n}\right) S_{m}^{\prime \prime}\left(u_{n}\right) \nabla u_{n} W_{\kappa}^{n} d x d s d t \tag{65}\\
-\int_{0}^{T} \int_{0}^{t} \int_{\Omega} \phi_{n}\left(x, t, u_{n}\right) S_{m}^{\prime}\left(u_{n}\right) \nabla W_{\kappa}^{n} d x d s d t \\
-\int_{0}^{T} \int_{0}^{t} \int_{\Omega} S_{m}^{\prime \prime}\left(u_{n}\right) \phi_{n}\left(x, t, u_{n}\right) \nabla u_{n} W_{\kappa}^{n} d x d s d t=\int_{0}^{T} \int_{0}^{t} \int_{\Omega} f_{n} S_{m}^{\prime}\left(u_{n}\right) W_{\kappa}^{n} d x d s d t
\end{gather*}
$$

Now we pass to the limit in ((65)) as $n \rightarrow+\infty, \kappa \rightarrow+\infty$ and then $m \rightarrow+\infty$ for k real number fixed. In order to perform this task we prove below the following results for any fixed $k \geq 0$

$$
\begin{equation*}
\liminf _{\kappa \rightarrow+\infty} \lim _{n \rightarrow+\infty} \int_{0}^{T} \int_{0}^{t}<\frac{\partial b_{n}\left(u_{n}\right)}{\partial t}, W_{\kappa}^{n}>d s d t \geq 0 \quad \text { for any } m \geq k \tag{66}
\end{equation*}
$$

$$
\begin{gather*}
\lim _{\kappa \rightarrow+\infty} \lim _{n \rightarrow+\infty} \int_{0}^{T} \int_{0}^{t} \int_{\Omega} \phi_{n}\left(x, t, u_{n}\right) S_{m}^{\prime}\left(u_{n}\right) \nabla W_{\kappa}^{n} d x d s d t=0 \quad \text { for any } m \geq 1 \\
\lim _{\kappa \rightarrow+\infty} \lim _{n \rightarrow+\infty} \int_{0}^{T} \int_{0}^{t} \int_{\Omega} S_{m}^{\prime \prime}\left(u_{n}\right) \phi_{n}\left(x, t, u_{n}\right) \nabla u_{n} W_{\kappa}^{n} d x d s d t=0 \quad \text { for any } m \geq 1 \tag{67}\\
\left.\lim _{m \rightarrow+\infty} \limsup _{\kappa \rightarrow+\infty} \limsup _{n \rightarrow+\infty}\right|_{0} ^{T} \int_{0}^{t} \int_{\Omega} a_{n}\left(x, t, u_{n}, \nabla u_{n}\right) S_{m}^{\prime \prime}\left(u_{n}\right) \nabla u_{n} W_{\kappa}^{n} d x d s d t \mid=0 \tag{68}\\
\lim _{\kappa \rightarrow+\infty} \lim _{n \rightarrow+\infty} \int_{0}^{T} \int_{0}^{t} \int_{\Omega} f_{n} S_{m}^{\prime}\left(u_{n}\right) W_{\kappa}^{n} \quad d x d s d t=0 \tag{69}
\end{gather*}
$$

Proof of ((66)): The function S_{m} belongs $C^{\infty}(\mathbb{R})$ and is increasing. we have $m \geq k, S_{m}(r)=r$ for $|r| \leq k$ while $\operatorname{supp} S_{m}^{\prime}$ is compact. In view of the definition of W_{κ}^{n} and lemma (3.2) applies with $S=S_{m}$ for fixed $m \geq k$. As a consequence ((66)) holds true.
Proof of $((67))$: Let us recall the main properties of W_{κ}^{n}. For fixed $\kappa>0$: W_{κ}^{n} converges to $T_{k}(u)-\left(T_{k}(u)\right)_{\kappa}$ weakly in $L^{p}\left(0, T, W_{0}^{1, p}(\nu)\right)$ as $n \rightarrow+\infty$. Remark that

$$
\begin{equation*}
\left\|W_{\kappa}^{n}\right\|_{L^{\infty}\left(Q_{T}\right)} \leq 2 k \quad \text { for any } n>0, \kappa>0 \tag{71}
\end{equation*}
$$

then we e deduce that

$$
\begin{equation*}
W_{\kappa}^{n} \rightharpoonup T_{k}(u)-\left(T_{k}(u)\right)_{\kappa} \quad \text { a.e in } Q_{T} \text { and } L^{\infty}\left(Q_{T}\right) \tag{72}
\end{equation*}
$$

weakly-* when $n \rightarrow+\infty$. one has $\operatorname{supp} S_{m}^{\prime \prime} \subset[-2 m,-m] \cup[m, 2 m]$ for any fixed $m \geq 1$ and $n>2 m$.

$$
\phi_{n}\left(x, t, u_{n}\right) S_{m}^{\prime}\left(u_{n}\right) \nabla W_{\kappa}^{n}=\phi_{n}\left(x, t, T_{2 m}\left(u_{n}\right)\right) S_{m}^{\prime}\left(u_{n}\right) \nabla W_{\kappa}^{n} \quad \text { a.e. in } Q_{T}
$$

since supp $S^{\prime} \subset[-2 m, 2 m]$, on the other hand

$$
\phi_{n}\left(x, t, T_{2 m}\left(u_{n}\right)\right) S_{m}^{\prime}\left(u_{n}\right) \rightarrow \phi\left(x, t, T_{2 m}(u)\right) S_{m}^{\prime}(u) \quad \text { a.e. in } Q_{T}
$$

and

$$
\left|\phi_{n}\left(x, t, T_{2 m}\left(u_{n}\right)\right) S_{m}^{\prime}\left(u_{n}\right)\right| \leq \nu(x) c(x, t)(2 m)^{\gamma} \quad \text { for } m \geq 1
$$

by $((72))$ and strongly convergence of $\left(T_{k}\left(u_{n}\right)\right)_{\kappa}$ in $L^{p}\left(0, T, W_{0}^{1, p}(\nu)\right)$ we obtain ((67)).
Proof of $((68))$: For any fixed $m \geq 1$ and $n>2 m$.
$\phi_{n}\left(x, t, u_{n}\right) S_{m}^{\prime \prime}\left(u_{n}\right) \nabla u_{n} W_{\kappa}^{n}=\phi_{n}\left(x, t, T_{2 m}\left(u_{n}\right)\right) S_{m}^{\prime \prime}\left(u_{n}\right) \nabla T_{m+1}\left(u_{n}\right) W_{\kappa}^{n} \quad$ a.e. $\operatorname{in} Q_{T}$ as in the previous step it is possible to pass to the limit for $n \rightarrow+\infty$ since by $((71))$ and ((72))

$$
\phi_{n}\left(x, t, T_{2 m}\left(u_{n}\right)\right) S_{m}^{\prime \prime}\left(u_{n}\right) W_{\kappa}^{n} \rightarrow \phi\left(x, t, T_{2 m}(u)\right) S_{m}^{\prime \prime}(u) W_{\kappa} \quad \text { a.e. in } Q_{T}
$$

Since $\left|\phi\left(x, t, T_{2 m}(u)\right) S_{m}^{\prime \prime}(u) W_{\kappa}\right| \leq 2 k \nu(x)|c(x, t)|(2 m)^{\gamma}$ a.e. in Q_{T} and $\left(T_{k}(u)\right)_{\kappa}$ converges to 0 in $L^{p}\left(0, T ; W_{0}^{1, p}(\nu)\right)$, we obtain $((68))$.
Proof of ((69)): In view of the definition of S_{m} we have supp $S^{\prime \prime} \subset[-2 m,-m] \cup$ [$m, 2 m$] for any $m \geq 1$, as a consequence

$$
\left|\int_{0}^{T} \int_{0}^{t} \int_{\Omega} a_{n}\left(x, t, u_{n}, \nabla u_{n}\right) S_{m}^{\prime \prime}\left(u_{n}\right) \nabla u_{n} W_{\kappa}^{n} d x d s d t\right|
$$

$$
\leq T\left\|S_{m}^{\prime \prime}\left(u_{n}\right)\right\|_{L^{\infty}(\mathbb{R})}\left\|W_{\kappa}^{n}\right\|_{L^{\infty}\left(Q_{T}\right)} \int_{m \leq\left|u_{n}\right| \leq 2 m} a\left(x, t, u_{n}, \nabla u_{n}\right) \nabla u_{n} d x d s d t
$$

for any $m \geq 1$, any $n>2 m$ any $\kappa>0$. By ((58)) it is possible to establish ((69)).
Proof of ((70)): Lebesgue's convergence theorem implies that for any $\kappa>0$ and any $m \geq 1$

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} \int_{0}^{T} \int_{0}^{t} \int_{\Omega} f_{n} S_{m}^{\prime}(u)\left(T_{k}(u)-\left(T_{k}(u)\right)_{\kappa}\right) d x d s d t \\
= & \int_{0}^{T} \int_{0}^{t} \int_{\Omega} f S_{m}^{\prime}(u)\left(T_{k}(u)-\left(T_{k}(u)\right)_{\kappa}\right)
\end{aligned}
$$

Now for fixed $m \geq 1$, using that $\left\|\left(T_{k}(u)\right)_{\kappa}\right\|_{L^{\infty}(Q)} \leq \max \left(\left\|\left(T_{k}(u)\right)\right\|_{L^{\infty}(Q)},\left\|v_{0}^{\kappa}\right\|_{L^{\infty}(\Omega)}\right) \leq$ $k, \forall \kappa>0, \forall k>0$ (see[23]), it possible to pass to the limit as κ tends to $+\infty$ in the above inequality.
Now we turn back to the proof of lemma (3.3). Due to ((66))-((70)) we can to pass to the limit-sup when κ tends to $+\infty$ and to the limit as m tends to $+\infty$ in ((65)). using the definition of W_{κ}^{n} we deduce that for any $k \geq 0$

$$
\begin{aligned}
& \lim _{m \rightarrow+\infty} \limsup _{\kappa \rightarrow+\infty} \limsup _{n \rightarrow+\infty} \int_{0}^{T} \int_{0}^{t} \int_{\Omega} S_{m}^{\prime}\left(u_{n}\right) a_{n}\left(x, t, u_{n}, \nabla u_{n}\right)\left(\nabla T_{k}\left(u_{n}\right)-\nabla\left(T_{k}(u)_{\kappa}\right) d x d s d t\right. \\
& \leq 0
\end{aligned}
$$

Since $S_{m}^{\prime}\left(u_{n}\right) a_{n}\left(x, t, u_{n}, \nabla u_{n}\right) \nabla T_{k}\left(u_{n}\right)=a\left(x, t, u_{n}, \nabla u_{n}\right) \nabla T_{k}\left(u_{n}\right)$ for $k \leq n$ and $k \leq m$, using the properties of S_{m}^{\prime} the above inequality implies that for $k \leq m$:

$$
\begin{gather*}
\limsup _{n \rightarrow+\infty} \int_{0}^{T} \int_{0}^{t} \int_{\Omega} a_{n}\left(x, t, u_{n}, \nabla u_{n}\right)\left(\nabla T_{k}\left(u_{n}\right)\right) d x d s d t \tag{73}\\
\leq \lim _{n \rightarrow+\infty} \limsup _{\kappa \rightarrow+\infty} \limsup _{n \rightarrow+\infty} \int_{0}^{T} \int_{0}^{t} \int_{\Omega} S_{m}^{\prime}\left(u_{n}\right) a_{n}\left(x, t, u_{n}, \nabla u_{n}\right) \nabla\left(T_{k}(u)_{\kappa} d x d s d t\right.
\end{gather*}
$$

On the other hand, for $2 m<n$

$$
S_{m}^{\prime}\left(u_{n}\right) a_{n}\left(x, t, u_{n}, \nabla u_{n}\right)=S_{m}^{\prime}\left(u_{n}\right) a\left(x, t, T_{2 m}\left(u_{n}\right), \nabla T_{2 m}\left(u_{n}\right)\right) \quad \text { a.e. in } Q_{T} .
$$

Furthermore we have

$$
\begin{equation*}
a_{n}\left(x, t, u_{n}, \nabla u_{n}\right) \rightharpoonup \sigma_{k} \quad \text { weakly in }\left(L^{p^{\prime}}\left(Q_{T}, \nu^{1-p^{\prime}}\right)\right)^{N} \tag{74}
\end{equation*}
$$

it follows that for a fixed $m \geq 1$

$$
S_{m}^{\prime}\left(u_{n}\right) a_{n}\left(x, t, u_{n}, \nabla u_{n}\right) \rightarrow S_{m}^{\prime}\left(u_{n}\right) \sigma_{m+1} \quad \text { weakly in } \quad\left(L^{p^{\prime}}\left(Q_{T}, \nu^{1-p^{\prime}}\right)\right)^{N}
$$

when n tends to $+\infty$. Finally, using the strong convergence of $\left(T_{k}(u)_{\kappa}\right)$ to $T_{k}(u)$ in $L^{p}\left(0, T, W_{0}^{1, p}(\nu)\right)$ as κ tends to $+\infty$, we get

$$
\begin{gather*}
\lim _{\kappa \rightarrow+\infty} \lim _{n \rightarrow+\infty} \int_{0}^{T} \int_{0}^{t} \int_{\Omega} S_{m}^{\prime}\left(u_{n}\right) a_{n}\left(x, t, u_{n}, \nabla u_{n}\right) \nabla\left(T_{k}\left(u_{n}\right)_{\kappa} d x d s d t\right. \tag{75}\\
=\int_{0}^{T} \int_{0}^{t} \int_{\Omega} S_{m}^{\prime}\left(u_{n}\right) \sigma_{m+1} \nabla T_{k}(u) d x d s d t
\end{gather*}
$$

as soon as $k \leq m$. Now for $k \leq m$ we have
$a\left(x, t, T_{m+1}\left(u_{n}\right), \nabla T_{m+1}\left(u_{n}\right)\right) \chi_{\left\{\left|u_{n}\right| \leq k\right\}}=a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \chi_{\left\{\left|u_{n}\right| \leq k\right\}} \quad$ a.e. in Q_{T}
which implies that, by $((51)),((74))$, and by passing to the limit when n tends to $+\infty$,

$$
\begin{equation*}
\sigma_{m+1} \chi_{|u| \leq k}=\sigma_{k} \chi_{\{|u| \leq k\}} \quad \text { a.e. in } Q_{T}-\{|u|=k\} \quad \text { for } k \leq m \tag{76}
\end{equation*}
$$

Finally, by $((76))$ and $((74))$ we have for $k \leq m: \sigma_{m+1} \nabla T_{k}(u)=\sigma_{k} \nabla T_{k}(u)$ a.e. in Q_{T}. Recalling $((73)),((75))$ the proof of the lemma is complete.
Step 6: In this step we prove that the weak limit σ_{k} of $a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)$ can be identified with $a\left(x, t, T_{k}(u), \nabla T_{k}(u)\right)$. In order to prove this result we recall the following monotonicity estimates:
Lemma 3.4. the subsequence of u_{n} defined in Step 1 satisfies for any $k \geq 0$

$$
\begin{align*}
& \lim _{n \rightarrow+\infty} \int_{0}^{T} \int_{0}^{t} \int_{\Omega}\left(a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right) \tag{77}\\
& \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right)=0
\end{align*}
$$

Proof. Using ((17)) we have

$$
\begin{align*}
& \lim _{n \rightarrow+\infty} \int_{0}^{T} \int_{0}^{t} \int_{\Omega}\left(a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right) \tag{78}\\
& \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right) \geq 0
\end{align*}
$$

Furthermore, by ((15)), ((51)) we have

$$
\left.\left.a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right) \rightarrow a\left(x, t, T_{k}(u), \nabla T_{k}(u)\right)\right) \quad \text { a.e. in } Q_{T}
$$

and

$$
\left.\mid a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)\right) \mid \leq \nu(x)\left[h(x, t)+\left|T_{k}\left(u_{n}\right)\right|^{p-1}+\left|\nabla T_{k}\left(u_{n}\right)\right|^{p-1}\right] \quad \text { a.e. in } Q_{T}
$$

uniformly with respect to n. As a consequence

$$
\begin{equation*}
\left.\left.a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right) \rightarrow a\left(x, t, T_{k}(u), \nabla T_{k}(u)\right)\right) \text { strongly in }\left(L^{p^{\prime}}\left(Q_{T}, \nu^{1-p^{\prime}}\right)\right)^{N} \tag{79}
\end{equation*}
$$

Finally, using $((51)),((74))$ and ((79)) make it possible to pass to the limit-sup as n tends to $+\infty$ in $((78))$ and to obtain the result.

In this lemma we identify the weak limit σ_{k} and we prove the weak- L^{1} convergence of the "truncated" energy $a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}\left(u_{n}\right)$ as n tends to $+\infty$.
Lemma 3.5. For fixed $k \geq 0$, we have

$$
\begin{equation*}
\left.\sigma_{k}=a\left(x, t, T_{k}(u), \nabla T_{k}(u)\right)\right) \quad \text { a.e. in } Q_{T} \tag{80}
\end{equation*}
$$

and as n tends to $+\infty$

$$
\begin{equation*}
\left.a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}\left(u_{n}\right) \rightharpoonup a\left(x, t, T_{k}(u), \nabla T_{k}(u)\right)\right) \nabla T_{k}(u) \tag{81}
\end{equation*}
$$

weakly in $L^{1}\left(Q_{T}\right)$.
Proof. We observe that for any $k>0$, any $n>k$ and any $\xi \in \mathbb{R}^{N}$:

$$
a_{n}\left(x, t, T_{k}\left(u_{n}\right), \xi\right)=a\left(x, t, T_{k}\left(u_{n}\right), \xi\right) \quad \text { a.e. in } Q_{T}
$$

Since

$$
\begin{equation*}
T_{k}\left(u_{n}\right) \rightharpoonup T_{k}(u) \quad \text { weakly in } L^{p}\left((0, T), W_{0}^{p}(\nu)\right) \tag{82}
\end{equation*}
$$

and by $((77))$ we obtain

$$
\begin{align*}
& \lim _{n \rightarrow+\infty} \int_{0}^{T} \int_{0}^{t} \int_{\Omega} a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \nabla T_{k}\left(u_{n}\right) d x d s d t \tag{83}\\
& =\int_{0}^{T} \int_{0}^{t} \int_{\Omega} \sigma_{k} \nabla T_{k}(u) d x d s d t
\end{align*}
$$

Since, for fixed $k>0$, the function $a(x, t, s, \xi)$ is continuous and bounded with respect to s, the usual Minty's argument applies in view of $((82)),((74))$ and $((83))$. It follows that $((80))$ holds true. In order to prove $((83))$, by $((16)),((77))$ and proceeding as in $[11,12]$ it's easy to show $((81))$.

Taking the limit as n tends to $+\infty$ in ((58)) and using ((81)) show that u satisfies $((25))$. Our aim is to prove that u satisfies ((26)) and ((27)). Now we want to prove that u satisfies the equation $((26))$.
Let S be a function in $W^{2, \infty}(\mathbb{R})$ such that $\operatorname{supp} S^{\prime} \subset[-k, k]$ where k is a real positive number. Pointwise multiplication of the approximate equation ((33)) by $S^{\prime}\left(u_{n}\right)$ leads to

$$
\begin{align*}
& \frac{\partial B_{S}^{n}\left(u_{n}\right)}{\partial t}-\operatorname{div}\left(a_{n}\left(x, t, u_{n}, \nabla u_{n}\right) S^{\prime}\left(u_{n}\right)\right)+S^{\prime \prime}\left(u_{n}\right) a\left(x, t, u_{n}, \nabla u_{n}\right) \nabla u_{n} \tag{84}\\
+ & \operatorname{div}\left(\phi_{n}\left(x, t, u_{n}\right) S^{\prime}\left(u_{n}\right)\right)-S^{\prime \prime}\left(u_{n}\right) \phi_{n}\left(x, t, u_{n}\right) \nabla u_{n}=f_{n} S^{\prime}\left(u_{n}\right) \quad \text { in } D^{\prime}\left(Q_{T}\right)
\end{align*}
$$

In what follows we pass to the limit as n tends to $+\infty$ in each term of ((84)).
Since S is bounded and continuous, u_{n} converges to u a.e. in Q_{T} implies that $B_{S}^{n}\left(u_{n}\right)$ converge to $B_{S}(u)$ a.e. in Q_{T} and $L^{\infty}\left(Q_{T}\right)$ weak-*, Then $\frac{\partial B_{S}^{n}}{\partial t}$ converges to $\frac{\partial B_{S}}{\partial t}$ in $D^{\prime}(\Omega)$. We observe that the term $a_{n}\left(x, t, u_{n}, \nabla u_{n}\right) S^{\prime}\left(u_{n}\right)$ can be identified with $a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) S^{\prime}\left(u_{n}\right)$ for $n \geq k$, so using the pointwise convergence of $u_{n} \rightarrow u$ in Q_{T}, the weakly convergence of $T_{k}\left(u_{n}\right) \rightharpoonup T_{k}(u)$ in $L^{p}\left((0, T), W_{0}^{p}(\nu)\right)$, we get

$$
a_{n}\left(x, t, u_{n}, \nabla u_{n}\right) S^{\prime}\left(u_{n}\right) \rightharpoonup a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right) S^{\prime}(u) \quad \text { in } L^{p^{\prime}}\left(Q_{T}, \nu^{1-p^{\prime}}\right),
$$

and

$$
S^{\prime \prime}\left(u_{n}\right) a_{n}\left(x, t, u_{n}, \nabla u_{n}\right) \nabla u_{n} \rightharpoonup S^{\prime \prime}(u) a\left(x, t, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right) \nabla T_{k}(u) \quad \text { in } L^{1}\left(Q_{T}\right) .
$$

Furthermore, since $\phi_{n}\left(x, t, u_{n}\right) S^{\prime}\left(u_{n}\right)=\phi_{n}\left(x, t, T_{k}\left(u_{n}\right)\right) S^{\prime}\left(u_{n}\right)$ a.e. in Q_{T}. By ((30)) we obtain $\left|\phi_{n}\left(x, t, T_{k}\left(u_{n}\right)\right) S^{\prime}\left(u_{n}\right)\right| \leq \nu(x)|c(x, t)| k^{\gamma}$, it follows that

$$
\phi_{n}\left(x, t, T_{k}\left(u_{n}\right)\right) S^{\prime}\left(u_{n}\right) \rightarrow \phi_{n}\left(x, t, T_{k}(u)\right) S^{\prime}(u) \quad \text { strongly in } L^{p^{\prime}}\left(Q_{T}, \nu^{1-p^{\prime}}\right)
$$

In a similar way, it results

$$
S^{\prime \prime}\left(u_{n}\right) \phi_{n}\left(x, t, u_{n}\right) \nabla u_{n}=S^{\prime \prime}\left(T_{k}\left(u_{n}\right)\right) \phi_{n}\left(x, t, T_{k}\left(u_{n}\right)\right) \nabla T_{k}\left(u_{n}\right) \quad \text { a.e. in } Q_{T} .
$$

Using the weakly convergence of $T_{k}\left(u_{n}\right)$ in $L^{p}\left((0, T) ; W_{0}^{p}(\nu)\right)$ it is possible to prove that

$$
S^{\prime \prime}\left(u_{n}\right) \phi_{n}\left(x, t, u_{n}\right) \nabla u_{n} \rightarrow S^{\prime \prime}(u) \phi(x, t, u) \nabla u \quad \text { in } L^{1}\left(Q_{T}\right) .
$$

Finally by $((31))$ we deduce that $f_{n} S^{\prime}\left(u_{n}\right)$ converges to $f S^{\prime}(u)$ in $L^{1}\left(Q_{T}\right)$.
It remains to prove that $B_{S}(u)$ satisfies the initial condition $B_{S}(t=0)=B_{S}\left(u_{0}\right)$ in Ω. To this end, firstly remark that S being bounded, $B_{S}^{n}\left(u_{n}\right)$ is bounded in $L^{\infty}(Q)$. Secondly the above considerations of the behavior of the terms of this equation show that $\frac{\partial B_{S}^{\epsilon}\left(u_{\epsilon}\right)}{\partial t}$ is bounded in $L^{1}\left(Q_{T}\right)+L^{p^{\prime}}\left(0, T ; W^{-1, p^{\prime}}\left(\nu^{1-p^{\prime}}\right)\right)$. As a consequence, an Aubin's type lemma (See e.g [29]) implies that $B_{S}^{n}\left(u_{n}\right)$ lies in a compact set of $C^{0}\left([0, T], L^{1}(\Omega)\right)$. On the other hand, the smoothness of of S implies that $B_{S}(t=0)=B_{S}\left(u_{0}\right)$ in Ω.

References

[1] L. Aharouch, E. Azroul and M. Rhoudaf: Strongly nonlinear variational degenerated parabolic problems in weighted sobolev spaces. The Australian journal of Mathematical Analysis and Applications, Vol.5, Article 13, pp. 1-25, 2008.
[2] Y. Akdim, J. Bennouna, M. Mekkour: Renormalized solutions of nonlinear degenerated parabolic equations with natural growth terms and L^{1} data. International journal of evolution equations, Volume 5 Number 4, pp. 421-446, 2011.
[3] Y. Akdim, J. Bennouna, M. Mekkour: Solvability of degenerate parabolic equations without sign condition and three unbounded nonlinearities. Electronic Journal of Differetial Equations, No. 03, pp.1-25, 2011.
[4] A. Aberqi, J. Bennouna, M. Mekkour, H. Redwane: Renormalized solutions for nonlinear parabolic equation with lower order terms The Australian journal of Mathematical Analysis and Applications, Vol.10, Article 15, pp. 1-36, 2013.
[5] Y. Akdim, J. Bennouna, M. Mekkour and H. Redwane: Existence of a Renormalised Solutions for a Class of Nonlinear Degenerated Parabolic Problems with L^{1} Data. Journal of partial differential equations, Vol. 26, No. 1, pp. 82-104, March 2013.
[6] Y. Akdim, J. Bennouna, M. Mekkour and M. Rhoudaf: Renormalized solution of nonlinear degenerated parabolic problems with L^{1}-data: existence and uniquness. Recent developments is nonlinear analysis, Proccedings of the conference in Mathematics and Mathematical Physics world scientific Publishing C.O Ltd.
[7] Ph. Bénilan, L. Boccardo, Th. Gallouët, R. Gariepy, M.Pierre, J.L. Vázquez: An L^{1} theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci (4) 22 (1995), 241-273.
[8] D. Blanchard: Truncations and monotonicity methods for parabolic equations. Nonlinear Anal. 21, pp. 725-43, 1993.
[9] D. Blanchard, G. Francfort: A few results on a class of degenerate parabolic equations. Ann. Scu. Norm. Sup. Pisa, 8(2), 1991, pp. 213-249.
[10] D. Blanchard, F. Murat: Renormalized solutions of nonlinear parabolic with L^{1} data: existence and uniqueness. Proc. Roy. Soc. Edinburgh Sect, A 127, pp. 1137-1152, 1997.
[11] D. Blanchard, F. Murat, H. Redwane: Existence and uniqueness of renormalized solution for fairly general class of non linear parabolic problems, J.Differential Equations.No. 177, 331-374, 2001.
[12] D. Blanchard, H. Redwane: Renormalized solutions for class of nonlinear evolution problems, J. Math. Pure. 77, pp. 117-151, 1998.
[13] D. Blanchard, H. Redwane, Renormalized solutions of nonlinear parabolic evolution problems, J. Math. Pure Appl. 77 (1998) 117151
[14] L. Boccardo, D. Giachetti, J.-I. Diaz, F. Murat: Existence and regularity of renormalized solutions of some elliptic problems involving derivatives of nonlinear terms. Journal of differential equations 106, pp. 215-237, 1993.
[15] L. Boccardo, T. Gollouët: Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal. pp. 87, 149-169, 1989.
[16] A. Dall'aglio: Approximated solutions of equations with L^{1} data. Application to the Hconvergence of quasi-linear parabolic equations. Ann. Mat. Pura Appl. (4) 170, 207-240, 1996.
[17] G. Dal Maso, F. Murat, L. Orsina and A. Prignet: Renormalized solutions of elliptic equations with general measure data, Ann. Scuala Norm. Sup. Pisa Cl.Sci. (4), 28, 1999.
[18] R. Dautray, J.L. Lions, Mathematical analysis and a numerical methodsfor science and technology, Vol 5. Springer- Verlag (1992).
[19] R.-Di Nardo: Nonlinear parabolic equations with a lower order term, Prepint N.60-2008, Departimento di Matematica e Applicazioni "R.Caccippoli", Universita degli Studi di Napoli "FedericoII".
[20] R. Di Nardo, F. Filomena and O. Guib?: Existence result for nonlinear parabolic equations with lower order terms. Anal. Appl. Singap. 9, no. 2, 161-186, 2011.
[21] R.-J. Diperna, P.-L. Lions: On the Cauchy Problem for the Boltzmann Equations: Global existence and weak stability, ann. of Math. 130, pp. 285-366, 1989.
[22] A. Kufner, Weighted Sobolev Spaces, John Wiley and Sons, (1985)
[23] R. Landes: On the existence of weak solutions for quasilinear parabolic initial-boundary problems, Proc. Roy. Soc. Edinburgh Sect. A89, pp. 321-366, 1981.
[24] J.-L. Lions: Quelques méthodes de resolution des problémes aux limites non linéaires, Dunod et Gauthier-Villars, Paris, 1969.
[25] M.K.W Murthy, G. Stampacchia: Boundary value problems for some degenerate elliptic operators, Ann. Mat. Pura Appl. 80 (1968), 1-122.
[26] J.-M. Rakotoson: Resolution of the critical cases for the problems with L^{1} data, Asymptotic Analysis when right hand side is in $L^{1}(\Omega) .6$, pp. 285-293, 1993.
[27] H. Redwane: Solution renormalisèes de problèmes paraboliques et elleptique non linéaires. Ph. D. thesis, Rouen (1997).
[28] H. Redwane: Existence of Solution for a class of a parabolic equation with three unbounded nonlinearities, Adv. Dyn. Syt. A2PL. 2, pp. 241-264, 2007.
[29] J. Simon: Compact set in the space $L^{p}(0, T, B)$, Ann. Mat. Pura, Appl. 146, pp. 65-96, 1987.
[30] E.Zeidler : Nonlinear Functional Analysis and its Applications, Springer-Verlag(New YorkHeidlberg, (1990)).
A. Aberqi

University Sidi Mohammed Ben Abdellah, Faculty of Sciences Dhar El Mahraz Laboratory LAMA, Department of Mathematics P.O. Box 1796 Atlas Fez,Morocco

E-mail address: aberqi_ahmed@yahoo.fr
J. Bennouna

University Sidi Mohammed Ben Abdellah, Faculty of Sciences Dhar El Mahraz Laboratory LAMA, Department of Mathematics P.O. Box 1796 Atlas Fez,Morocco

E-mail address: jbennouna@hotmail.com
M. Hammoumi

University Sidi Mohammed Ben Abdellah, Faculty of Sciences Dhar El Mahraz Laboratory LAMA, Department of Mathematics P.O. Box 1796 Atlas Fez,Morocco

E-mail address: hammoumi.mohamed09@gmail.com

[^0]: 2010 Mathematics Subject Classification. Primary 47A15; Secondary 46A32, 47D20.
 Key words and phrases. Parabolic problems, Sobolev space, Renormalized Solutions.
 Submitted Sep. 15, 2015.

