Electronic Journal of Mathematical Analysis and Applications Vol. 4(2) July 2016, pp. 254-258. ISSN: 2090-729(online) http://fcag-egypt.com/Journals/EJMAA/

CLASSES OF ANALYTIC FUNCTIONS ASSOCIATED WITH CERTAIN INTEGRAL OPERATOR

T. M. SEOUDY

ABSTRACT. In this paper, we introduce two classes of analytic functions associated with certain integral operator and investigate convolution properties, coefficient estimates and inclusion properties of these classes.

1. INTRODUCTION

Let \mathcal{A} denote the class of analytic functions of the form:

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k \tag{1}$$

which are analytic in the open unit disc $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$. Let $\mathcal{S}(\gamma)$ and $\mathcal{K}(\gamma)$ $(0 \leq \gamma < 1)$ denote the subclasses of \mathcal{A} that consists, respectively, of starlike of order γ and convex of order γ in \mathbb{U} . It is well-known that $\mathcal{S}(\gamma) \subset \mathcal{S}(0) = \mathcal{S}$ and $\mathcal{K}(\gamma) = \mathcal{K}(0) = \mathcal{K}$ (see [10]).

If f(z) and g(z) are analytic in \mathbb{U} , we say that f(z) is subordinate to g(z), written $f(z) \prec g(z)$ if there exists a Schwarz function ω , which (by definition) is analytic in \mathbb{U} with $\omega(0) = 0$ and $|\omega(z)| < 1$ for all $z \in \mathbb{U}$, such that $f(z) = g(\omega(z)), z \in \mathbb{U}$. Furthermore, if the function g(z) is univalent in \mathbb{U} , then we have the following equivalence, (cf., e.g., [8] and [9]):

$$f(z) \prec g(z) \Leftrightarrow f(0) = g(0) \text{ and } f(\mathbb{U}) \subset g(\mathbb{U}).$$

For functions f(z) given by (1) and g(z) given by

$$g(z) = z + \sum_{k=2}^{\infty} b_k z^k, \tag{2}$$

the Hadamard product (or convolution) of f(z) and g(z) is defined by

$$(f * g)(z) = z + \sum_{k=2}^{\infty} a_k b_k z^k = (g * f)(z).$$
(3)

²⁰¹⁰ Mathematics Subject Classification. 30C45.

Key words and phrases. Analytic function, Hadamard product, starlike function, convex function, subordination, integral operator.

Submitted Oct. 21, 2015.

EJMAA-2016/4(2)

Making use of the principal of subordination between analytic functions, we introduce the subclasses $\mathcal{S}[A, B]$ and $\mathcal{K}[A, B]$ of the class \mathcal{A} for $-1 \leq B < A \leq 1$ (see [1], [4], [5], [6] and [11]) which are defined by

$$\mathcal{S}[A,B] = \left\{ f \in \mathcal{A} : \frac{zf'(z)}{f(z)} \prec \frac{1+Az}{1+Bz} \quad (z \in \mathbb{U}) \right\},\tag{4}$$

and

$$\mathcal{K}[A,B] = \left\{ f \in \mathcal{A} : \frac{\left(zf'(z)\right)'}{f'(z)} \prec \frac{1+Az}{1+Bz} \qquad (z \in \mathbb{U}) \right\}.$$
 (5)

We note that

$$\mathcal{S}\left[1-2\gamma,-1\right] = \mathcal{S}\left(\gamma\right), \ \mathcal{K}\left[1-2\gamma,-1\right] = \mathcal{K}\left(\gamma\right) \ \left(0 \leq \gamma < 1\right).$$
Jung et al. [7] introduced the integral operator $Q_{\beta}^{\alpha} : \mathcal{A} \to \mathcal{A}$ as follows:

$$Q^{\alpha}_{\beta}f(z) = \begin{cases} \binom{\alpha+\beta}{\beta} \frac{\alpha}{z^{\beta}} \int_{0}^{z} \left(1-\frac{t}{z}\right)^{\alpha-1} t^{\beta-1}f(t) dt & (\alpha>0; \beta>-1), \\ f(z) & (\alpha=0; \beta>-1). \end{cases}$$
(6)

For $f \in \mathcal{A}$ given by (1), then from (6), we deduce that

$$Q_{\beta}^{\alpha}f(z) = z + \frac{\Gamma\left(\alpha + \beta + 1\right)}{\Gamma\left(\beta + 1\right)} \sum_{k=2}^{\infty} \frac{\Gamma\left(\beta + k\right)}{\Gamma\left(\alpha + \beta + k\right)} a_k z^k \quad (\alpha \ge 0; \beta > -1).$$
(7)

It is easily verified from the definition (7) that (see [7])

$$z\left(Q^{\alpha}_{\beta}f(z)\right)' = (\alpha+\beta)Q^{\alpha-1}_{\beta}f(z) - (\alpha+\beta-1)Q^{\alpha}_{\beta}f(z).$$
(8)

Next, by using the integral operator Q^{α}_{β} , we introduce the following classes of analytic functions for $\alpha \ge 0$; $\beta > -1$ and $-1 \le B < A \le 1$:

$$\mathcal{S}^{\alpha}_{\beta}\left[A,B\right] = \left\{f \in \mathcal{A} : Q^{\alpha}_{\beta}f\left(z\right) \in \mathcal{S}\left[A,B\right]\right\},\tag{9}$$

and

$$\mathcal{K}^{\alpha}_{\beta}\left[A,B\right] = \left\{f \in \mathcal{A} : Q^{\alpha}_{\beta}f\left(z\right) \in \mathcal{K}\left[A,B\right]\right\}.$$
(10)

We also note that

$$f(z) \in \mathcal{K}^{\alpha}_{\beta}[A, B] \Leftrightarrow zf'(z) \in \mathcal{S}^{\alpha}_{\beta}[A, B].$$
(11)

In this paper, we investigate convolution properties for functions belongs to the classes $\mathcal{S}^{\alpha}_{\beta}[A,B]$ and $\mathcal{K}^{\alpha}_{\beta}[A,B]$ associated with the integral operator Q^{α}_{β} . Using convolution properties, we find the necessary and sufficient conditions, coefficient estimates and inclusion properties for these classes.

2. Convolution Properties

Unless otherwise mentioned, we assume throughout this paper that $0 < \theta < 2\pi$, $-1 \leq B < A \leq 1, \, \alpha \geq 0 \text{ and } \beta > -1.$

Lemma 1 [2]. The function f defined by (1) is in the class S[A, B] if and only if

$$\frac{1}{z}\left[f\left(z\right)*\frac{z-\frac{\mathrm{e}^{-i\theta}+A}{A-B}z^{2}}{\left(1-z\right)^{2}}\right]\neq0\ \left(z\in\mathbb{U}\right).$$
(12)

Lemma 2 [2]. The function f(z) defined by (1) is in the class $\mathcal{K}[A, B]$ if and only if

$$\frac{1}{z}\left[f\left(z\right)*\frac{z-\frac{2e^{-i\theta}+A+B}{A-B}z^{2}}{\left(1-z\right)^{3}}\right]\neq0\quad\left(z\in\mathbb{U}\right).$$
(13)

Theorem 1. A necessary and sufficient condition for the function f defined by (1) to be in the class $S^{\alpha}_{\beta}[A, B]$ is that

$$1 - \sum_{k=2}^{\infty} \frac{(k-1)e^{-i\theta} - A + kB}{A-B} \frac{\Gamma(\alpha+\beta+1)\Gamma(\beta+k)}{\Gamma(\beta+1)\Gamma(\alpha+\beta+k)} a_k z^{k-1} \neq 0 \quad (z \in \mathbb{U}).$$
(14)

Proof. From Lemma 1, we find that $f \in \mathcal{S}^{\alpha}_{\beta}[A, B]$ if and only if

$$\frac{1}{z} \left[Q^{\alpha}_{\beta} f(z) * \frac{z - \frac{\mathrm{e}^{-i\theta} + A}{A - B} z^2}{\left(1 - z\right)^2} \right] \neq 0 \quad (z \in \mathbb{U}) \,. \tag{15}$$

From (8), the left hand side of (15) may be written as

$$\begin{aligned} &\frac{1}{z} \left[Q^{\alpha}_{\beta} f(z) * \left(\frac{z}{\left(1-z\right)^2} - \frac{\mathrm{e}^{-i\theta} + A}{A-B} \frac{z^2}{\left(1-z\right)^2} \right) \right] \\ &= \frac{1}{z} \left[z \left(Q^{\alpha}_{\beta} f(z) \right)' - \frac{\mathrm{e}^{-i\theta} + A}{A-B} \left\{ z \left(Q^{\alpha}_{\beta} f(z) \right)' - Q^{\alpha}_{\beta} f(z) \right\} \right] \\ &= 1 - \sum_{k=2}^{\infty} \frac{(k-1) \,\mathrm{e}^{-i\theta} - A + kB}{A-B} \frac{\Gamma\left(\alpha + \beta + 1\right) \Gamma\left(\beta + k\right)}{\Gamma\left(\beta + 1\right) \Gamma\left(\alpha + \beta + k\right)} a_k z^{k-1}. \end{aligned}$$

Thus, the proof of The Theorem 1 is completed.

Theorem 2. A necessary and sufficient condition for the function f defined by (1) to be in the class $\mathcal{K}^{\alpha}_{\beta}[A, B]$ is that

$$1 - \sum_{k=2}^{\infty} k \frac{(k-1) e^{-i\theta} - A + kB}{A - B} \frac{\Gamma(\alpha + \beta + 1) \Gamma(\beta + k)}{\Gamma(\beta + 1) \Gamma(\alpha + \beta + k)} a_k z^{k-1} \neq 0 \quad (z \in \mathbb{U}).$$
(16)

Proof. From Lemma 1, we find that $f \in \mathcal{K}^{\alpha}_{\beta}[A, B]$ if and only if

$$\frac{1}{z} \left[Q^{\alpha}_{\beta} f(z) * \frac{z - \frac{2\mathrm{e}^{-i\theta} + A + B}{A - B} z^2}{\left(1 - z\right)^3} \right] \neq 0 \qquad (z \in \mathbb{U}).$$

$$(17)$$

From (8), the left hand side of (17) may be written as

$$\frac{1}{z} \left[Q_{\beta}^{\alpha} f(z) * \left(\frac{z}{(1-z)^{3}} - \frac{2e^{-i\theta} + A + B}{A - B} \frac{z}{(1-z)^{3}} \right) \right] \\ = \frac{1}{z} \left[\frac{z}{2} \left(z Q_{\beta}^{\alpha} f(z) \right)^{''} - \frac{2e^{-i\theta} + A + B}{2(A - B)} z^{2} \left(Q_{\beta}^{\alpha} f(z) \right)^{''} \right] \\ = 1 - \sum_{k=2}^{\infty} k \frac{(k-1)e^{-i\theta} - A + kB}{A - B} \frac{\Gamma(\alpha + \beta + 1)\Gamma(\beta + k)}{\Gamma(\beta + 1)\Gamma(\alpha + \beta + k)} a_{k} z^{k-1},$$

this proves Theorem 2.

EJMAA-2016/4(2)

3. COEFFICIENT ESTIMATES AND INCLUSION PROPERTIES

In this section, we determine coefficient estimates and inclusion properties for a function of the form (1) to be in the classes $S^{\alpha}_{\beta}[A, B]$ and $\mathcal{K}^{\alpha}_{\beta}[A, B]$.

Theorem 3. If the function f defined by (1) belongs to the class $\mathcal{S}^{\alpha}_{\beta}[A, B]$, then

$$\sum_{k=2}^{\infty} \left(k - 1 + A - kB\right) \frac{\Gamma\left(\alpha + \beta + 1\right)\Gamma\left(\beta + k\right)}{\Gamma\left(\beta + 1\right)\Gamma\left(\alpha + \beta + k\right)} \left|a_k\right| \le A - B.$$
(18)

Proof. Since

$$\left|1 - \sum_{k=2}^{\infty} \frac{(k-1) e^{-i\theta} - A + kB}{A - B} \frac{\Gamma(\alpha + \beta + 1) \Gamma(\beta + k)}{\Gamma(\beta + 1) \Gamma(\alpha + \beta + k)} a_k z^{k-1}\right|$$

> $1 - \sum_{k=2}^{\infty} \left|\frac{(k-1) e^{-i\theta} - A + kB}{A - B}\right| \frac{\Gamma(\alpha + \beta + 1) \Gamma(\beta + k)}{\Gamma(\beta + 1) \Gamma(\alpha + \beta + k)} |a_k|,$

and

$$\left|\frac{(k-1)e^{-i\theta} - A + kB}{A-B}\right| = \frac{\left|(k-1)e^{-i\theta} - A + kB\right|}{A-B} \le \frac{k-1+A-kB}{A-B},$$

the result follows from Theorem 1.

Similarly, we can prove the following theorem.

Theorem 4. If the function f defined by (1) belongs to the class $\mathcal{K}^{\alpha}_{\beta}[A, B]$, then

$$\sum_{k=2}^{\infty} k \left(k - 1 + A - kB\right) \frac{\Gamma\left(\alpha + \beta + 1\right)\Gamma\left(\beta + k\right)}{\Gamma\left(\beta + 1\right)\Gamma\left(\alpha + \beta + k\right)} \left|a_k\right| \le A - B.$$
(19)

We will discuss two inclusion relations for the classes $S^{\alpha}_{\beta}[A, B]$ and $\mathcal{K}^{\alpha}_{\beta}[A, B]$. To prove these results we shall require the following lemma:

Lemma 3 [3]. Let h be convex (univalent) in \mathbb{U} , with $\Re \{\gamma h(z) + \eta\} > 0$ for all $z \in \mathbb{U}$. If p is analytic in \mathbb{U} , with p(0) = h(0), then

$$p(z) + \frac{zp'(z)}{\gamma p(z) + \eta} \prec h(z) \Rightarrow p(z) \prec h(z).$$

Theorem 5. Suppose that

$$\Re\left\{\frac{z}{1+Bz}\right\} > -\frac{\alpha+\beta}{A-B} \quad (z \in \mathbb{U}).$$
⁽²⁰⁾

If $f \in \mathcal{S}_{\beta}^{\alpha-1}[A, B]$ with $\alpha > 1$ and $Q_{\beta}^{\alpha}f(z) \neq 0$ for all $z \in \mathbb{U}$, then $f \in \mathcal{S}_{\beta}^{\alpha}[A, B]$.

Proof. Suppose that $f \in S^{\alpha-1}_{\beta}[A, B]$, and let define the function

$$p(z) = \frac{z\left(Q_{\beta}^{\alpha}f(z)\right)}{Q_{\beta}^{\alpha}f(z)} \quad (z \in \mathbb{U}).$$
(21)

Then p is analytic in U with p(0) = 1, and using the relation (8), from (21) we obtain

$$p(z) + \alpha + \beta - 1 = (\alpha + \beta) \frac{Q_{\beta}^{\alpha - 1} f(z)}{Q_{\beta}^{\alpha} f(z)}.$$
(22)

Taking the logarithmic differentiation on both sides of (22) and then using (21), we deduce that

$$p(z) + \frac{zp'(z)}{p(z) + \alpha + \beta - 1} \prec \frac{1 + Az}{1 + Bz}.$$
 (23)

From (20), we see that $\Re \left\{ \frac{1+Az}{1+Bz} + \alpha + \beta - 1 \right\} > 0, z \in \mathbb{U}$. Since the function $\frac{1+Az}{1+Bz}$ is convex (univalent) in \mathbb{U} , according to Lemma 3 the subordination (23)

implies
$$p(z) \prec \frac{1+Az}{1+Bz}$$
, which proves that $f \in \mathcal{S}^{\alpha}_{\beta}[A, B]$.

From the duality formula (11), the above theorem yields the following inclusion:

Theorem 6. Suppose that (20) holds. If $f \in \mathcal{K}_{\beta}^{\alpha-1}[A, B]$ with $\alpha > 1$ and $Q_{\beta}^{\alpha}f(z) \neq 0$ for all $z \in \mathbb{U}$, then $f \in \mathcal{K}_{\beta}^{\alpha}[A, B]$.

Proof. Applying (11) and Theorem 5, we observe that

$$\begin{split} f \in \mathcal{K}_{\beta}^{\alpha-1}\left[A,B\right] & \iff zf' \in \mathcal{S}_{\beta}^{\alpha-1}\left[A,B\right] \quad (\text{ from 11}) \\ & \Longrightarrow zf' \in \mathcal{S}_{\beta}^{\alpha}\left[A,B\right] \qquad (\text{ by Theorem 5}) \\ & \iff f \in \mathcal{K}_{\beta}^{\alpha}\left[A,B\right]. \end{split}$$

which evidently proves Theorem 6.

References

- O. P. Ahuja, Families of analytic functions related to Ruscheweyh derivatives and subordinate to convex functions, Yokohama Math. J., 41(1993), 39-50.
- [2] M. K. Aouf and T. M. Seoudy, Classes of analytic functions related to the Dziok–Srivastava operator, Integral Transforms and Special Functions, 22(2011), no. 6, 423–430.
- [3] P. J. Eenigenburg, S. S. Miller, P. T. Mocanu and M. O. Reade, Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 289-305.
- [4] R. M. Goel and B. S. Mehrok, On the coefficients of a subclass of starlike functions, Indian J. Pure Appl. Math., 12(1981), 634-647.
- [5] W. Janowski, Some extremal problems for certain families of analytic functions, Bull. Polish Acad. Sci., 21(1973),17-25.
- [6] W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Polon. Math., 28(1973),297-326.
- [7] T. B. Jung, Y. C. Kim and H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl., 176(1993), 138-147.
- [8] S. S. Miller and P. T. Mocanu, Differential Subordination: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.
- [9] S. S. Miller and P. T Mocanu, Subordinates of differential superordinations, Complex Variables 48 (2003), no. 10, 815–826.
- [10] M. S. Robertson, On the theory of univalent functions, Ann. Math., 37 (1936), 374-408.
- [11] H. Silverman and E. M. Silvia, Subclasses of starlike functions subordinate to convex functions, Canad. J. Math., 1(1985), 48-61.

TAMER M. SEOUDY

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, FAYOUM UNIVERSITY, FAYOUM 63514, EGYPT.

Current address: The University College at Al-Jamoom, Umm Al-Qura University, Makkah, Saudi Arabia.

E-mail address: tms00@fayoum.edu.eg