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A NOTE ON INTEGRAL TRANSFORMS ASSOCIATED WITH

HUMBERT’S CONFLUENT HYPERGEOMETRIC FUNCTION

N.U. KHAN, T. USMAN AND M. GHAYASUDDIN

Abstract. An expression in terms of the Humbert’s confluent hypergeometric

function of two variables is obtained for the integral transform involving the
product of Bessel and Whittaker functions. Some derivations are given in
the cases of some integral transforms corresponding to some special values of
parameters and variables of Whittaker and Bessel functions.

1. Introduction

Many researchers (for example, [1],[2], [3], [7], [8], [9], [10], [12], [13], etc.) have
studied a number of integral transforms involving a variety of special functions of
mathematical physics. Such transforms play an important role in many diverse
field of physics and engineering. As the integral transforms and special functions
are indispensable in many branches of mathematics and applied mathematics, many
researchers have studied their properties in many aspects, for example, Chun-Fang
Li [6], Karimi et al. [14] and Belafhal and Hennani [4] introduced a new class of
doughnut modified-Bessel-Gaussian vector beams with an amplitude of their trans-
verse components given in terms of the modified Bessel functions. The propagation
and the parametric characterization of laser beams including their beams quality
have drawn a lot of attention (see [17],[18],[21]). A closed form expression in terms
of the Humbert’s confluent hypergeometric function of two variables Ψ1 is derived
for the integral transform involving the product of two Bessel functions.

Motivated by the above-mentioned work, in this paper, we establish a closed
form of an integral transform involving the product of Bessel function Jµ and Whit-
taker function Mk,ν as follows:

I =

∫ ∞

0

x2se−αx2

Jµ(βx)Mk,ν(2γx
2) dx, (1)

whenever the improper integral converges.
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For specific values of α, s, µ, k and ν, the above transform reduced to some
integral transforms involving modified Bessel function, Laguerre polynomial, Her-
mite polynomial, exponential function, sine function and cosine function.

The Bessel function Jν(z) of the first kind (and order ν), defined by (see [16], [19]):

Jν(z) =

∞∑
m=0

(−1)m (z/2)ν+2m

m! Γ(ν +m+ 1)
(z ∈ C \ (−∞, 0)). (2)

It is well known that

J− 1
2
(z) =

√
2

πz
cos z (3)

and

J 1
2
(z) =

√
2

πz
sin z . (4)

The Whittaker functions Mk,µ(z) and Wk,µ(z) were introduced by Whittaker [22]
(see also Whittaker and Watson [23]) in terms of confluent hypergeometric function

1F1 (or Kummer’s functions):

Mk,µ(z) = zµ+
1
2 e−z/2

1F1

(
1

2
+ µ− k ; 2µ+ 1 ; z

)
. (5)

and

Wk,µ(z) = zµ+
1
2 e−z/2 U

(
1

2
+ µ− k ; 2µ+ 1 ; z

)
. (6)

However the confluent hypergeometric function disappears when 2µ is an integer, so
whittaker functions are often defined instead. The whittaker functions are related
to the parabolic cylinder functions.

When | arg(z) | < 3π
2 and 2µ is not an integer,

Wk,µ(z) =
Γ(−2µ)

Γ( 12 − µ− k)
Mk,µ(z) +

Γ(2µ)

Γ( 12 + µ− k)
Mk,−µ(z). (7)

When | arg(−z) | < 3π
2 and 2µ is not an integer,

W−k,µ(z) =
Γ(−2µ)

Γ( 12 − µ− k)
M−k,µ(−z) +

Γ(2µ)

Γ( 12 + µ+ k)
M−k,−µ(−z). (8)

Here we recall the relation of Whittaker function with some other special functions
which are given as follows :

Mk,−k− 1
2
(z) = e

z
2 z−k. (9)

M0,ν(2z) = 22ν+
1
2 Γ(1 + ν)

√
z Iµ(z), (10)

where Iµ(z) is Modified Bessel function (see [16], [19]).

M0, 12
(2z) = 2 sinh z. (11)
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M p
2+

1
2+q, p2

(z) =
m!

(p+ 1)q
e−

z
2 z

p
2+

1
2 Lp

q(z), (12)

where Lp
q(z) is the generalized Laguerre polynomial (see [16], [19]).

M 1
4+p,− 1

4
(z2) = (−1)p

p!

2p!
e

−z2

2
√
z H2p(z), (13)

M 3
4+p, 14

(z2) = (−1)p
p!

(2p+ 1)!

e
−z2

2
√
z

2
H2p+1(z) . (14)

where Hp(z) is the generalized Hermite polynomial (see [16], [19]).

2. Main result

This section deals with an integral transform involving the product of Bessel and
Whittaker functions, which is expressed in terms of Humbert’s confluent hyperge-
ometric function of two variables.

Theorem 2.1. The following transformation holds true:∫ ∞

0

x2se−αx2

Jµ(βx)Mk,ν(2γx
2) dx = (β)µ (γ)ν+

1
2

(
1

2

)µ−ν+ 1
2

×
(

1

α+ γ

)s+µ
2 +ν+1 Γ(s+ ν + µ

2 + 1)

Γ(µ+ 1)

× Ψ1

(
s+ ν +

µ

2
+ 1, ν − k +

1

2
;µ+ 1; 2ν + 1;

2γ

α+ γ
,

−β2

4(α+ γ)

)
, (15)

where ℜ(µ) > −1, ℜ(s + ν + µ
2 ) > −1, ℜ(α + γ) > 2γ and Ψ1 denotes one of the

Humbert’s confluent hypergeometric function of two variables defined as follows
(see [15]):

Ψ1(a, b; c, c
′;w, z) =

∞∑
k=0

∞∑
p=0

(a)k+p(b)k
(c)k(c′)p

wk

k!

zp

p!
,

with |w| < 1 , |z| < ∞.

Proof. In order to derive the result (15), we denote the left-hand side of (15) by I,
expending Jµ and Mk,ν as a series with the help of (2) and (5) and then changing
the order of summation and integration, which is guaranteed under the conditions,
we arrive at

I = (2γ)ν+
1
2

(
β

2

)µ ∞∑
m=0

(
−β2

4

)m

m! Γ(1 +m+ µ)
Am, (16)

where

Am =

∫ ∞

0

x2(s+ν+µ
2 +m+ 1

2 )e−(α+γ)x2

1F1

(
1

2
+ ν − k ; 2ν + 1 ; 2γx2

)
dx . (17)
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Using the result ([11], p.815, Eq.7.522)∫ ∞

0

xσ−1e−µx
mFn(α1, α2, · · · , αm ;β1, β2, · · · , βn;λx)

= Γ(σ) µ−σ
m+1Fn

(
α1, α2, · · · , αm, σ ;β1, β2, · · · , βn;

λ

µ

)
(18)

(with m ≤ n, ℜ(σ) > 0, ℜ(µ) > 0, if m < n; ℜ(µ) > λ), in (17), we obtain

Am =
1

2
Γ(s+ ν +

µ

2
+m+ 1)(α+ γ)−(s+ν+µ

2 +m+1)

× 2F1

(
ν − k +

1

2
, s+ ν +

µ

2
+m+ 1; 2ν + 1;

2γ

α+ γ

)
(19)

Substituting (19) in (16), we obtain

I = (γ)
1
2

(
1

2

) 1
2−ν (

γ

α+ γ

)ν (
β

2

)µ (
1

α+ γ

)s+µ
2 +1 ∞∑

m=0

[
−β2

4(α+γ)

]m
m!

×
Γ(s+ ν + µ

2 +m+ 1)

Γ(µ+ 1)(µ+ 1)m
2F1

(
ν − k +

1

2
, s+ ν +

µ

2
+m+ 1; 2ν + 1;

2γ

α+ γ

)
.

(20)
Now expanding 2F1 in its defining series and then arranging the resulting expres-
sion in terms of Humbert’s confluent hypergeometric function of two variables Ψ1,
we get the required result. This completes the proof.

3. Special cases

In this section, we derive a known and some (presumably) new transforms in-
volving exponential function, Modified Bessel function, Laguerre polynomial, Her-
mite polynomials and sine hyperbolic function.

Corollary 3.1. The following transformation holds true:∫ ∞

0

x2s−2k e(γ−α)x2

Jµ(βx)dx = (β)µ
(
1

2

)µ+k+1 (
1

α+ γ

)s+µ
2 −k+ 1

2

×
Γ(s+ ν + µ

2 + 1)

Γ(µ+ 1)
F 1: 0: 0
0: 1; 0

 s− k + µ
2 + 1

2 : ; ;

: µ+ 1; ;

2γ

α+ γ
,

−β2

4(α+ γ)

,
(21)

where ℜ(µ) > −1, ℜ(s + ν + µ
2 ) > −1 and FA:B;D

E:G;H (x, y) is the Kampé de Fériet

function [19].

This corollary can be established by taking ν = −k − 1
2 in (15) and then using the

result (9).
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Corollary 3.2. The following transformation holds true:∫ ∞

0

x2s+1 e−αx2

Jµ(βx)Iν(γx
2)dx = (β)µ (γ)ν

(
1

2

)µ+ν+1

×
(

1

α+ γ

)s+ν+µ
2 +1 Γ(s+ ν + µ

2 + 1)

Γ(µ+ 1)Γ(ν + 1)

×Ψ1

(
s+ ν +

µ

2
+ 1, ν +

1

2
; 2ν + 1;µ+ 1;

2γ

α+ γ
,

−β2

4(α+ γ)

)
, (22)

where ℜ(µ) > −1, ℜ(ν) > −1 and ℜ(s+ ν + µ
2 ) > −1.

This corollary can be established by replacing s by s − 1
2 , k = 0 in (15) and then

using the result (10). Also, it is noticed that the above transformation is the known
result of Belafhal and Hennani [4].

Corollary 3.3. The following transformation holds true:∫ ∞

0

x2s e−αx2

Jµ(βx) sinh(γx2)dx = (β)µ (γ)

(
1

2

)µ+ 1
2
(

1

α+ γ

)s+µ
2 + 3

2

×
Γ(s+ µ

2 + 3
2 )

Γ(µ+ 1)
Ψ1

(
s+

µ

2
+

3

2
, 1; 2;µ+ 1;

2γ

α+ γ
,

−β2

4(α+ γ)

)
, (23)

where ℜ(µ) > −1 and ℜ(s+ µ
2 ) > − 3

2 .

This corollary can be established by setting k = 0, ν = 1
2 in (15) and then using

the result (11).

Corollary 3.4. The following transformation holds true:∫ ∞

0

x2s+p+1 e−(α+γ)x2

Jµ(βx) L
p
q(2γx

2)dx = (β)µ
(p+ 1)q

q!

(
1

2

)µ+1

×
(
1

γ

) p
2−ν (

1

α+ γ

)s+µ
2 +ν+1 Γ(s+ p

2 + µ
2 + 1)

Γ(µ+ 1)

× Ψ1

(
s+

p

2
+

µ

2
+ 1,−q ; p+ 1;µ+ 1;

2γ

α+ γ
,

−β2

4(α+ γ)

)
, (24)

where ℜ(µ) > −1, ℜ(s + p
2 + µ

2 ) > −1 and Lp
q(z) is the generalized Laguerre

polynomial [16].

The above corollary can be established by setting k = p
2 + 1

2 + q (q is non negative
integer), ν = p

2 in (15) and then using the result (12).

Corollary 3.5. The following transformation holds true:∫ ∞

0

x2s+ 1
2 e−(α+γ)x2

Jµ(βx) H2p

√
(2γx2) dx = (−1)−p 2p!

p!
(β)µ

×
(
1

2

)µ+1 (
1

α+ γ

)s+µ
2 + 3

4 Γ(s+ µ
2 + 3

4 )

Γ(µ+ 1)
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×Ψ1

(
s+

µ

2
+

3

4
,−p ;

1

2
;µ+ 1;

2γ

α+ γ
,

−β2

4(α+ γ)

)
, (25)

where ℜ(µ) > −1, ℜ(p) > −1
2 , ℜ(s+

µ
2 ) > −3

4 and Hp(z) is the generalized Hermite
polynomial [16].

The above corollary can be established by setting k = 1
4 + p, ν = − 1

4 in (15) and
then using the result (13).

Corollary 3.6. The following transformation holds true:∫ ∞

0

x2s+ 1
2 e−(α+γ)x2

Jµ(βx) H2p+1

√
(2γx2) dx = (−1)−p (2p+ 1)!

p!
(β)µ

(
1

2

)µ− 1
2

×
(
1

γ

)− 1
2
(

1

α+ γ

)s+µ
2 + 5

4 Γ(s+ µ
2 + 5

4 )

Γ(µ+ 1)

×Ψ1

(
s+

µ

2
+

5

4
,−p ;

3

2
;µ+ 1;

2γ

α+ γ
,

−β2

4(α+ γ)

)
, (26)

where ℜ(µ) > −1, ℜ(p) > −1, ℜ(s+ µ
2 ) > −5

4 .

The above corollary can be established by setting k = 3
4 + p, ν = 1

4 in (15) and
then using the result (14).

4. Concluding Remark

We have derived the following close form expression of Belafhal and Hennani [4]:

I =

∫ ∞

0

x2se−αx2

Jµ(βx)Mk,ν(2γx
2) dx,

from which we have deduced some important integral transforms for special values
of the parameters. The results presented in this paper are (presumably) new,
general in character and likely to find certain applications in the theory of special
functions.
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