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THE TOPOLOGICAL GROUPS OF TRIPLE ALMOST

LACUNARY χ3 SEQUENCE SPACES DEFINED BY A ORLICZ

FUNCTION

DEEPMALA1, N. SUBRAMANIAN2, LAKSHMI NARAYAN MISHRA3,∗

Abstract. In this paper we introduce a new concept for almost lacunary in
topological groups of χ3 sequence spaces strong P− convergent to zero with

respect to an Orlicz function and examine some properties of the resulting
sequence spaces. We also introduce and study statistical convergence of almost
lacunary in topological groups of χ3 sequence spaces and also some inclusion
theorems are discussed.

1. Introduction

Throughout w,χ and Λ denote the classes of all, gai and analytic scalar
valued single sequences, respectively. We write w3 for the set of all complex triple
sequences (xmnk), where m,n, k ∈ N, the set of positive integers. Then, w3 is a
linear space under the coordinate wise addition and scalar multiplication.

We can represent triple sequences by matrix. In case of double sequences we
write in the form of a square. In the case of a triple sequence it will be in the form
of a box in three dimensional case.

Some initial work on double series is found in Apostol [1] and double sequence
spaces is found in Hardy [5], Subramanian et al. [10-12], and many others. Later
on investigated by some initial work on triple sequence spaces is found in Sahiner
et al. [9] , Esi et al. [2-4], Subramanian et al. [13-15], Prakash et al. [16-19],
Deepmala et al. [21], Mishra et al. [22-24] and many others.

Let (xmnk) be a triple sequence of real or complex numbers. Then the series∑∞
m,n,k=1 xmnk is called a triple series. The triple series

∑∞
m,n,k=1 xmnk give one

space is said to be convergent if and only if the triple sequence (Smnk)is convergent,
where

Smnk =
∑m,n,k

i,j,q=1 xijq(m,n, k = 1, 2, 3, ...) .

A sequence x = (xmnk)is said to be triple analytic if

supm,n,k |xmnk|
1

m+n+k < ∞.
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The vector space of all triple analytic sequences are usually denoted by Λ3. A
sequence x = (xmnk) is called triple entire sequence if

|xmnk|
1

m+n+k → 0 as m,n, k → ∞.

The vector space of all triple entire sequences are usually denoted by Γ3. Let the
set of sequences with this property be denoted by Λ3 and Γ3 is a metric space with
the metric

d(x, y) = supm,n,k

{
|xmnk − ymnk|

1
m+n+k : m,n, k : 1, 2, 3, ...

}
, (1)

forallx = {xmnk}andy = {ymnk} inΓ3. Let ϕ = {finite sequences} .

Consider a triple sequence x = (xmnk). The (m,n, k)th section x[m,n,k] of the

sequence is defined by x[m,n,k] =
∑m,n,k

i,j,q=0xijqδijq for all m,n, k ∈ N,

δmnk =



0 0 ...0 0 ...
0 0 ...0 0 ...
.
.
.
0 0 ...1 0 ...
0 0 ...0 0 ...


with 1 in the (m,n, k)th position and zero otherwise.

A sequence x = (xmnk) is called triple gai sequence if ((m+ n+ k)! |xmnk|)
1

m+n+k →
0 as m,n, k → ∞. The triple gai sequences will be denoted by χ3.

2. Definitions and Preliminaries

A triple sequence x = (xmnk) has limit 0 (denoted by P − limx = 0)

(i.e) ((m+ n+ k)! |xmnk|)1/m+n+k → 0 asm,n, k → ∞.We shall write more briefly
as P − convergent to 0.
By X , we will denote an abelian topological Hausdorff group, written additively
which satisfies the first axiom of countability.

2.1. Definition. A Orlicz function was introduced by Nakano [20]. We recall that
a modulus f is a function from [0,∞) → [0,∞) , such that
(1) f (x) = 0 if and only if x = 0
(2) f (x+ y) ≤ f (x) + f (y) , for all x ≥ 0, y ≥ 0,
(3) f is increasing,
(4) f is continuous from the right at 0. Since |f (x)− f (y)| ≤ f (|x− y|) , it follows
from here that f is continuous on [0,∞) .

2.2. Definition. A triple sequence x = (xmnk) ∈ X of real numbers is called
almost P− convergent to a limit 0 if

P −
limp,q,u→∞supr,s,t≥0

1
pqu

∑r+p−1
m=r

∑s+q−1
n=s

∑t+u−1
k=t ((m+ n+ k)! |xmnk|)1/m+n+k →

0.

that is, the average value of (xmnk) ∈ X taken over any rectangle
{(m,n, k) : r ≤ m ≤ r + p− 1, s ≤ n ≤ s+ q − 1, t ≤ k ≤ t+ u− 1} tends to 0 as
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both p, q and u to ∞, and this P− convergence is uniform in r, s and t. Let denote

the set of sequences with this property as
[
χ̂3
]
(X) .

2.3. Definition. The triple sequence θi,ℓ,j = {(mi, nℓ, kj)} is called triple lacunary
if there exist three increasing sequences of integers such that

m0 = 0, hi = mi −mr−1 → ∞ as i → ∞ and
n0 = 0, hℓ = nℓ − nℓ−1 → ∞ as ℓ → ∞.
k0 = 0, hj = kj − kj−1 → ∞ as j → ∞.

Let mi,ℓ,j = minℓkj , hi,ℓ,j = hihℓhj , and θi,ℓ,j is determine by
Ii,ℓ,j = {(m,n, k) : mi−1 < m < mi andnℓ−1 < n ≤ nℓ andkj−1 < k ≤ kj} , qk = mk

mk−1
, qℓ =

nℓ

nℓ−1
, qj =

kj

kj−1
.

2.4. Definition. Let f be an Orlicz function and P = (pmnk) be any factorable
triple sequence of strictly positive real numbers, we define the following sequence
space: χ3

f

[
ACθi,ℓ,j , P

]
(X) ={

P − limi,ℓ,j
1

hiℓj

∑
m∈Ii,ℓ,j

∑
n∈Ii,ℓ,j

∑
k∈Ii,ℓ,j

[
f ((m+ n+ k)! |xm+r,n+s,k+t|)1/m+n+k

]pmnk

= 0,
}
,

uniformly in r, s and t.
We shall denote χ3

f

[
ACθi,ℓ,j , P

]
(X) as χ3

[
ACθi,ℓ,j , P

]
(X) respectively when

pmnk = 1 for all m,n and k If x is in χ3
[
ACθi,ℓ,j , P

]
(X) , we shall say that x is

almost lacunary χ3 strongly P−convergent with respect to the Orlicz function f .
Also note if f (x) = x, pmnk = 1 for all m,n and k then χ3

f

[
ACθi,ℓ,j , P

]
(X) =

χ3
[
ACθi,ℓ,j

]
(X) which are defined as follows: χ3

[
ACθi,ℓ,j

]
(X) ={

P − limi,ℓ,j
1

hiℓj

∑
m∈Ii,ℓ,j

∑
n∈Ii,ℓ,j

∑
k∈Ii,ℓ,j

[
f ((m+ n+ k)! |xm+r,n+s,k+t|)1/m+n+k

]
= 0,

}
,

uniformly in r, s and t.
Again note if pmnk = 1 for allm,n and k then χ3

f

[
ACθi,ℓ,j , P

]
(X) = χ3

f

[
ACθi,ℓ,j

]
(X) .

we define χ3
f

[
ACθi,ℓ,j , P

]
(X) ={

P − limi,ℓ,j
1

hiℓj

∑
m∈Ik,ℓ,j

∑
n∈Ii,ℓ,j

∑
k∈Ii,ℓ,j

[
f ((m+ n+ k)! |xm+r,n+s,k+t|)1/m+n+k

]pmnk

= 0,
}
,

uniformly in r, s and t.

2.5. Definition. Let f be an Orlicz function P = (pmnk) be any factorable triple
sequence of strictly positive real numbers, we define the following sequence space:
χ3
f [P ] (X) ={
P − limp,q,u→∞

1
pqu

∑p
m=1

∑q
n=1

∑u
k=1

[
f ((m+ n+ k)! |xm+r,n+s,k+t|)1/m+n+k

]pmnk

= 0
}
,

uniformly in r, s and t.
If we take f (x) = x, pmnk = 1 for all m,n and k then χ3

f [P ] (X) = χ3 (X) .

2.6. Definition. Let θi,ℓ,j be a triple lacunary sequence; the triple number se-

quence x is Ŝθi,ℓ,j − P− convergent to 0 then

P−limi,ℓ,j
1

hi,ℓ,j
maxr,s,t

∣∣∣{(m,n, k) ∈ Ii,ℓ,j : f ((m+ n+ k)! |xm+r,n+s,k+t − 0|)1/m+n+k
}∣∣∣ =

0.
In this case we write Ŝθi,ℓ,j − lim (f (m+ n+ k)! |xm+r,n+s,k+t − 0|)1/m+n+k

= 0.
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3. Main Results

3.1. Theorem. If f be any Orlicz function and a bounded factorable positive triple
number sequence pmnk then χ3

f

[
ACθi,ℓ,j , P

]
(X) is linear space

Proof: The proof is easy. Theorefore omit the proof.

3.2. Theorem. For any Orlicz function f, we have χ3
[
ACθi,ℓ,j

]
(X) ⊂ χ3

f

[
ACθi,ℓ,j

]
(X)

Proof: Let x ∈ χ3
[
ACθi,ℓ,j

]
(X) so that for each r, s and u

χ3
[
ACθi,ℓ,j

]
(X) ={

limi,ℓ,j
1

hiℓj

∑
m∈Ii,ℓ,j

∑
n∈Ii,ℓ,j

∑
k∈Ii,ℓ,j

[
((m+ n+ k)! |xm+r,n+s,k+u|)1/m+n+k

]
= 0
}
.

Since f is continuous at zero, for ε > 0 and choose δ with 0 < δ < 1 such that
f (t) < ϵ for every t with 0 ≤ t ≤ δ. We obtain the following,
1

hiℓj
(hiℓjϵ)+

1
hiℓj

∑
m∈Ii,ℓ,j

∑
n∈Ii,ℓ,j and |xm+r,n+s,k+u−0|>δ f

[
((m+ n+ k)! |xm+r,n+s,k+u|)1/m+n+k

]
1

hiℓj
(hiℓjϵ) +

1
hiℓj

Kδ−1f (2)hiℓj χ
3
[
ACθi,ℓ,j

]
(X) .

Hence i, ℓ and j goes to infinity, for each r, s and u we are granted x ∈ χ3
f

[
ACθi,ℓ,j

]
(X) .

3.3. Theorem. Let θi,ℓ,j = {mi, nℓ, kj} be a triple lacunary sequence with liminfiqi >
1, liminfℓqℓ > 1 and liminfjqj > 1 then for any Orlicz function f, χ3

f (P ) (X) ⊂
χ3
f

(
ACθi,ℓ,j , P

)
(X)

Proof: Suppose liminfiqi > 1, liminfℓqℓ > 1 and liminfjqj > 1 then there
exists δ > 0 such that qi > 1 + δ, qℓ > 1 + δ and qj > 1 + δ This implies
hi

mi
≥ δ

1+δ ,
hℓ

nℓ
≥ δ

1+δ and
hj

kj
≥ δ

1+δ Then for x ∈ χ3
f (P ) (X) , we can write for

each r, s and u.

Bi,ℓ,j =
1

hiℓj

∑
m∈Ii,ℓ,j

∑
n∈Ii,ℓ,j

∑
k∈Ii,ℓ,j

f
[
((m+ n+ k)! |xm+r,n+s,k+u|)1/m+n+k

]pmnk

=

1
hiℓj

∑mi

m=1

∑nℓ

n=1

∑kj

k=1 f
[
((m+ n+ k)! |xm+r,n+s,k+u|)1/m+n+k

]pmnk

−
1

hiℓj

∑mi−1

m=1

∑nℓ−1

n=1

∑ki−1

k=1 f
[
((m+ n+ k)! |xm+r,n+s,k+u|)1/m+n+k

]pmnk

−
1

hiℓj

∑mi

m=mi−1+1

∑nℓ−1

n=1

∑kj−1

k=1 f
[
((m+ n+ k)! |xm+r,n+s,k+u|)1/m+n+k

]pmnk

−

1
hiℓj

∑kj

k=kj+1

∑nℓ

n=nℓ−1+1

∑mk−1

m=1 f
[
((m+ n+ k)! |xm+r,n+s,k+u|)1/m+n+k

]pmnk

=
minℓkj

hiℓj

(
1

minℓkj

∑mi

m=1

∑nℓ

n=1

∑kj

k=1 f
[
((m+ n+ k)! |xm+r,n+s,k+u|)1/m+n+k

]pmnk
)
−

mk−1nℓ−1kj−1

hiℓj

(
1

mi−1nℓ−1kj−1

∑mi−1

m=1

∑nℓ−1

n=1

∑kj−1

k=1 f
[
((m+ n+ k)! |xm+r,n+s,k+u|)1/m+n+k

]pmnk
)

− kj−1

hiℓj

(
1

kj−1

∑mi

m=mi−1+1

∑nℓ−1

n=1

∑kj

k=1 f
[
((m+ n+ k)! |xm+r,n+s,k+u|)1/m+n+k

]pmnk
)

− nℓ−1

hiℓj

(
1

nℓ−1

∑mk

m=mk−1+1

∑nℓ−1

n=1

∑kj

k=1 f
[
((m+ n+ k)! |xm+r,n+s,k+u|)1/m+n+k

]pmnk
)
−

mk−1

hiℓj

(
1

mk−1

∑kj

k=1

∑nℓ

n=nℓ−1+1

∑mk−1

m=1 f
[
((m+ n+ k)! |xm+r,n+s,k+u|)1/m+n+k

]pmnk
)
.

Since x ∈ χ3
f (P ) (X) the last three terms tend to zero uniformly in m,n, k in the

sense, thus, for each r, s and u

Bi,ℓ,j =
minℓkj

hiℓj

(
1

minℓkj

∑mi

m=1

∑nℓ

n=1

∑kj

k=1 f
[
((m+ n+ k)! |xm+r,n+s,k+u|)1/m+n+k

]pmnk
)
−

mi−1nℓ−1kj−1

hiℓj

(
1

mi−1nℓ−1kj−1

∑mi−1

m=1

∑nℓ−1

n=1

∑kj−1

k=1 f
[
((m+ n+ k)! |xm+r,n+s,k+u|)1/m+n+k

]pmnk
)
+
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O (1) .
Since hiℓj = minℓkj−mi−1nℓ−1kj−1 we are granted for each r, s and u the following

minℓkj
hiℓj

≤ 1+δ
δ and

mi−1nℓ−1kj−1

hiℓj
≤ 1

δ .

The terms(
1

minℓkj

∑mi

m=1

∑nℓ

n=1

∑kj

k=1 f
[
((m+ n+ k)! |xm+r,n+s,k+u|)1/m+n+k

]pmnk
)
and(

1
mi−1nℓ−1kj−1

∑mi−1

m=1

∑nℓ−1

n=1

∑kj−1

k=1 f
[
((m+ n+ k)! |xm+r,n+s,k+u|)1/m+n+k

]pmnk
)

are both gai sequences for all r, s and u. Thus Biℓj is a gai sequence for each r, s
and u. Hence x ∈ χ3

f

(
ACθi,ℓ,j , P

)
(X) .

3.4. Theorem. Let θi,ℓ,j = {m,n, k} be a triple lacunary sequence with limsupηqη <
∞ and limsupiqi < ∞ then for any Orlicz function f, χ3

f

(
ACθi,ℓ,j , P

)
(X) ⊂

χ3
f (p) (X) .

Proof: Since limsupiqi < ∞ and limsupiqi < ∞ there exists H > 0 such that
qi < H, qℓ < H and qj < H for all i, ℓ and j. Let x ∈ χ3

f

(
ACθi,ℓ,j , P

)
(X) . Also

there exist i0 > 0, ℓ0 > 0 and j0 > 0 such that for every a ≥ i0 b ≥ ℓ0 and c ≥ j0
and r, s and u.

A
′

abc =
1

habc

∑
m∈Ia,b,c

∑
n∈Ia,b,c

∑
k∈Ia,b,c

f
[
((m+ n+ k)! |xm+r,n+s,k+u|)1/m+n+k

]pmnk

→
0asm, n, k → ∞.

Let G
′
= max

{
A

′

a,b,c : 1 ≤ a ≤ i0, 1 ≤ b ≤ ℓ0 and 1 ≤ c ≤ j0

}
and p, q and t be

such that mi−1 < p ≤ mi, nℓ−1 < q ≤ nℓ and mj−1 < t ≤ mj . Thus we obtain the
following:
1

pqt

∑p
m=1

∑q
n=1

∑t
k=1

[
((m+ n+ k)! |xm+r,n+s,k+u|)1/m+n+k

]pmnk

≤ 1
mi−1nℓ−1kj−1

∑mi

m=1

∑nℓ

n=1

∑kj

k=1

[
((m+ n+ k)! |xm+r,n+s,k+u|)1/m+n+k

]pmnk

≤ 1
mi−1nℓ−1kj−1

∑i
a=1

∑ℓ
b=1

∑j
c=1(∑

m∈Ia,b,c

∑
n∈Ia,b,c

∑
k∈Ia,b,c

[
((m+ n+ k)! |xm+r,n+s,k+u|)1/m+n+k

]pmnk
)

= 1
mi−1nℓ−1kj−1

∑i0
a=1

∑ℓ0
b=1

∑j0
c=1 ha,b,cA

′

a,b,c+
1

mk−1nℓ−1kj−1

∑
(i0<a≤i)

∪
(ℓ0<b≤ℓ)

∪
(j0<c≤j) ha,b,cA

′

a,b,c

≤ G
′

mi−1nℓ−1kj−1

∑i0
a=1

∑ℓ0
b=1

∑j0
c=1 ha,b,c+

1
mi−1nℓ−1kj−1

∑
(i0<a≤i)

∪
(ℓ0<b≤ℓ)

∪
(j0<c≤ȷ) ha,b,cA

′

a,b,c

≤ G
′
mi0nℓ0

kj0 i0ℓ0j0
mi−1nℓ−1kj−1

+ 1
mi−1nℓ−1jj−1

∑
(i0<a≤i)

∪
(ℓ0<b≤ℓ)

∪
(j0<c≤j) ha,b,cA

′

a,b,c

≤
G

′
mi0nℓ0kj0

i0ℓ0j0

mi−1nℓ−1kj−1
+
(
supa≥i0

∪
b≥ℓ0

∪
c≥j0A

′

a,b,c

)
1

mi−1nℓ−1kj−1

∑
(i0<a≤i)

∪
(ℓ0<b≤ℓ)

∪
(j0<c≤j) ha,b,c

≤
G

′
mi0nℓ0kj0

i0ℓ0j0

mi−1nℓ−1kj−1
+ ϵ

mi−1nℓ−1kj−1

∑
(i0<a≤i)

∪
(ℓ0<b≤ℓ)

∪
(j0<c≤j) ha,b,c

≤
G

′
mi0nℓ0kj0

i0ℓ0j0

mi−1nℓ−1kj−1
+ ϵH3.

Since mi, nℓ and kj both approaches infinity as both p, q and t approaches infinity,
it follows that

1
pqt

∑p
m=1

∑q
n=1

∑t
k=1

[
((m+ n+ k)! |xm+r,n+s,k+u|)1/m+n+k

]pmnk

=

0, uniformly inr, s andu.

Hence x ∈ χ3
f (P ) (X) .
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3.5. Theorem. Let θi,ℓ,j be a triple lacunary sequence then

(i) (xmnk) ∈ X
P→ χ3

(
Ŝθi,ℓ,j

)
(X)

(ii)
(
ACθi,ℓ,j

)
is a proper subset of

(
Ŝθi,ℓ,j

)
(iii) If x ∈ Λ3 and (xmnk) ∈ X

P→ χ3
(
Ŝθi,ℓ,j

)
(X) then (xmnk) ∈ X

P→ χ3
(
ACθi,ℓ,j

)
(X)

(iv) χ3
(
Ŝθi,ℓ,j

)
(X)

∩
Λ3 = χ3

[
ACθi,,ℓ,j

]
(X)

∩
Λ3.

Proof: (i) Since for all r, s and u∣∣∣{(m,n, k) ∈ Ii,ℓ,j : ((m+ n+ k)! |xm+r,n+s,k+u − 0|)1/m+n+k
}
= 0
∣∣∣ ≤∑

m∈Ii,ℓ,j

∑
n∈Ii,ℓ,j

∑
k∈Ii,ℓ,j and |xm+r,n+s,k+u|=0 ((m+ n+ k)! |xm+r,n+s,k+u − 0|)1/m+n+k ≤∑

m∈Ii,ℓ,j

∑
n∈Ii,ℓ,j

∑
k∈Ii,ℓ,j

((m+ n)! |xm+r,n+s,k+u − 0|)1/m+n+k
, for all r, s and

u
P−limi,ℓ,j

1
hiℓj

∑
m∈Ii,ℓ,j

∑
n∈Ii,ℓ,j

∑
k∈Ii,ℓ,j

((m+ n+ k)! |xm+r,n+s,k+u − 0|)1/m+n+k
=

0
This implies that for all r, s and u

P −
limi,ℓ,j

1
hi,ℓ,j

∣∣∣{(m,n, k) ∈ Ii,ℓ,j : ((m+ n+ k)! |xm+r,n+s,k+u − 0|)1/m+n+k
= 0
}∣∣∣ =

0.

(ii)let x = (xmnk) ∈ X be defined as follows:

(xmnk) =



1 2 3 ...
[ 4
√

hi,ℓ,j]
m+n+k

(m+n+k)! 0 . . .

1 2 3 ...
[ 4
√

hi,ℓ,j]
m+n+k

(m+n+k)! 0 . . .

.

.

.

1 2 3 ...
[ 4
√

hi,ℓ,j]
m+n+k

(m+n+k)! 0 . . .

.

.

.
0 0 0 ...0 0 . . .
.
.
.



;

Here x is an trible sequence and for all r, s and u

P−limi,ℓ,j
1

hk,ℓ,j

∣∣∣{(m,n, k) ∈ Ii,ℓ,j : ((m+ n+ k)! |xm+r,n+s,k+u − 0|)1/m+n+k
= 0
}∣∣∣ =

P − limi,ℓ,j
1

hi,ℓ,j

(
(m+n+k)! [ 4

√
hi,ℓ,j]

m+n+k

(m+n+k)!

)1/m+n+k

= 0.

Therefore (xmnk) ∈ X
P→ χ3

(
Ŝθi,ℓ,j

)
(X) . Also

P−limi,ℓ,j
1

hiℓj

∑
m∈Ii,ℓ,j

∑
n∈Ii,ℓ,j

∑
k∈Ii,ℓ,j

((m+ n+ k)! |xm+r,n+s,k+u|)1/m+n+k
=

P− 1
2

(
limi,ℓ,j

1
hi,ℓ,j

(
(m+n+k)! [ 4

√
hi,ℓ,j]

m+n+k
[ 4
√

hi,ℓ,j]
m+n+k

[ 4
√

hi,ℓ,j]
m+n+k

(m+n+k)!

)1/m+n+k

+ 1

)
=
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1
2 .

Therefore (xmnk) ∈ X
P

̸→ χ3
(
ACθi,ℓ,j

)
(X) .

(iii) If x ∈ Λ3 and (xmnk) ∈ X
P→ χ3

(
Ŝθi,ℓ,j

)
(X) then (xmnk) ∈ X

P→ χ3
(
ACθi,ℓ,j

)
(X) .

Suppose x ∈ Λ3 then for all r, s and u, ((m+ n+ k)! |xm+r,n+s,k+u − 0|)1/m+n+k ≤
M for all m,n, k. Also for given ϵ > 0 and i, ℓ and j large for all r, s and u we obtain
the following:
1

hiℓj

∑
m∈Ii,ℓ,j

∑
n∈Ii,ℓ,j

∑
k∈Ii,ℓ,j

((m+ n+ k)! |xm+r,n+s,k+u − 0|)1/m+n+k
=

1
hiℓj

∑
m∈Ik,ℓ

∑
n∈Ii,ℓ,j

∑
k∈Ik,ℓ,j and |xm+r,n+s,k+u|≥0 ((m+ n+ k)! |xm+r,n+s,k+u − 0|)1/m+n+k

+

1
hiℓj

∑
m∈Ii,ℓ,j

∑
n∈Ii,ℓ,j

∑
k∈Ii,ℓ,j and |xm+r,n+s,k+u|≤0 ((m+ n+ k)! |xm+r,n+s,k+u − 0|)1/m+n+k

≤ M
hiℓj

∣∣∣{(m,n, k) ∈ Ii,ℓ,j : ((m+ n+ k)! |xm+r,n+s,k+u − 0|)1/m+n+k
}
= 0
∣∣∣+ ϵ.

Therefore x ∈ Λ3 and (xmnk) ∈ X
P→ χ3

(
Ŝθi,ℓ,j

)
(X) then (xmnk) ∈ X

P→
χ3
(
ACθi,ℓ,j

)
(X) .

(iv)χ3
(
Ŝθi,ℓ,j

)
(X)

∩
Λ3 = χ3

[
ACθi,ℓ,j

]
(X)

∩
Λ3. follows from (i),(ii) and (iii).

3.6. Theorem. If f be any Orlicz function then χ3
f

[
ACθi,ℓ,j

]
(X) /∈ χ3

(
Ŝθi,ℓ,j

)
(X)

Proof: Let x ∈ χ3
f

[
ACθi,ℓ,j

]
(X) , for all r, s and u.

Therefore we have
1

hiℓj

∑
m∈Ii,ℓ,j

∑
n∈Ii,ℓ,j

∑
k∈Ii,ℓ,j

f
[
((m+ n+ k)! |xm+r,n+s,k+u − 0|)1/m+n+k

]
≥

1
hiℓj

∑
m∈Ii,ℓ,j

∑
n∈Ii,ℓ,j

∑
k∈Ii,ℓ,j and |xm+r,n+s,k+u|=0

f
[
((m+ n+ k)! |xm+r,n+s,k+u − 0|)1/m+n+k

]
>

1
hiℓj

f (0)
∣∣∣{(m,n, k) ∈ Ii,ℓ,j : ((m+ n+ k)! |xm+r,n+s,k+u − 0|)1/m+n+k

}
= 0
∣∣∣ .

Hence x ∈ X /∈ χ3
(
Ŝθi,ℓ,j

)
(X) .
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