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δ-QUASI-SLOWLY OSCILLATING SEQUENCES IN LOCALLY

NORMAL RIESZ SPACES

BIPAN HAZARIKA

Abstract. In this paper, we introduce the notion of δ-quasi-slowly oscillating
sequences, study on δ-quasi-slowly oscillating compactness and δ-quasi-slowly
oscillating continuous functions in locally normal Riesz space.

1. Introduction

Using the idea of continuity of a real function and the idea of compactness in
terms of sequences, many kinds of continuities were introduced and investigated,
not all but some of them we recall in the following: forward continuity [5], slowly
oscillating continuity [8, 12, 13, 14, 34], statistical ward continuity [6], δ-ward con-
tinuity [10], ideal ward continuty [4, 24], ideally slowly oscillating continuity [25].
The concept of a Cauchy sequence involves far more than that the distance be-
tween successive terms is tending to zero. Nevertheless, sequences which satisfy
this weaker property are interesting in their own right. A sequence (xn) of points
in R is called quasi-Cauchy if (∆xn) is a null sequence where ∆xn = xn+1 − xn.
In [3] Burton and Coleman named these sequences as ”quasi-Cauchy” and in [7]
Çakallı used the term ”ward convergent to 0” sequences. In terms of quasi-Cauchy
we restate the definitions of ward compactness and ward continuity as follows: a
function f is ward continuous if it preserves quasi-Cauchy sequences, i.e. (f(xn))
is quasi-Cauchy whenever (xn) is, and a subset E of R is ward compact if any
sequence x = (xn) of points in E has a quasi-Cauchy subsequence z = (zk) = (xnk

)
of the sequence x.

The idea of statistical convergence first appeared, under the name of almost
convergence, in the first edition Zygmund [36] of celebrated monograph [37] of
Zygmund. Later, this idea was introduced by Fast [18] and Steinhaus [33] and
many authors. Actually, this concept is based on the natural density of subsets
of N of positive integers. A subset E of N is said to have natural or asymptotic
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density δ(E), if

δ(E) = lim
n→∞

|E(n)|
n

exists,

where E(n) = {k ≤ n : k ∈ E} and |E| denotes the cardinality of the set E. The
notion of lacunary statistical convergence was introduced by Fridy and Orhan [21]
and has been investgated for the real case in [22].

Kostyrko et al. [27] introduced the notion of ideal convergence which is a gen-
eralization of statistical convergence (see [18, 20]) based on the structure of the
admissible ideal I of subsets of natural numbers N.
A family of sets I ⊂ P (N) (the power sets of N) is said to be an ideal on N if and
only if ϕ ∈ I for each A,B ∈ I, we have A∪B ∈ I for each A ∈ I and each B ⊂ A,
we have B ∈ I. A non-empty family of sets F ⊂ P (N) is said to be a filter on N
if and only if ϕ /∈ F for each A,B ∈ F, we have A ∩ B ∈ F each A ∈ F and each
B ⊃ A, we have B ∈ F. An ideal I is called non-trivial ideal if I ̸= ϕ and N /∈ I.
Clearly I ⊂ P (N) is a non-trivial ideal if and only if F = F (I) = {N− A : A ∈ I}
is a filter on N. A non-trivial ideal I ⊂ P (N) is called admissible if and only if
{{n} : n ∈ N} ⊂ I. Throughout we assume I is a non-trivial admissible ideal in N.

A Riesz space is an ordered vector space which is a lattice at the same time. It
was first introduced by F. Riesz [31] in 1928. Riesz spaces have many applications
in measure theory, operator theory and optimization. They have also some appli-
cations in economics (see [2]), and we refer to [1, 23, 26, 28, 29, 32, 35] for more
details.

2. Preliminaries and Notations

It is known that a sequence x = (xn) of points in R, the set of real numbers, is
slowly oscillating, denoted by x ∈ so, if

lim
λ→1+

limn max
n+1≤k≤[λn]

|xk − xn| = 0

where [λn] denotes the integer part of λn. This is equivalent to the following if
(xm − xn) → 0 whenever 1 ≤ m

n → 1 as m,n → ∞. Using ε > 0 and δ this is
also equivalent to the case when for any given ε > 0, there exists δ = δ(ε) > 0 and
N = N(ε) such that |xm−xn| < ε if n ≥ N(ε) and n ≤ m ≤ (1+δ)n (see [8, 15, 17]).

A function defined on a subset E of R is called slowly oscillating continuous if
it preserves slowly oscillating sequences, i.e. (f(xn)) is slowly oscillating whenever
(xn) is.

Connor and Grosse-Erdman [16] gave sequential definitions of continuity for real
functions calling G-continuity instead of A-continuity and their results covers the
earlier works related to A-continuity where a method of sequential convergence, or
briefly a method, is a linear function G defined on a linear subspace of s, space
of all sequences, denoted by cG, into R. A sequence x = (xn) is said to be G-
convergent to ℓ if x ∈ cG and G(x) = ℓ. In particular, lim denotes the limit
function limx = limn xn on the linear space c.
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A method G is called regular if every convergent sequence x = (xn) is G-
convergent with G(x) = limx. A method is called subsequential if whenever
x is G-convergent with G(x) = ℓ, then there is a subsequence (xnk

) of x with
limk xnk

= ℓ (for details see [9]).

Let X be a real vector space and ≤ be a partial order on this space. Then X is
said to be an ordered vector space if it satisfies the following properties:

(i) if x, y ∈ X and y ≤ x, then y + z ≤ x+ z for each z ∈ X.
(ii) if x, y ∈ X and y ≤ x, then ay ≤ ax for each a ≥ 0.
If, in addition, X is a lattice with respect to the partial ordered, then X is said

to be a Riesz space (or a vector lattice)(see[35]).
For an element x of a Riesz space X, the positive part of x is defined by x+ =

x ∨ 0 = sup{x, 0}, the negative part of x by x− = −x ∨ 0 and the absolute value of
x by |x| = x ∨ (−x), where 0 is the zero element of X.

A subset S of a Riesz space X is said to be normal if y ∈ S and |x| ≤ |y| implies
x ∈ S.

A topological vector space (X, τ) is a vector spaceX which has a topology (linear)
τ, such that the algebraic operations of addition and scalar multiplication in X are
continuous. Continuity of addition means that the function f : X×X → X defined
by f(x, y) = x+ y is continuous on X ×X, and continuity of scalar multiplication
means that the function f : R ×X → X defined by f(a, x) = ax is continuous on
R×X.

Every linear topology τ on a vector space X has a base N for the neighborhoods
of θ satisfying the following properties:

(1) Each Y ∈ N is a balanced set, that is, ax ∈ Y holds for all x ∈ Y and for
every a ∈ R with |a| ≤ 1.

(2) Each Y ∈ N is an absorbing set , that is , for every x ∈ X, there exists
a > 0 such that ax ∈ Y.

(3) For each Y ∈ N there exists some E ∈ N with E + E ⊆ Y.

A linear topology τ on a Riesz space X is said to be locally normal if τ has a base
at zero consisting of normal sets. A locally normal Riesz space (X, τ) is a Riesz
space equipped with a locally normal topology τ.

Recall that a first countable space is a topological space satisfying the ”first
axiom of countability”. Specifically, a space X is said to be first countable if each
point has a countable neighborhood basis (local base). That is, for each point x in
X there exists a sequence V1, V2, · · · of open neighborhoods of x such that for any
open neighborhood V of x there exists an integer j with Vj contained in V.

A sequence x = (xn) of points in a locally normal Riesz space X is said to be
statistically convergent (see [1]) to an element L in X if for each τ - neighborhood
V of zero, δ({n ∈ N : xn − L /∈ V }) = 0, i.e.

lim
k→∞

1

k
|{n ≤ k : xn − L /∈ V }| = 0.

A sequence x = (xn) in a locally normal Riesz space X is called lacunary statisti-
cally convergent to an element L in X (see [30]) if for every τ -neighborhood V of
zero,

lim
r→∞

1

hr
|{n ∈ Jr : xn − L /∈ V }| = 0
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where J = (kr−1, kr] and k0 = 0, hr := kr − kr−1 → ∞ as r → ∞ and (θ) = (kr) is
an increasing sequence of positive integers.
A sequence x = (xn) of points in a locally normal Riesz space X is said to be
ideally convergent to x0 ∈ X if for every τ -neighborhood V of zero, the set

{n ∈ N : xn − x0 /∈ V } ∈ I. In this case we write xn
Iτ→ ℓ i.e. Iτ -limxn = ℓ

(for details see [23]).

Throughout the article, the symbol Nnor we will denote any base at zero consist-
ing of normal sets and satisfying the conditions (1), (2) and (3) in a locally normal
topology. Also (X, τ) a locally normal Riesz space (in short LNRS) and N and R
will denote the set of all positive integers, and the set of all real numbers, respec-
tively. We will use boldface letters x, y, z, ... for sequences x = (xn), y = (yn),
z = (zn), ... of points in X.

3. δ-quasi-slowly oscillating sequences in LNRS

In this section we introduce the concepts of δ-quasi-slowly oscillating continuity
and δ-quasi-slowly oscillating compactness in LNRS and establish some intresting
results related to these notions.

A sequence x = (xn) of points in X is called quasi-Cauchy if for each τ -
neighborhood V of zero, there exists an m0 ∈ N such that xn+1−xn ∈ V for n ≥ m0

. It is clear that Cauchy sequences are slowly oscillating not only the real case but
also in the LNRS setting. It is easy to see that any slowly oscillating sequence of
points in X is quasi-Cauchy and therefore Cauchy sequence is quasi-Cauchy. The
converses are not always true. There are quasi-Cauchy sequences which are not
Cauchy. There are quasi-Cauchy sequences which are not slowly oscillating. Any
subsequence of Cauchy sequence is Cauchy. The analogous property fails for quasi-
Cauchy sequences and slowly oscillating sequences as well. A sequence x = (xn)
of points in X is said to be slowly oscillating, denoted by x ∈ so(X) if (xn) is
a slowly oscillating sequences, i.e. for each τ -neighborhood V of zero, there exist
δ = δ(V ) > 0 and m = m(V ) such that

xk − xn ∈ V for n ≥ m(V ) and n ≤ k ≤ (1 + δ)n.

Now we introduce the notion of δ-quasi-slowly oscillating sequences in LNRS.

Definition 3.1. A sequence x = (xn) of points in X is said to be δ-quasi-slowly
oscillating, denoted by x ∈ qso(X) if (∆xn) is a quasi-slowly oscillating sequences,
i.e. for each τ -neighborhood V of zero, there exist δ = δ(V ) > 0 and m = m(V )
such that

∆2xk −∆2xn ∈ V for n ≥ m(V ) and n ≤ k ≤ (1 + δ)n.

Theorem 3.2. If a sequence is quasi-slowly oscillating then it is a δ-quasi-slowly
oscillating.

Proof. Let (xn) be a quasi-slowly oscillating sequence. For each τ -neighborhood
V of zero, there exists a Y ∈ Nnor such that Y ⊆ V. Choose W ∈ Nnor such
that W − W ⊆ Y. Since (xn) is a quasi-slowly oscillating sequence, there exist
δ = δ(W ) > 0 and a positive integer n1 = n1(W ) such that

∆xk −∆xn ∈ W for all n ≥ n1 and n ≤ k ≤ (1 + δ)n.
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Hence for all n ≥ n1(W ) and n ≤ k ≤ (1 + δ)n we have

∆2xk −∆2xn = (∆xk −∆xk+1)− (∆xn −∆xn+1)

= (∆xk −∆xn)− (∆xk+1 −∆xn+1) ∈ W −W ⊆ Y ⊆ V.

It implies that (xn) is a δ-quasi-slowly oscillating sequence. �
We introduce the notion of δ-quasi-slowly oscillating continuity in LNRS.

Definition 3.3. A function f defined on a subset E of X is called δ-quasi-slowly os-
cillating continuous if it transforms δ-quasi-slowly oscillating sequences to δ-quasi-
slowly oscillating sequences of points in E, that is, (f(xn)) is δ-quasi-slowly oscil-
lating whenever (xn) is δ-quasi-slowly oscillating sequences of points in E.

We note that sum of two δ-quasi-slowly oscillating continuous functions is δ-
quasi-slowly oscillating continuous and the composite of two δ-quasi-slowly oscil-
lating continuous functions is δ-quasi-slowly oscillating continuous in LNRS.

In connection with quasi-slowly oscillating sequences, δ-quasi-slowly oscillating
sequences and convergent sequences the problem arises to investigate the following
types of continuity of functions on X.

(δqso-δqso) : (xn) ∈ δqso(X) ⇒ (f(xn)) ∈ δqso(X)
(δqso-c) : (xn) ∈ δqso(X) ⇒ (f(xn)) ∈ c(X)

(c-c) : (xn) ∈ c(X) ⇒ (f(xn)) ∈ c(X)
(c-δqso) : (xn) ∈ c(X) ⇒ (f(xn)) ∈ δqso(X)

(δqso-qso) : (xn) ∈ δqso(X) ⇒ (f(xn)) ∈ qso(X)
(qso-δqso) : (xn) ∈ qso(X) ⇒ (f(xn)) ∈ δqso(X)

(u) : uniform continuity of f.

It is clear that (δqso-δqso) implies (qso-δqso), but (qso-δqso) need not imply
(δqso-δqso). Also (δqso-c) implies (c-δqso) and (δqso-c) implies (c-c) and we
see that (c-c) need not imply (δqso-c), because identity function is an example for
it. We also see that (u) implies (qso-δqso).

Theorem 3.4. If f is δ-quasi-slowly oscillating continuous on a subset E of X
then it is continuous on E in the ordinary sense.

Proof. Suppose that f is δ-quasi-slowly oscillating continuous on E and let (xn) be
any convergent sequence of points in E with limn→∞ xn = x0. Then the sequence
(yn) = (x1, x1, x1, x0, x0, x0, x2, x2, x2, x0, x0, x0, ..., xn−1, xn−1, xn−1, x0, x0, x0,
xn, xn, xn, x0, x0, x0, ...)
is also convergent to x0 and hence (yn) is δ-quasi-slowly oscillating. Since f is
δ-quasi-slowly oscillating continuous, the sequence

(zn) = (f(x1), f(x1), f(x1), f(x0), f(x0), f(x0), f(x2), f(x2), f(x2), f(x0), f(x0), f(x0), ...,

f(xn−1), f(xn−1), f(xn−1), f(x0), f(x0), f(x0), f(xn), f(xn), f(xn), f(x0), f(x0), f(x0), ...)

is also δ-quasi-slowly oscillating. Therefore (∆zn) is a quasi-slowly oscillating. Since
any slowly oscillating sequence is quasi-Cauchy, then the sequence (∆2zn) is slowly
oscillating and so is quasi-Cauchy. Now it follows that if for each τ -neighborhood
V of zero, there exists m = m(V ) such that

f(xn)− f(x0) ∈ V for n ≥ m.
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This completes the proof of theorem. �

Corollary 3.5. Any δ-quasi-slowly oscillating continuous function is G-continuous
for any regular subsequential method G.

Corollary 3.6. If f is δ-quasi-slowly oscillating continuous on a subset E of X,
then it is ideally continuous on E.

Corollary 3.7. If f is δ-quasi-slowly oscillating continuous on a subset E of X,
then it is statistically continuous on E.

Corollary 3.8. If f is δ-quasi-slowly oscillating continuous on a subset E of X,
then it is lacunary statistically continuous on E.

Theorem 3.9. If f is a uniformly continuous function defined on a subset E of X,
then it is δ-quasi-slowly oscillating continuous on E.

Proof. Let f be uniformly continuous function and x = (xn) be any δ-quasi-slowly
oscillating sequence in E. Let W be a τ -neighborhood of zero. Since f is uniformly
continuous on E, then there exists a τ -neighborhood V of zero such that f(x) −
f(y) ∈ W whenever x − y ∈ V. Since (xn) is δ-quasi-slowly oscillating, for the
same τ -neighborhood W of zero, there exist m = m(V ) and δ = δ(V ) > 0 such
that ∆2xk − ∆2xn ∈ V for n ≥ m(V ) and n ≤ k ≤ (1 + δ)n. Hence we have
∆2f(xk)−∆2f(xn) ∈ W whenever n ≥ m(V ) and n ≤ k ≤ (1+ δ)n. It follows that
(f(xn)) is δ-quasi-slowly oscilatting. This completes the proof of theorem. �

Definition 3.10. [19] A sequence (xn) of points in X is called Cesàro δ-quasi-
slowly oscillating if (tn) is δ–quasi-slowly oscillating, where tn = 1

n

∑n
k=1 xk, is

the Cesàro means of the sequence (xn). Also a function f defined on a subset E
of X is called Cesàro δ-quasi-slowly oscillating continuous if it preserves Cesàro
δ-quasi-slowly oscillating sequences of points in E.

By using the similar argument used in proof of Theorem 3.9, we immediately
have the following result.

Theorem 3.11. If f is a uniformly continuous on a subset E of X and (xn) is
a δ-quasi-slowly oscillating sequence in E, then (f(xn)) is Cesàro δ-quasi-slowly
oscillating.

Definition 3.12. A sequence of functions (fn) defined on a subset E of X is said
to be uniformly convergent to a function f if for each τ -neighborhood V of zero,
there exists an integer n0 = n0(V ) such that fn(x) − f(x) ∈ V for all n ≥ n0 and
x ∈ E.

Theorem 3.13. If (fn) is a sequence of δ-quasi-slowly oscillating continuous func-
tions defined on a subset E of X and (fn) is uniformly convergent to a function f
on E, then f is δ-quasi-slowly oscillating continuous on E.

Proof. Let (xn) be any δ-quasi-slowly oscillating sequence of points in E. By uni-
form convergence of (fn), if for each τ -neighborhood V of zero, there exists a
Y ∈ Nnor such that Y ⊆ V. Choose W ∈ Nnor such that W +W +W +W +W +
W +W ⊆ Y. Then there exists n1 = n1(W ) such that

fn(x)− f(x) ∈ W
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for each x ∈ E and for all n ≥ n1(W ). Also since fn1 is δ-quasi-slowly oscillating
continuous, there exist n2 = n2 > n1 and δ = δ(W ) > 0 such that

∆2fn1(xk)−∆2fn1(xn) ∈ W

whenever n ≥ n2(W ) and n ≤ k ≤ (1 + δ)n. Therefore if n ≥ n1(W ) and n ≤ k ≤
(1 + δ)n we have

∆2f(xk)−∆2f(xn) = [∆f(xk)−∆f(xk+1)]− [∆f(xn)−∆f(xn+1)]

= [f(xk)−2f(xk+1)+f(xk+2)−f(xn)+2f(xn+1)−f(xn+2)−fn1(xk)+2fn1(xk+1)−fn1(xk+2)

+fn1(xn)− 2fn1(xn+1) + fn1(xn+2) + fn1(xn)− 2fn1(xn+1) + fn1(xn+2)

+fn1(xk)− 2fn1(xk+1) + fn1(xk+2)− fn1(xn) + 2fn1(xn+1)− fn1(xn+2)]

= [f(xk)−fn1(xk)]+2[fn1(xk+1)−f(xk+1]+[f(xn+2)−fn1(xn+2)]+[fn1(xn)−f(xn)]

+2[f(xn+1)−fn1(xn+1]+[fn1(xk+2)−f(xk+2)]+[fn1(xk)−2fn1(xk+1)+fn1(xn+2)

−fn1(xn) + 2fn1(xn+1)− fn1(xn+2)] ∈ W +W +W +W +W +W +W ⊆ Y ⊆ V.

Thus it implies that ∆2f(xk) −∆2f(xn) ∈ V if n ≥ n1 and n ≤ k ≤ (1 + δ)n. It
follows that (f(xn)) is a δ-quasi-slowly oscillating sequences of points in E which
completes the proof of theorem. �

Using the same techniques as in the Theorem 3.9, the following result can be
obtained easily.

Theorem 3.14. If (fn) is a sequence of Cesàro δ-quasi-slowly oscillating contin-
uous functions defined on a subset E of X and (fn) is uniformly convergent to a
function f on E, then f is Cesàro δ-quasi-slowly oscillating continuous on E.

Theorem 3.15. The set of all δ-quasi-slowly oscillating continuous functions de-
fined on a subset E of X is a closed subset of all continuous functions on E, that
is δqso(E) = δqso(E), where δqso(E) is the set of all δ-quasi-slowly oscillating

continuous functions defined on E and δqso(E) denotes the set of all cluster points
of δqso(E).

Proof. Let f be any element of δqso(E). Then there exists a sequence of points (fn)
in δqso(E) such that limn→∞ fn = f. To show that f is δ-quasi-slowly oscillating
sequence on E. Now let (xn) be any δ-quasi-slowly oscillating sequence in E. Let V
be an arbitrary τ -neighborhood of zero. There exists a Y ∈ Nnor such that Y ⊆ V.
Choose W ∈ Nnor such that W + W + W + W + W + W + W + W + W ⊆ Y.
Since (fn) converges to f, there exists a positive integer n1 such that for all x ∈ E
and for all n ≥ n1, fn(x) − f(x) ∈ W. Also since fn1 is δ-quasi-slowly oscillating
continuous, there exist an integer n2 = n2 > n1 and δ > 0 such that

∆2fn1(xk)−∆2fn1(xn) ∈ W

whenever n ≥ n2 and n ≤ k ≤ (1+ δ)n. Hence, for all n ≥ n1 and n ≤ k ≤ (1+ δ)n
we have

∆2f(xk)−∆2f(xn) = [f(xk)−fn1
(xk)]+2[fn1

(xk+1)−f(xk+1)]+[f(xk+2)−fn1
(xk+2)]

+[fn1(xn)− f(xn)] + 2[f(xn+1)− fn1(xn+1)] + [fn1(xn+2)− f(xn+2)]

+[∆2fn1(xk)−∆2fn1(xn)] ∈ W +W +W +W +W +W +W +W +W ⊆ Y ⊆ V.

Thus it implies that ∆2f(xk)−∆2f(xn) ∈ V for all n ≥ n1 and n ≤ k ≤ (1 + δ)n.
Thus f is δ-quasi-slowly oscillating continuous function on E and this completes
the proof of theorem. �



EJMAA-2017/5(1) δ-QUASI-SLOWLY OSCILLATING SEQUENCES 39

Corollary 3.16. The set of all δ-quasi-slowly oscillating continuous functions de-
fined on a subset E of X is a complete subspace of the space of all continuous
functions on E.

An element x0 in X is called an ideal limit point of a subset E of X if there is an
E-valued sequence of points with ideal limit x0. It follows that the set of all ideal
limit points of E is equal to the set of all limit points of E in the ordinary sense.
An element x0 in X is called an ideal accumulation point of a subset E if it is an
ideal limit point of the set E − {x0}. The set of all ideal accumulation points of E
is equal to the set of all accumulation points of E in the ordinary sense.

A function f on X is said to have an ideally sequential limit at a point x0 of X
if the image sequence (f(xn)) is ideally convergent to x0 for any ideally convergent
sequence x = (xn) with ideal limit x0 and a function f is to be ideally sequentially
continuous at a point x0 of X if the sequence (f(xn)) is ideally convergent to f(x0)
for any ideally convergent sequence x = (xn) with ideal limit x0 (for details see [4]).

Lemma 3.17. A function f on X has an ideally sequential limit at a point x0 of
X if and only if it has an ideal limit at a point x0 of X in ordinary sense.

Proof. The proof follows from the fact that any ideally convergent sequence has a
convergent subsequence (also see [4]). �

Next we define the concept of δ-quasi-slowly oscillating compactness in LNRS.

Definition 3.18. A subset E of X is called δ-quasi-slowly oscillating compact if
any sequence of points in E has a quasi-slowly oscillating subsequence.

We see that any compact subset ofX is δ-quasi-slowly oscilatting compact, union
of two δ-quasi-slowly oscillating compact subsets of X is δ-quasi-slowly oscillating
compact. Any subset of δ-quasi-slowly oscillating compact set is also δ-quasi-slowly
oscillating compact and so intersection of any δ-quasi-slowly oscillating compact
subsets of X is δ-quasi-slowly oscillating compact.

Theorem 3.19. A δ-quasi-slowly oscillating continuous image of a δ-quasi-slowly
oscillating compact subset of X is δ-quasi-slowly oscillating compact.

Proof. Let f be a δ-quasi-slowly oscillating continuous function on X and E be a
δ-quasi-slowly oscillating compact subset of X. Let y = (yn) be a sequence of points
in f(E). Then we can write yn = f(xn) where (xn) is sequence of points in E for
each n ∈ N. Since E is δ-quasi-slowly oscillating compact, there is a δ-quasi-slowly
oscillating subsequence z = (zk) = (xnk

) of (xn). Then, δ-quasi-slowly oscillating
continuity of f implies that f(zk) is a δ-quasi-slowly oscillating subsequence of
f(xn). Hence f(E) is δ-quasi-slowly oscillating compact. �

Corollary 3.20. For any regular subsequential method G, if E is G-sequentially
compact subset of X, then it is δ-quasi-slowly oscillating compact.

Proof. The proof of the result follows from the regularity and subsequence property
of G. �

Corollary 3.21. A real valued function defined on a bounded subset of R is uni-
formly continuous if and only if it is δ-slowly oscillating continuous.
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Proof. The proof of the result follows from the fact that totally boundedness coin-
cides with slowly oscillating compactness and boundedness coincides with totally
boundedness in R. �

Now we give the definition on ideal continuous function in LNRS.

Definition 3.22. Let (X, τ1) and (Y, τ2) be LNR spaces and E ⊂ Y. A function

f : E → Y is called ideally continuous at a point x0 ∈ E if xn

Iτ1→ x0 in E implies

f(xn)
Iτ2→ f(x0) in Y.

Theorem 3.23. Let (X, τ1) and (Y, τ2) be LNR spaces. If a function f : X → Y
is uniformly continuous, then f is ideally continuous.

Proof. Let f : X → Y be uniformly continuous and xn

Iτ1→ x0 in X. Let θ1 and θ2 be
denote the zeros in X and Y, respectively. Let W be an arbitrary τ2-neighborhood
of θ2. Since f is uniformly continuous, there exists some τ1-neighborhood V of θ1
such that

x− y ∈ V ⇒ f(x)− f(y) ∈ W. (3.1)

Since xn

Iτ1→ x0, we put K = {n ∈ N : xn − x0 ∈ V }, so K ∈ F. Then from (3.1) we
have

f(xn)− f(x0) ∈ W for all n ∈ K.

Therefore we have
K ⊇ {n ∈ N : f(xn)− f(x0) ∈ W}

and hence
{n ∈ N : f(xn)− f(x0) ∈ W} ∈ F.

i.e. we have f(xn)
Iτ2→ f(x0), which shows that f is ideally continuous. �

Theorem 3.24. A function f on X is ideally sequentially continuous at a point
x0 of X if and only if it is continuous at a point x0 in ordinary sense.

Proof. The proof follows from the fact that any ideally convergent sequence has a
convergent subsequence and from Lemma 3.17. �
Theorem 3.25. Let f : X → X be any function and (xn) be a sequence of points
in X such that Iτ − limn→∞ xn = x0 implies limn→∞ f(xn) = f(x0), then it is a
constant function.

Proof. For the proof of the theorem follows form Theorem 3 in [12]. �
Theorem 3.26. If a function is δ-quasi-slowly oscillating continuous on a subset
E of X, then it is ideally sequentially continuous on E.

Proof. Let f be any δ-quasi-slowly oscillating continuous on E. By Theorem 3.4,
we have f is continuous on E. Also from Theorem 3.24, we see that f is ideally
sequentially continuous on E. This completes the proof. �
Theorem 3.27. If a function is δ-ward continuous on a subset E of X, then it is
ideally sequentially continuous on E.

Proof. Let f be any δ-ward continuous function on E. It follows from Corollary 2 in
[10] that f is continuous. By Theorem 3.24 we obtain that f is ideally sequentially
continuous on E. This completes the proof of the theorem. �
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