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SOME FIXED POINT THEOREMS FOR MAPPINGS
SATISFYING A GENERAL MULTIPLICATIVE CONTRACTIVE

CONDITION OF INTEGRAL TYPE

BADSHAH-E-ROME AND MUHAMMAD SARWAR

Abstract. The objective of this manuscript is to study the existence and unique-
ness of fixed points for general multiplicative contractive condition of integral type.
Our work generalizes and extends some well known results of the literature.

1. Introduction and Preliminaries

Michael Grossman and Robert Katz [13] presented the concept of multiplicative
calculus also termed as exponential calculus where the ordinary product and ratio are
used as exponential sum and difference respectively on the domain of positive real
numbers. Florack and Van Assen [12] employed multiplicative calculus in biomedical
image exploration. Bashirov et al.[7] signalized versatile problems in various fields
where multiplicative calculus is more efficient and effective than the Newtonian
calculus for modeling. Using the notion of multiplicative calculus, Bashirov and
Bashirova [8] obtained function that exhibits dynamics of literary text. Bashirov
et al [5] established the fundamental theorem of multiplicative calculus. They also
defined multiplicative distance, thus provided basis for multiplicative metric spaces.

Özavsar and Cevikel [16] presented the notion of multiplicative contraction map-
ping. Along with some other results they proved the well known Banach contraction
principle for such contraction in the framework of multiplicative metric spaces. He
et al. [14] improved the work of [16] in terms of two pairs of self-mappings satisfying
certain commutative conditions on multiplicative metric spaces. Mujahid Abbas et
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al.[3] established common fixed point theorems for quasi-weak commutative map-
pings on a closed ball in the context of multiplicative metric spaces and also solved
multiplicative integral and multiplicative differential equations. Branciari [6] was
the first to establish an integral version of Banach contraction principle. Rhoades
[18] and Liu at al.[15] extended and improved the result of Brancairi. The authors
in [1, 2, 4, 9, 10, 15, 18, 20, 21] obtained some fixed point results for mappings
satisfying more general contractive conditions of this type.

In this paper we establish some fixed point results for mapping satisfying a general
multiplicative contraction of integral type. Our results generalise the results of
Branciari [6], Rhoades [18]and Liu at al.[15] in the setting of multiplicative metric
spaces. For further details about multiplicative calculus, multiplicative metric space
and related concepts, we refer the reader to [7, 11, 13, 16, 17, 19] The following
definitions and results will be needed in sequel.

Definition 1.1. [5] Let M be a nonempty set. A mapping d : M × M → [1,∞)
is said to be multiplicative metric if the following conditions are satisfied for all
x, y, z ∈ M .

(1) d(x, y) = 1 ⇔ x = y

(2) d(x, y) = d(y, x)

(3) d(x, z) ≤ d(x, y).d(y, z).(multiplicative triangular inequality )

Definition 1.2. [5] For x ∈ R+ → R+ multiplicative absolute value of x is defined
as follows

|x|∗ =

{
x if x ≥ 1
1
x

if x < 1
.

Example 1.1. [16] Let Rn
+ be the collection of all n−tupples of positive real num-

bers. And let
d∗ : Rn

+ ×Rn
+ → R be defined as

d∗(x, y) = |x1

y1
|∗ · | x2

y21
|∗ · · · |xn

yn
|∗

where x = (x1, x2 · · ·xn), y = (y1, y2 · · · yn) ∈ Rn
+. Then clearly d∗(x, y) is a multi-

plicative metric.

Definition 1.3. [16] (Multiplicative reverse triangular inequality)Let (X, d) be a
multiplicative metric space. Then we have the following inequality

1

d(x, y)
≤ d(x, z)

d(y, z)
≤ d(x, y) ⇔ |d(x, z)

d(y, z)
|∗ ≤ d(x, y)

This is called multiplicative reverse triangular inequality.
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Definition 1.4. [16] (Multiplicative open ball) Let (X, d) be a multiplicative metric
space. If a ∈ X and r > 1 then subset Br(a) = B(a; r) = {x ∈ X : d(a, x) < r} of
X is called multiplicative open ball centered at a with radius r.

Definition 1.5. [16] (Limit point) Let A be any subset of a multiplicative metric
space (X, d). A point x ∈ X is called limit point ofA if and only if (A∩Bϵ(x))−{x} ̸=
ϕ for every ϵ > 1

Definition 1.6. [16] A sequence {xn} in a multiplicative metric space (X,d) is said
to be multiplicative convergent to a point x ∈ X if for a given ϵ > 1 there exits a
positive integer n0 such that
d(xn, x) < ϵ for all n ≥ n0

or equivalently, if for every multiplicative open ball Bϵ(x) there exists a positive
integer n0 such that n ≥ n0 ⇒ xn ∈ Bϵ(x) then the sequence {xn} is said to be
multiplicative convergent to a point x ∈ X denoted by xn → x(n → ∞)

Definition 1.7. [16] A sequence {xn} in a multiplicative metric space (X,d) is said
to be multiplicative Cauchy sequence if for all ϵ > 1 there exits a positive integer n0

such that
d(xn, xm) < ϵ for all n,m ≥ n0

Definition 1.8. [16] A multiplicative metric space (X, d) is said to be complete if
every multiplicative Cauchy sequence in Xconverges in X.

Lemma 1.1. [16] A sequence {xn} in a multiplicative metric space (X, d) is multi-
plicative Cauchy sequence if and only if d(xn, xm) → 1(n,m → ∞)

2. Main Results

Our first theorem in the main result generalizes the result of Rhoades [18] to
multiplicative metric space.

Theorem 2.1. Let (M,d) be a complete multiplicative metric space, ρ ∈ [0, 1) and
T : M → M be a mapping such that, for each x, y ∈ M ,∫ d(Tx,Ty)

1

φ(s)ds ≤ ρ

∫ m(x,y)

1

φ(s)ds, (1)

Where

m(x, y) = max
{
d(x, y), d(x, Tx), d(y, Ty),

√
d(x, Ty) · d(y, Tx)

}
(2)

and
φ : [1,∞) → [1,∞) is a Lebesgue-integrable mapping which is summable, nonnega-
tive, such that ∫ δ

1

φ(s)ds > 0 for each δ > 1 (3)
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Then T has a unique fixed point.

Proof. Let x ∈ M and, define xn = T nx. For each integer n ≥ 1,
from (1) ∫ d(xn,xn+1)

1

φ(s)ds ≤ ρ

∫ m(xn−1,xn)

1

φ(s)ds. (4)

Using (2)

m(xn−1, xn) = max
{
d(xn−1, xn), d(xn, xn+1),

√
d(xn−1, xn+1)

}
(5)

Using multiplicative triangular inequality, we have√
d(xn−1, xn+1) ≤

√
d(xn−1, xn) · d(xn, xn+1)

≤ max {d(xn−1, xn), d(xn, xn+1)}

Therefore,

m(xn−1, xn) ≤ max{d(xn−1, xn), (xn, xn+1)}. (6)

Substituting into (4), we obtain∫ d(xn,xn+1)

1

φ(s)ds ≤ ρ

∫ max{d(xn−1,xn),d(xn,xn+1)}

1

φ(s)ds

= ρ max

{∫ d(xn−1,xn)

1

φ(s)ds,

∫ d(xn,xn+1)

1

φ(s)ds

}

= ρ

∫ d(xn−1,xn)

1

φ(s)ds ∵ The other case is not possible.

⇒
∫ d(xn,xn+1)

1

φ(s)ds ≤ ρ

∫ d(xn−1,xn)

1

φ(s)ds ≤ · · · ≤ ρn
∫ d(x0,x1)

1

φ(s)ds.

Letting n → ∞, we obtain

lim
n→∞

∫ d(xn,xn+1)

1

φ(s)ds = 0 ∵ ρ ∈ [0, 1)

which implies that

lim
n→∞

d(xn, xn+1) = 1 (7)

We will prove that {xn} is a multiplicative Cauchy sequence. Suppose by the way
of contradiction that it is not. Then there exists some ϵ > 1 such that for an integer
k there exist integers m(k) > n(k) > k such that

d(xm(k), xn(k)) > ϵ and d(xm(k), xn(k)−1) ≤ ϵ. (8)
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Using (2) we have

m(xm(k)−1, xn(k)−1) = max{d(xm(k)−1, xn(k)−1), d(xm(k)−1, xm(k)), d(xn(k)−1, xn(k))

,
√
d(xm(k)−1, xn(k)) · d(xn(k)−1, xm(k))}. (9)

Using (7),

lim
k→∞

d(xm(k)−1, xm(k)) = lim
k→∞

d(xn(k)−1, xn(k)) = 1.

Therefore

lim
k→∞

∫ d(xm(k)−1,xm(k))

1

φ(s)ds = lim
k→∞

∫ d(xn(k)−1,xn(k))

1

φ(s)ds = 0. (10)

Using multiplicative triangular inequality and (8)

d(xm(k)−1, xn(k)−1) ≤ d(xm(k)−1, xm(k)) · d(xm(k), xn(k)−1)

≤ d(xm(k)−1, xm(k)) · ϵ
⇒ lim

k→∞
d(xm(k)−1, xn(k)−1) ≤ lim

k→∞
d(xm(k)−1, xm(k)) · ϵ = 1 · ϵ = ϵ.

Therefore

lim
k→∞

∫ d(xm(k)−1,xn(k)−1)

1

φ(s)ds ≤
∫ ϵ

1

φ(s)ds. (11)

Again using multiplicative triangular inequality and (8), we have√
d(xm(k)−1, xn(k)) · d(xn(k)−1, xm(k))

≤
√
d(xm(k)−1, xm(k)) · d(xm(k), xn(k)−1) · d(xn(k)−1, xn(k)) · d(xn(k)−1, xm(k))

=
√
d(xm(k)−1, xm(k)) · d(xn(k)−1, xn(k)) · d(xn(k)−1, xm(k))

≤
√
d(xm(k)−1, xm(k)) · d(xn(k)−1, xn(k)) · ϵ.

Letting k → ∞ and using (7),we obtain

lim
k→∞

√
d(xm(k)−1, xn(k)) · d(xn(k)−1, xm(k)) ≤ ϵ.

Therefore

lim
k→∞

∫ √
d(xm(k)−1,xn(k))·d(xn(k)−1,xm(k))

1

φ(s)ds ≤
∫ ϵ

1

φ(s)ds. (12)

Combining (9), (10) , (11) and (12) we have∫ m(xm(k)−1,xn(k)−1)

1

φ(s)ds ≤
∫ ϵ

1

φ(s)ds. (13)
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Using (1) , (8) and (13), we have∫ ϵ

1

φ(s)ds <

∫ d(xm(k),xn(k)

1

φ(s)ds ≤ ρ

∫ m(xm(k)−1,xn(k)−1)

1

φ(s)ds ≤ ρ

∫ ϵ

1

φ(s)ds.

Which is a contradiction. Therefore {xn} is multiplicative Cauchy sequence. As
(M,d) is a complete multiplicative metric space, therefore {xn} converges to some
point w of M.
Using (1) and (2), we have∫ d(Tw,xn+1)

1

φ(s)ds ≤ ρ

∫ m(w,xn)

1

φ(s)ds

= ρmax{d(w,xn)φ(s)ds,

∫ d(w,Tw)

1

φ(s)ds,

∫ d(xn,xn+1)

1

φ(s)ds

,

∫ √
d(w,xn+1)·d(xn,Tw)

1

φ(s)ds}.

Letting n → ∞ we obtain∫ d(Tw,w)

1

φ(s)ds ≤ ρmax{
∫ d(w,w)

1

φ(s)ds,

∫ d(w,Tw)

1

φ(s)ds,

∫ d(w,w)

1

φ(s)ds

,

∫ √
d(w,w)·d(w,Tw)

1

φ(s)ds}

= ρ max{0,
∫ d(w,Tw)

1

φ(s)ds,

∫ √
d(w,Tw)

1

φ(s)ds}. = ρ

∫ d(w,Tw)

1

φ(s)ds.

Therefore
∫ d(Tw,w)

1
φ(s)ds = 0 ⇒ d(Tw,w) = 1 ⇒ Tw = w. That is w is fixed point

of T . Next we are going to show that fixed point of T is unique, suppose on the
contrary that w and z are two distinct fixed points of T in M . Using (1) and (2),
we have,∫ d(z,w)

1

φ(s)ds =

∫ d(Tz,Tw)

1

φ(s)ds ≤ ρ

∫ m(z,w)

1

φ(s)ds

= ρ max

{∫ d(z,w)

1

φ(s)ds,

∫ d(z,Tz)

1

φ(s)ds,

∫ d(w,Tw)

1

φ(s)ds,

∫ √
d(z,Tw)·d(w,Tz)

1

φ(s)ds

}

= ρ max

{∫ d(z,w)

1

φ(s)ds, 0

}

⇒
∫ d(z,w)

1

φ(s)ds ≤ ρ

∫ d(z,w)

1

φ(s)ds ⇒
∫ d(z,w)

1

φ(s)ds = 0 ⇒ d(z, w) = 1 ⇒ z = w.
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Hence fixed point of T is unique. �

If in Theorem 2.1, we letm(x, y) = d(x, y), then the following corollary is deduced.
Which is actually multiplicative version of the result of Branciari.

Corollary 2.1. Let (M,d) be a complete multiplicative metric space, ρ ∈]0, 1[ and
let T : M → M . be a mapping such that, for each x, y ∈ M ,∫ d(Tx,Ty)

1

φ(s)ds ≤ ρ

∫ d(x,y)

1

φ(s)ds,

Where φ : [1,∞) → [1,∞) is a Lebesgue-integrable mapping which is summable on
each compact subset of [1,∞), nonnegative, and such that∫ δ

1

φ(s)ds > 0 for each δ > 1

Then T has a unique fixed point.

To prove the next result, we need the following lemma.

Lemma 2.1. [15] Let υ : R+ → R+ be a Lebesgue-integrable, summable on each

compact subset of R+,
∫ δ

1
υ(s)ds > 0 for each δ > 1 and {xn}n∈N be a nonnegative

sequence with limn→∞xn = a, then

limn→∞

∫ xn

1

υ(s)ds =

∫ a

1

υ(s)ds

Theorem 2.2. Let T be a mapping from a complete multiplicative metric space
(M,d)into itself satisfying∫ d(Tx,Ty)

1

υ(s)ds ≤ ρ(d(x, y))

∫ d(x,y)

1

υ(s)ds,∀x, y ∈ M (14)

Where υ : [1,∞) → [1,∞) is a Lebesgue-integrable mapping which is summable,
nonnegative, such that ∫ δ

1

υ(s)ds > 0 for each δ > 1 (15)

and ρ : [1,∞) → [0, 1) is a mapping with

lim
k→r

ρ(k) < 1, ∀r > 1

.
Then T has a unique fixed point.
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Proof. Let x be an arbitrary point of M . Using (14) we have∫ d(Tnx,Tn+1x)

1

υ(s)ds ≤ ρ(d(T n−1x, T nx))

∫ d(Tn−1x,Tnx)

1

υ(s)ds

≤
∫ d(Tn−1x,Tnx)

1

υ(s)ds ∀n ∈ N ∵ 0 ≤ ρ(d(x, y)) < 1.

Next we show that d(T nx, T n+1x) ≤ d(T n−1x, T nx) ∀n ∈ N. Suppose that it doesn’t
hold. Then there exists some m ∈ N for which d(Tmx, Tm+1x) > d(Tm−1x, Tmx).
Using the property of υ we have,∫ d(Tmx,Tm+1x)

1

υ(s)ds ≤ ρ(d(Tm−1x, Tmx))

∫ d(Tm−1x,Tmx)

1

υ(s)ds

≤
∫ d(Tm−1x,Tmx)

1

υ(s)ds ≤
∫ d(Tmx,Tm+1x)

1

υ(s)ds

≤ ρ(d(Tm−1x, Tmx))

∫ d(Tm−1x,Tmx)

1

υ(s)ds <

∫ d(Tm−1x,Tmx)

1

υ(s)ds

⇒
∫ d(Tm−1x,Tmx)

1

υ(s)ds <

∫ d(Tm−1x,Tmx)

1

υ(s)ds.

Which is a contradiction.
Hence d(T nx, T n+1x) ≤ d(T n−1x, T nx), that is {d(T nx, T n+1x)}n∈N is monotonically
nonincreasing bounded below, therefore there exists some constant η ≥ 1 with

lim
n→∞

d(T nx, T n+1x) = η.

We claim that η = 1. Suppose it is not true, rather η > 1. Using (14), Lemma 2.1
and property of υ, we have

0 <

∫ η

1

υ(s)ds = lim
n→∞

∫ d(Tnx,Tn+1x)

1

υ(s)ds

≤ lim
n→∞

{ρ(d(T n−1x, T nx))

∫ d(Tn−1x,Tnx)

1

υ(s)ds}

= lim
n→∞

ρ(d(T n−1x, T nx)) lim
n→∞

∫ d(Tn−1x,Tnx)

1

υ(s)ds

= {lim
k→η

ρ(k)}
∫ η

1

υ(s)ds

<

∫ η

1

υ(s)ds ∵ lim
k→η

ρ(k) < 1 for η > 1.
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Which is not possible.

Hence lim
n→∞

d(T nx, T n+1x) = 1. (16)

We are going to show that {T nx} is a Cauchy sequence, that is

∀ε > 1 ∃ αε ∈ N | ∀ p, q ∈ N, p > q > αε d(T px, T qx) < ε.

Suppose on the contrary that {T nx} is not a Cauchy sequence, that is there exists
an ε > 1 such that for each µ ∈ N there are pµ, qµ ∈ N, with pµ > qµ > µ, and
d(T pµx, T qµx) ≥ ε. For each µ, let pµ be the minimal i.e d(T pµx, T qµx) ≥ ε but
d(T ix, T qµx) < ε where i ∈ {qµ + 1, qµ + 2, · · · , pµ − 1}.
Now using multiplicative triangular inequality and multiplicative reverse triangular
inequality, we have ∀ µ ∈ N

d(T pµx, T qµx) ≤ d(T qµx, T pµ−1x) · d(T pµ−1x, T pµx); (17)∣∣∣∣d(T pµx, T qµ+1x)

d(T pµx, T qµx)

∣∣∣∣ ≤ d(T qµx, T qµ+1x); (18)∣∣∣∣d(T pµ+1x, T qµ+1x)

d(T pµx, T qµ+1x)

∣∣∣∣ ≤ d(T pµx, T pµ+1x) (19)∣∣∣∣d(T pµ+1x, T qµ+2x)

d(T pµ+1x, T qµ+1x)

∣∣∣∣ ≤ d(T pµ+1x, T qµ+2x). (20)

From (17), ε ≤ d(T pµx, T qµx) ≤ d(T qµx, T pµ−1x) · d(T pµ−1x, T pµx). Letting µ → ∞
and using (16), we have

ε ≤ lim
µ→∞

d(T pµx, T qµx) < ε · 1

lim
µ→∞

d(T pµx, T qµx) = ε. (21)

Letting µ → ∞ and using (16),(18) and (21), we get∣∣∣∣ limµ→∞ d(T pµx, T qµ+1x)

ε

∣∣∣∣ ≤ 1

⇒ lim
µ→∞

d(T pµx, T qµ+1x) = ε. (22)

Letting µ → ∞ and using (16),(19) and (22), we get∣∣∣∣ limµ→∞ d(T pµ+1x, T qµ+1x)

ε

∣∣∣∣ ≤ 1

⇒ lim
µ→∞

d(T pµ+1x, T qµ+1x) = ε. (23)
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Similarly letting µ → ∞ and using (16),(20) and (23), we get∣∣∣∣ limµ→∞ d(T pµ+1x, T qµ+2x)

ε

∣∣∣∣ ≤ 1

⇒ lim
µ→∞

d(T pµ+1x, T qµ+2x) = ε. (24)

In view of (14), we have∫ d(T pµ+1x,T qµ+2x)

1

υ(s)ds ≤ ρ(d(T pµx, T qµ+1x))

∫ d(T pµx,T qµ+1x)

1

υ(s)ds.

Taking limit µ → ∞ and using (22) and (24), we have∫ ε

1

υ(s)ds = lim
µ→∞

∫ d(T pµ+1x,T qµ+2x)

1

υ(s)ds

≤ lim
µ→∞

ρ(d(T pµx, T qµ+1x)) lim
µ→∞

∫ d(T pµx,T qµ+1x)

1

υ(s)ds

= {lim
k→ε

ρ(k)}
∫ ε

1

υ(s)ds <

∫ ε

1

υ(s)ds ∵ lim
k→ε

ρ(k) < 1 for ε > 1.

Which is not possible. Hence {T nx} is a Cauchy sequence. As (M,d) is com-
plete multiplicative metric space, therefore there must be some w ∈ M such that
limn→∞ T nx = w. We claim that w is fixed point of T . Using (14), we have

0 ≤
∫ d(Tn+1x,Tw)

1

υ(s)ds ≤ ρ(d(T nx,w))

∫ d(Tnx,w)

1

υ(s)ds

≤
∫ d(Tnx,w)

1

υ(s)ds → 0 as n → ∞.

Which implies that

lim
n→∞

∫ d(Tn+1x,Tw)

1

υ(s)ds = 0 ⇒ lim
n→∞

d(T n+1x, Tw) = 1. (25)

Using (16),(25) and multiplicative triangular inequality we conclude that

d(w, Tw) ≤ d(w, T nx) · d(T nx, T n+1x) · d(T n+1x, Tw) → 1 as n → ∞
⇒ d(w, Tw) = 1 ⇒ Tw = w.

Next we show that T has unique fixed point. Suppose on the contrary that z ∈ M
is another fixed point of T distinct from w then∫ d(w,z)

1

υ(s)ds =

∫ d(Tw,Tz)

1

υ(s)ds ≤ ρ(d(w, z))

∫ d(w,z)

1

υ(s)ds <

∫ d(w,z)

1

υ(s)ds,

which is not possible. Hence fixed point of T is unique. This completes the proof. �
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Theorem 2.3. Let T be a mapping from a complete multiplicative metric space
(M,d)into itself satisfying∫ d(Tx,Ty)

1

υ(s)ds ≤ ρ(d(x, y))

∫ d(x,Tx)

1

υ(s)ds + ϱ(d(x, y))

∫ d(y,Ty)

1

υ(s)ds, ∀x, y ∈ M

(26)
Where υ : [1,∞) → [1,∞) is a Lebesgue-integrable mapping which is summable,
nonnegative, such that ∫ δ

1

υ(s)ds > 0 for each δ > 1 (27)

and ρ, ϱ : [1,∞) → [0, 1) are mappings with

ρ(s) + ϱ(s) < 1, ∀s ∈ [1,∞), lim
k→1

ϱ(k) < 1 and lim
k→r

ρ(k)

1− ϱ(k)
< 1, ∀r > 1.

Then T has a unique fixed point.

Proof. Let x be an arbitrary point of M . Using (26) we have∫ d(Tnx,Tn+1x)

1

υ(s)ds ≤ ρ(d(T n−1x, T nx))

∫ d(Tn−1x,Tnx)

1

υ(s)ds

+ ϱ(d(T n−1x, T nx))

∫ d(Tnx,Tn+1x)

1

υ(s)ds, ∀n ∈ N∫ d(Tnx,Tn+1x)

1

υ(s)ds ≤ ρ(d(T n−1x, T nx))

{1− ϱ(d(T n−1x, T nx))}

∫ d(Tn−1x,Tnx)

1

υ(s)ds

<

∫ d(Tn−1x,Tnx)

1

υ(s)ds ∵ ρ(s) + ϱ(s) < 1 ⇒ ρ(s)

1− ϱ(s)
< 1.

Arguing as in the proof of the Theorem 2.2, it can be very easily proved that
{d(T nx, T n+1x)}n∈N is monotonically nonincreasing sequence converging to 1,

i.e lim
n→∞

d(T nx, T n+1x) = 1. (28)

Next we are going to show that {T nx} is a Cauchy sequence, that is

∀ε > 1 ∃ αε ∈ N | ∀ p, q ∈ N, p > q > αε d(T px, T qx) < ε.

Suppose on the contrary that {T nx} is not a Cauchy sequence, that is there exists
an ε > 1 such that for each µ ∈ N there are pµ, qµ ∈ N, with pµ > qµ > µ, and
d(T pµx, T qµx) ≥ ε. For each µ, let pµ be the minimal i.e d(T pµx, T qµx) ≥ ε but
d(T ix, T qµx) < ε where i ∈ {qµ + 1, qµ + 2, · · · , pµ − 1}. As in the proof of the
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Theorem 2.2, it can be easily verified that in this case (21)-(24) hold. Now using
(26), (24), (28) and the property of υ,, we have

0 <

∫ ε

1

υ(s)ds = lim
µ→∞

∫ d(T pµ+1x,T qµ+2x)

1

υ(s)ds

≤ lim
µ→∞

ρ(d(T pµx, T qµ+1x)) lim
µ→∞

∫ d(T pµx,T pµ+1x)

1

υ(s)ds

+ lim
µ→∞

ϱ(d(T pµx, T qµ+1x)) lim
µ→∞

∫ d(T qµ+1x,T qµ+2x)

1

υ(s)ds

= 0.

Which is not possible. Hence {T nx} is a Cauchy sequence. As (M,d) is com-
plete multiplicative metric space, therefore there must be some w ∈ M such that
limn→∞ T nx = w, which implies that limn→∞ d(T n+1x, Tw) = d(w, Tw). We claim
that w is fixed point of T , i.e d(w, Tw) = 1. Suppose d(w, Tw) ̸= 1, then using
(27)and (28) we have

0 <

∫ d(w,Tw)

1

υ(s)ds = lim
n→∞

∫ d(Tn+1x,Tw)

1

υ(s)ds

≤ lim
n→∞

(
ρ(d(T n, w))

∫ d(Tnx,Tn+1w)

1

υ(s)ds

)

+ lim
n→∞

(
ϱ(d(T n, w))

∫ d(w,Tw)

1

υ(s)ds

)

=
(
lim
k→1

ϱ(k)
)∫ d(w,Tw)

1

υ(s)ds <

∫ d(w,Tw)

1

υ(s)ds.

Which is contradiction. Hence d(w, Tw) = 1. That is Tw = w. Next we show that
T has unique fixed point. Suppose on the contrary that z ∈ M is another fixed
point of T distinct from w then

0 <

∫ d(w,z)

1

υ(s)ds =

∫ d(Tw,Tz)

1

υ(s)ds

≤ ρ(d(w, z))

∫ d(w,Tw)

1

υ(s)ds + ϱ(d(w, z))

∫ d(z,Tz)

1

υ(s)ds

= 0.

Which is not possible. Hence T has unique fixed point. This competes our proof. �
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Corollary 2.2. If ρ(r) = k for all r ∈ [1,∞) where k ∈]0, 1[ is a constant, then
Theorem 2.2 brings the result of Branciari; moreover if υ(s) = 1 for all s ∈ [1,∞),
then Theorem 2.2 reduces to Banach contraction principle.

Remark 1. Theorems 2.2 and 2.3 generalize the results of Liu et al [15] from metric
spaces to multiplicative metric spaces.

.
Acknowledgement

The authors are grateful to the editor and anonymous reviewers for their careful
reviews, valuable comments and remarks to improve this manuscript.

References

[1] MA Ahmed, S Chauhan, HA Nafadi, ”Unified common fixed point theorems for hybrid map-
pings in modified intuitionistic fuzzy metric spaces via an implicit retion”,Kochi Journal of
Mathematics 9, 153-168, 2014.

[2] MA Ahmed and HA Nafadi, ”Common fixed point theorems for hybrid pairs of maps in fuzzy
metric spaces”, Journal of the Egyptian Mathematical Society, 22, 3, pp. 453-458, 2014.

[3] M. Abbas, Bashir Ali and Yusuf I. Suleiman, ”Common Fixed Points of Locally Contrac-
tive Mappings in Multiplicative Metric Spaces with Application”, International Journal of
Mathematics and Mathematical Sciences,Volume 2015, Article ID 218683, 7, pp.

[4] A. Aliouche, A common fixed point theorem for weakly compatible mappings in symmetric
spaces satisfying a contractive condition of integral type, Journal of Mathematical Analysis
and Applications, vol. 322, no. 2, pp. 796-802, 2006.

[5] A.E. Bashirov, E.M. Kurpinar and A. Ozyapici, Multiplicative calculus and its applications,
J. Math.Analy. App., 337(2008) 36-48.

[6] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition
of integral type, Int. J. Math. Math. Sci. 29 (2002), no. 9, 531-536.

[7] A. E. Bashirov, E. Misirli, Y. Tandogdu, and A. Ozyapici, ”On modeling with multiplicative
differential equations”, A Journal of Chinese Universities, vol. 26(2011), pp. 425–438

[8] A Bashirov, G Bashirova, ”Dynamics of literary texts and diffusion”, Online Journal of Com-
munication and Media Technologies, 2011, 1(3): 60-82.425-438, 2011.

[9] A. Djoudi and A. Aliouche, Common fixed point theorems of Gregus type for weakly com-
patiblemappings satisfying contractive conditions of integral type, Journal ofMathematical
Analysis and Applications, vol. 329, no. 1, pp. 31-45, 2007.

[10] M Imdad, MA Ahmed, HA Nafadi, ”Common fixed point theorems for hybrid pairs of maps
in fuzzy metric spaces” Thai Journal of Mathematics 12 (3), 749-760, 2014.

[11] J Englehardt, J Swartout, CLoewenstine. ”A new theoretical discrete growth distribution with
verification for microbial counts in water”, Risk Analysis, 2009, 29(6): 841-856.

[12] L. Florack and H. V. Assen, ”Multiplicative calculus in biomedical image analysis,” Journal
ofMathematical Imaging and Vision, vol. 42, no. 1, pp. 64-75, 2012.

[13] M Grossman, RKatz. Non-Newtonian Calculus, Pigeon Cove, Lee Press, Massachusats, 1972.
[14] X. He, M. Song, and D. Chen, ”Common fixed points for weak commutative mappings on a

multiplicative metric space”, Fixed PointTheory and Applications, vol. 2014, article 48, 2014.



EJMAA-2017/5(1) FIXED POINT THEOREMS AND MULTIPLICATIVE INTEGRAL 63

[15] Liu, Z, Li, X, Kang, SM, Cho, SY: Fixed point theorems for mappings satisfying contractive
conditions of integral type and applications. Fixed Point Theory Appl. 2011, Article ID 64
(2011).
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