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MATHEMATICAL STUDY OF THE THREE DIMENSIONAL OSCILLATIONS
OF A HEAVY ALMOST HOMOGENEOUS LIQUID PARTIALLY FILLING AN
ELASTIC CONTAINER

H. ESSAOUINI, L. EL BAKKALI AND P. CAPODANNO

ABSTRACT. We present in this article a theoretical work to treat the coupling between the
structure elasticity and the heterogeneousness of a liquid. Considering an almost homoge-
neous, incompressible and inviscid liquid in an elastic container, using functional analysis,
we obtain a variational formulation of the small amplitude oscillations of the coupled prob-
lem around the equilibrium position, then two operatorial equations in a suitable Hilbert
space are analyzed. We show that the spectrum of the system is real and consists of a
countable set of eigenvalues, and an essential continuous spectrum filling an interval and
corresponding physically to a domain of resonance.

1. INTRODUCTION

The study of the classical problem of the small oscillations of an inviscid or viscous
homogeneous liquid in a rigid container has been the subject of many works [6 [7, [8]. The
case of an elastic container with homogeneous liquid was studied in details in the book [9]
and, more recently in [8]. On the other hand, the general case of a viscous heterogeneous
liquid was treated in [4], and the planar case of a heterogeneous inviscid incompressible
liquid in a rigid container was studied, first by Rayleigh and then by Capodanno and his
collaborators [1, 2, 3]].

In this aim, we propose here a theoretical study of the three-dimensional oscillations
of an incompressible inviscid liquid taking into account the effects of heterogeneousness
which are neglected by the majority of authors.

In this contexte, we consider an elastic container, the external boundary of which is
fixed, that is partially filled by an almost-homogeneous heavy liquid. After writing the
general equations of motion of the system, we linearize the problem assuming small dis-
placements from an equilibrium position. As a second step, and under the hypothesis that
the liquid is almost-homogeneous, we reformulate the equations as a variational problem,
and finally, as an operatorial problem involving a bounded linear operators on suitable
Hilbert space. Finally, we show that the spectrum of the relevant operator, is composed
by a discrete part and an essential part filling an interval and corresponding physically to
a domain of resonance: we argue that the presence of the essential part of the spectrum
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is due the hypothesis of almost-homogeneity, in contrast to the classical case in which the
fluid is homogeneous and the spectrum is entirely discrete [8]].

Our work can be used in various applications : tank filled by liquid; ship, train, truck
containing a liquid, where the stability of the system is important, and the knowledge of
the natural frequencies is essential in the design process of liquid tanks and implementing
active control systems in space vehicles.

2. PROBLEM STATEMENT

r

FIGURE 1. Model of the system.

We consider an elastic body that occupies a domain Q' bounded by a regular closed
fixed surface I" and an regular closed internal surface. The domain bounded by this surface
is partially filled by an heavy incompressible inviscid liquid, that occupies in equilibrium
position a domain Q bounded by a surface X and the horizontal free surface y. We denote
by o the part of the internal surface of the body that is above Q and is wetted by a gas with
constant pressure PV,

We use an orthogonal coordinate system Oxxpx3, Ox x> being in the plane of y and Ox;
directed upwards. The system is supposed at the constant temperature and in a constant
gravity field g = —gxs.

We study the small oscillations of the system elastic body-liquid about its equilibrium
position in the framework of the linear theory.

3. EQUATIONS OF MOTION

3.1. Equations of motion of the elastic body

We denote by p’, A/, i/ the density and the Lamé coefficients, wich we suppose constant,
of the body.

Let g (x1,x2,x3) the displacement of the particle of the body that occupies, in the natural
state, the position (x,x2,x3), from the natural state to the equilibrium state. We denote by
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7i(x1,x2,x3) the unit vector normal to ¢ and directed to the interior of Q. We have:

oo’ . (it
0=—p'gdin+ i (o) in  Q (i,j=1,2,3) (D)
axJ'
tig). =0 )
oj;(iig)nj = —P’n;  on o (3)

where we have set

o (i) = N'&;jdividy + 24l (idp),

12 !/
(@) = 5 <a”°" + auO’) :
2 axj‘ axi
The ¢;;(ii;)) are the components of the deformation tensor, the o7; (i) are the components
of the stress tensor.
Let if((x1,x2,x3) the displacement of a particle of the body from its equilibrium position to
its position at the instant .

‘We have
82 u'.+u/. ac/(ﬁ/‘i‘ﬁ/) X
/ ( étz 01) _ —P/85i3 4+ axj 0 in Q/ )
(@ + idp)|r =0 (5)
o} (il +iig)nj=—P"n;  on o (6)
Taking into account the equations (1), @), (@), we obtain
oo’ (i) ) (i
plii, = 75; ,- in <u; = —a(tz')> (7)
#r=0 (8)
o;j(@)nj=0 ono 9)

We will write in the following the kinematic and dynamic conditions on X.

3.2. Equations of motion of the liquid

We suppose that the liquid is heterogeneous. We denote by i(x,¢) the displacement from
the equilibrium state of the particle that occupies the position x(x1,x,x3) at the instant 7,
and by p*(x,7), P(x,t) the density and the pressure in this point.

We have
pril = —gAra?iLP —pgks (Euler’s equation) (10)
divii =0 (incompressibility) in Q (1)
ap* .k . .
h +div(p*u) =0 (continuity equation) (12)

If 7 is the unit vector normal to ¥ U7 directed to the exterior of Q, we have the kinematic
condition
i-i=u-n onX (13)
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Let po, po the density and the pressure in the equilibrium state; we have
— .
—gradpo — pogx3 =0
so that pg and pg are functions of x3 only and we have

dpo(x3)
o Po(x3)g
‘We set ~
P (x,1) = po(xs) +p(x,2) +---,

P(x,t) = po(x3) + p(x,t) +---

67

where p, p are of the first order with respect to the amplitude of the oscillations and the

dots indicate terms of the second order.
The linearized continuity equation is

N ..
a—‘t) +div(pou) =0
or, since divii = 0
N L —
a—?+ﬁ~gradpo =0
or, integrating from the date of the equilibrium to the instant ¢
p=—polx3)us
Then the Euler’s equation (I0) takes the form
x5 — * -
pru = —gradp — (p" — Po)g¥Xs
and finally the linearized Euler’s equation is
3 — o -
po(x3)u = —gradp + py(x3)gus¥s  in Q
After integration, the equation (I gives
divii =0 in Q

3.3. The dynamic conditions
a) The equation of the moving free surface 7; is

x3 = uz(x1,%2,0,) + -

or, writing u,, for i -7iony:
We must write the the pressure P of the liquid is equal to ?° on 7;.
We have
Then, at the first order

Po(0) + iy @(O)er\ =7

niy dxs Y

or

Py = Po(0)guyy

b) Let us write the dynamic conditions on the surface ¥, position of X at the instant ¢.

(14)

15)

(16)

M being a point of X, we denote by M, (resp. Mj) the particle of the liquid (resp. the
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FIGURE 2. Configurations of X and %;.

body) wich occupy the position in the equilibrium position.
If M and M; are the position of M, and M, on X, at the instant ¢, we have

! — ! =/
MM, =1u ; MM =i

In linear theory, we admit that the unit vectors normal to X; in M and M are equal to the
unit vector 7i normal to X in M and that the pressure of the liquid in M is equal to the
pressure P(M’,t) in M’, intersection of ¥, with the normal in M to X.

Therefore, the dynamic boundary conditions on X; can be written

(¢ (ﬁf)—i-ﬁ/)nj = —LP(M/,t)ni

-
ij
Replacing o;;(iiy)n; by —po(M)n;, we obtain

o (il )nj=—[P(M',t) — po(M)]n; ~ on X

But, u,x being the normal compnent of i on X, we have
—
P(M',1) = P(M +uysii,t) = P(M,1) + gradP(M,1) - ys7i + - -
—
u, |z being of the first order, we can, in linear theory, replace grad?(M, ) by

gradpo(M) = —po(M)g¥3
so that we have
P(M' 1) = P(M,1) — po(M)guys n3jz + -
and finally

! (=

o;;(il')nj = —[p(M,t) — pojggnsuyln; ~ on X (17)

3.4. The case of the almost homogeneous liquid
Let & the maximum height of the liquid in the equilibrium position.
We suppose that

po(x3) = p(1 — Bx3) +o(Bh),



EIMAA-2017/5(1) MATHEMATICAL STUDY OF THE THREE DIMENSIONAL - --

where p and P are positive constants, B being sufficiently small so that (Bh)?, (Bh)3,--

negligible with respect to Bh.
Then, the liquid is called "almost-homogeneous in .

69

- are

Like in the Boussinesq approximation for the convective motions of the viscous liquids,

substituting in the equation (14)

po by p and p’ by —pB,
we replace it by the approximated equation

.. —
pu = —gradp — pPgusxs in Q

(18)

Finally, in the case of an almost-homogeneous liquid, the equations of motion are the

equations (@), (8), @), (8), (@3, (@3), (I6), (IZ)(in the last two equations, po(0) and Py,

replaced by p).

4. VARIATIONAL FORMULATION OF THE PROBLEM

4.1. A formal variational formulation

For a formal calculation, we introduce the space of the kinematically admissible displace-

ments:
H = {(#, %)/ ¥ =0, divis =0 on Q, wyx =w); }

with w/, w sufficiently smooth respectively in Q' and . This space will be precised later.

Theorem 4.1. A formal variational equation of the problem is:
/ p’ﬁ/.fu’dQ’Jr/ pii- wdQ + U o;;(i)e; (W) dQ' + pg/ Uy nzw, dz}
[o) Q (04 b

+ pg/unwwnw dy+ pBg/guqu dQ=0
Y
for all admissible w, W'

Proof. i) At first, we have
oW,

T do; (') )
15 S / 2 =/ / ! (o ! (7! /
/le u-wdQ' = /Q/ 35, w;dQ' = /Q/ [_axj [o7; (i )W;] — oy, (i )_axj} dQ

The o] ; being symmetrical, we have

oW} -
) / I oraING (S /

On the other hand, the Green formula gives
a A AN / A AN /
[ @00 = [ ol @) Fine;a(oe),
where, 7i, is the unit vector that is normal to dQ' and directed to the exterior of Q.
‘We have

-/

Ww;=0 on T, o};(@)ne; =0 on o,
so that the right hand side of the last integral is reduced to
- / ol (@ ), dz
p)
Taking into account the dynamic conditions (I7) on X, we obtain

[ it it a0/ = /Z (p — pgnsun)win; dE — /Q ol (el () dgY

19)
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For the liquid, we have, from the equation (I8):
P — _
/ pu-wdQ = 7/ gradpr/depBg/ uzw3 dQ
Q Q Q
We can write
. _ _
f/ gradp -wdQ = f/ [div(pw) — pdiv(w)]dQ
Q Q
S / Ped(3Q)
YUE

= */{pgun\ywn\yd’yf/):p\)lwn\):dza
so that we have

[ pii-a@ = [ pgunggiydv— [ ppid=-pe [ wmde Qo)
Q " b Q

Adding (I9) and (20), the terms containing py disappear since w,z = w/, x and we obtain
the formal variational equation of the problem

/ p/—'/ _"dQI+/pu de+ [/ ;J(—'I) ;J("’)dQ’«Fpg/u n3w, dZ]

21
+ pg/ Upy Wiy dY+ p[ig/ usw3dQ =0
Y Q

for all admissible w, w'.

ii) Conversely we are going to prove that, if #’ and # are functions of ¢ with values in the
space of the admissible virtual displacements H and verifying @21)),i#' and i are solutions
of the problem

We take w sufﬁmently smooth in Q" with w \r = 0, but w sufficiently smooth in Q, verify-

ing wyz = n\z’ and we introduce a multiplier A associated to the condition divw = 0.
The equation (2])) takes the form

/ pl—»/ Ao/ +/ pu PdQ+ |:/ ;J(—»I) ;J("’)dQ'+pg/n3unW d2:|

+pg/u,,wwnw dy+ pBg/Qu3W3dQ+/QAdivv:'de:O
Y

for all admissible w, w'.
‘We have

/=l / S/ / a /o=l =] a(G;(ﬁ')) _/
[ e inee = [ [—[Gij(u)wi]—jiwl

axj‘ an
- /Z o, ('} — / o, (i, do
Ql

axj‘

do’

/ AdivisdQ  —
Q

5

[div(m;v) — gradA - 17_13} dQ

— _
[ Awingdz+ [ Apingdr— [ grada a0
z b Q
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Carrying in the previous variational equation, we obtain
oo’ (it . — -
/ <p’ i — L) w§d9’+/ (pﬁ—gradA—f—p[Sguy%) -wdQ
an Q
+ /Y (Pg“;z\y+A\Y) WylydY — /): (ng(ﬁ')”j - P8”3\Z“:1\z”i - A\Z”i) Wﬁ\): dx
/G u')njw, ‘Gdc 0
[¢)
Choosing #' € [D(Q)]*. So, we have Wyjz = W:;p: = 0. Then we obtain
oo’ (i == -
/ <p’ﬂ§ - ﬂ) W dQ’—i—/ (pﬁ— gradA + pBgu35C'3) -wdQ
@ ox; Q

+/y(98“nw+/\w) Wyydy =0

Taking w = 0, compatible with w,,z = 0, we obtain
ac’ (i
/ (p’z’l§ — ﬁ) widQ' =0 v € [Q)(Q’ﬂ3
o axj‘

,., 90 (i)

plij————2—0 in ([@(Q’)f)/

axj‘

and then

Afterwards, we have
5 - > —
/Q (pu —gradA + pBgu3x3) -wdQ + / (pguanr Aw) Wyydy=0
Y
for each w verifying w,x = 0.
Taking W € [D(Q)]?, compatible with wyjz = 0, we have
. —
pii — gradA + pPgusis =0  in [D(Q)’] 3
Remain

/{ (Pttnpy+ Apy) Wy dy =0

for each w verifying w,,x = 0.
wy|y being arbitrary, we have

PgUny+ Ay =0
Then, we have

/{cl_] pgn3u }ni}\zwiﬂZdzi/ccgj( n\cdc 0

for each W such that Wn\r =0.
wh » and w) o being arbitrary, we have

o;;(i')nj = (pgnsu, — ) n; on X

o;j(@)nj=0 ono
Setting p = —A [L1], we obtain the Euler’s equation and the dynamic boundary conditions,

and also, the mechanical interpretation of the multiplier A.[]
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4.2. A precise variational formulation
We suppose that #’ and i belong to the spaces
i e &l (Q/) _ {ﬁ/ c =l (Q/) def [HI(Q/)}S; ﬁ\/l“ = ()} ;
- 2 def r,2 3 -
ie 2% (Q)= [LY(Q)]: dlvu:O}

—

HielJ(Q)=

with
[
un‘z - un\):

Obviously, u,,; must belong to H'/*(E) C L*(X).
Since # must belong to J(Q), we seek it in the form
i=v+U

with
Ve Q) ={ie L*Q); divi=0; vz, =0}
— — — 1 . =
Ue€GyQ)=qU =grad®; & H (Q); / ®dQ =0; divU =AP =0
Q
In accordance to the orthogonal decomposition in .#?(Q) [6]
J(Q) = h(@) & Gi(@)
Let us recall [|6] that
L2Q) = h(Q) & G(Q),
where G(Q) is the space of the potential fields and that

G(Q) = Gi(Q) @ Go(Q),

where
—
Go(Q) = {gradq7 qEc H(} (Q)}
The Euler’s equation (I8)) can be written

PR 11— = 2
V+U = 7Bgradp — Bgvs¥s — PgUsXs

Consequently, if Py is the orthogonal projector from .#2(Q) into Jo(Q), we have
(22)

V= —BgPo(v3x3) — PgPo(UsX3)

Cu

Let us set
W=7+

Jo(Q) and G;,(Q) being orthogonal, we have

/pﬁ.fvdg:/p(#.
Q Q

<l

+
C:
S

)ao
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On the other hand, since w,,;y = 0, we have u,;y = Uyy.
Therefore, the variational equation (21)) takes the form

/ oli - w’a9'+/ ( G40 ﬁ) do
+ |:/ C;J(ﬁ,) :](ql)dgld'»pg/n3):un):wnZdZ:|

+pg/ nly n\YdYJFPBg/Q(VSJrUQ (53+l73) dQ =0

But we have
Bg/QV3173 dQ = /QBgP()(V3)_C'3) . 5dQ;

Bg/QU3133dQ:/QBgP()(U3)_C'3)~3dQ,

so that, in the precedent variational equation appears

/Q p [V-f— BgPo(v3¥z) + ﬁgP()(Ug.)_fg.ﬂ $dQ =0
Then, we can deduce from the last variational equation the following:

Theorem 4.2. The variational equation of the problem is: to find (V,U,i@') € Jo(Q) x
Gu(Q) x EN(Q') such that

/ o/ i QY + pU Udo + [/ U(ﬁ’)s;j(v?/)dﬂ’—kpg/znsz“@z%zdz}

408 [ Uny Oy dv-+pBg /Q (v3+ Us)03dQ = 0
Y
23)

forall (7,0,W) € Jo(Q) x Gu(Q) x Z1(QY).

4.3. Transformation of the equation (23)
In this subsection we are giving another formulation of the problem (23)).

. - 1/2
i) At first, it is well-known thatin Z!(Q/), ( Joy o1 ()€} (') QY ) defines a norm which

is equivalent to the classical norm [ii’||, of Z'(Q').
On the other hand, by virtue of a trace theorem, we have

‘Pg/ ‘”3\>:|
b

¢ being a positive constant depending on X.
Therefore, if p or the amount of the liquid is sufficiently small,

) ) 12
(/, <tae @3 +pg [ Inss e o)

defines in 2! (Q') a norm equivalent to |||,
We suppose it in the following. This norm is denoted by |||i|||,, the associated product
@', w'l,.

On the other hand, we remark that, if U € G,(Q) C E(Q) = {U € 2%(Q); divU = 0},

/
Uz

’ dZ‘ < cngfj’ 2
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U, zuy has sens as element of H~/2(ZUy) [10].
Let us introduce the space

=/

W= ( b ) i e ElQ) = {ﬁ’eE'(Q’), ajrzo}

L .

U = grad®, ® c A'(Q) = {cp cH'(Q); / ®d(0Q) = 0} ;
Uy

div0 = 0; Uy € L*(Y): Uyz = s € H'*(X)

equipped with the hilbertian norm defined by

L2
W = @I+ [ 0] a2+ Nialagy + 10l s

- (v_v'/)
W= =,
U

the space Y, completion of V for the norm associated to the scalar product

and setting

>

(W, W)y = / pli - w dQ + [ pU-UdQ
% o
Then, the variational equation (23)) takes the form

(W,W)X-l- [f/,v'&/] | +pg/YU"Wﬁ"W dy+ pﬁg/Q(V3+U3)ﬁ3dQ=0; VWeVv (24)

ii) In order to obtain a definitive form of this equation, we introduce a few operators.
We set

BgPo (v3Xs) =Anv BgPo (Usxs) = AW
Ay (resp Ajp) is bounded from Jo(Q) (resp ) into Jo ().
Then, the equation (22) can be written

VHAT+ARW =0 (25)

and we have

/Q Bgv3v3dQ = (A1117,5)JO(Q) ; /Q BgUsv3dQ = (AIZW":})JO(Q)

Ay is self-adjoint and not negative. Its spectrum will be studied in the following parafraph.
On the other hand, we have for v € Jo(Q), W € :

/QBgV303 dQ| < o [[V][ ) H0H32(Q) <cp 19110 (02) HVVHX

where ¢o and ¢, are suitable positive constants.
Therefore, we can write

/Q BgV3l:]3 dQ = (AZIV,W)X

Ay being bounded from Jy() into .
It is easy to see that Ap; and A are mutually adjoint.
Indeed, we have

(AZI‘_;’W)X = /QBgU3V_3 dQ = (AIZW"_;)JO(Q) = (f/',AuW)JO(Q)
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In the same manner, we can write
Bg /Q UsT5dQ = (AW, W),

A being bounded from % into Y, self-adjoint, not negative.
Finally, from the variational equation (24) we have the

Theorem 4.3. The final variational formulation of the problem is: to, find W € V such
that

(W,W)X+ i W], +pg/Unwlj,,w dy+p (A2117+A22W,W)X =0VWeV (26
Y

5. THE SPECTRUM OF THE OPERATOR Ay

In order to study the spectrum of the problem, it is necessary to study the spectrum of
the self-adjoint operator Aj;. This operator was widely studied in [5], and we have the
following

Theorem 5.1. Let G(A11) the spectrum of the operator Ayy and G.(A11) its essential
spectrum. We have

6(A11) = 6e(A11) = [0,Bg]
6. OPERATORIAL EQUATIONS OF THE PROBLEM

In this paragraph we want to deduce an operatorial equation from the variational equa-
tion (26), by studying the hermitian sesquilinear form on V x V defined by:

a(W,W) = [i,w] +pg/U y Uiy
Lemma 6.1. The hermitian sesquilinear form a (W, W) is continuous and coercive on
V x V, and the embedding V C x, obviously dense and continuous, is compact.

Proof. We use a method that can be found in the book [10].
1) It is sufficient to prove that [a (W, W)]'/? defines on V a norm equivalent to |W |
there exist C > 0 such that

v 1.e.

aW,W)>C|W|y Y WeV

et il + N0 sy < € (11 + e o]

It is sufficient to prove the ineqality

_, 12 _,
/‘U‘ dQ <’ (/\Uny|2dy+/\Unz\2dz) (C' > 0) forall admissible T (27)
Q Y X

We have
Uz = ”Z\):
Jes] e, <@L a0
by virtue of a trace theorem,
el sy = el < 11, @ >0
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Then, we have

1112 =
3+ [ o

+(C'+1) HU"WHLz('y) (c.q.f.d)

2
A+ Uiyl 2y + 1zl ag) < 1+ CPd? +d2) [ |3

We must prove the ineqality (27), i.e.

2 od
L s 21

We consider the Neumann problem

2
od
d’Y+/ ‘a—b:
¥ | on

. 0P 0P
A® =0 inQ; $|Y:5€L2(y); Eb; =tc*(2)

2
dE] for all admissible ®.

Let ¥ € H'(Q). From [, A®PdQ = 0 and Green formula, we have

/ grad® - gradPdQ — / W dy-+ / Wz

Q b z
W =1 gives the classical compatibility condition
/ Sdy+ / wWdEX=0
Y z
Thus, ® € A'(Q) is solution of the problem
— —_ _ _ ~
/ grad® - grad?PdQ = /S‘Pwder / T¥pdX YW e AY(Q) (28)
Q Y X

Classically, the left-hand side is a scalar product in A'(Q) and by virtue of a trace theorem,
the right-hand side is a continuous linear functional on A'(Q). The equation (28) has one
and only one solution by Lax-Milgram theorem.

Setting ¥ = ® and using a trace theorem, we have

— 2
| Jeradeo| a@ <k (1812 + el ) IRy (6> 0)

By the Poincaré inequality,

—
|51 () and ngadfngz(Q) define equivalent norms, so that

we have
!/ !/
Jerade o <# (18l2p + Wel2sy) ' >0)

Which prove the inequality 7).

=/,

)4 /%
2) Let WP = ( uﬁp ) € V asequence weakly convergentin V to W* = ( - ) evVcy
By Rellich theorem, i#’” converges strongly in ().
Then, we must prove that

[r-o
Q

2
dQ — 0 when p — +oo

Setting N N
UP = gradd? ; U* = gradd®*
-y

grad(®” — ®*) — 0 weakly in £2(Q)

we have
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and then
(®F — d*) — 0 weakly in A'(Q)
Using a trace theorem, we have
(®” — ") |y — 0 strongly in LX(y)
{ (®P — ") |z — 0 strongly in L*(X)
The mapping

20

Wev— ( 9 [ ) e L*(y) x H'?(x)
ol

being continuous, if we set

0Pr | _ oPP _
on 1Y — & on | =&

we have
{ 8” — 8" — 0 weaklyin L(7)

™ —1* — 0 weaklyin H'/?(£) and strongly in L*(X)
Now, we write (28)) for ®” and ®* and take the difference; we obtain

[ Jrid(@r — @) aa = [ —&@r=7 |y ay+ [~ @ =z dx
Q Y z

By virtue of the precedents results, the integrals of the right-hand side tend to zero and we
have

— 2
/ ‘ grad(®” — &) dQ 50 (cqfd)
Q
The variational equation (28] can be written

(W,W)XJra(W,W)+p(A2117+A22W,W)X:O YWeVv

Let us call A the unbounded operator of , that is associated to the form a (.,.) and the pair
(V,x). By virtue of a Lemma 6.1 and refrence [6]], it is well known that this equation is
equivalent to the operatorial equation

W +AW +p (A21V+AnW) =0 WeVv 29)
Consequently we have
Theorem 6.2. The operatorial equations of the problem are
VEAT+ARW =0
W+ AW +p (A2 1V +AnW) =0
VeH(Q), WeV

Remark 6.1: Operatorial equations with bounded operators
We can eliminate the unbounded operator A by setting

AW =w, ey
We obtain the equations with bounded coefficients

1L1;+A||1_)‘+A|2A71/2W0=O (30)
AW+ pA~ 2407 4 (Ix n pA‘l/zAzzA_l/z) Wo =0 31)

VEJ()(Q), Wo € .
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The operators A !, AjpA~Y2, A=1/245;, A=Y/2A45,A~ /2 are compact.C]

7. THE SPECTRUM OF THE PROBLEM

Let us seek the solutions that depend on time according to the exponential law ¢/®, 6
real.

‘We obtain
0% = AV +ApA~ 2, (32)
@AWy = pA~ 2407+ (Ix T pA‘l/zAng_l/z) Wo (33)
or, setting v = @2
VZVA1|V+VA|2A71/2WQ (34)
A~'Wo = vpA~ Aot (I +pA~ Ana ) Wy (35)

Theorem 7.1. The spectrum of the problem is composed by an essential part, which
fills the closed interval [0,Bg|, and a discrete part that lies outside this interval and is
comprised of a countable set of positive real eigenvalues, whose accumulation point is the
infinity. Physically, the interval [0,Bg] is a domain of resonance.

Proof. i) The spectrum in the domain: ®* > Pg

We have
v/ < (Bg) ™
Since [|A11]| = Bg, Ij,(q) — VA11 is invertible and the operatorial function R(V) = (I;,(q) —
vA11)~! is holomorphic in the domain [v| < (Bg)~'.
The equation (34)gives

V= VR(V)ApA~?W,
Carrying in the equation (33)), we obtain

Ov)Wo & [V2pA~1245 R(V)A A2 1+ (IX + pA_l/zAng_l/z) —A‘l} Wo =0
Q(v) is a self-adjoint operatorial function, which is holomorphic in the domain |v| <
(Bg)~".

We have

0(0) = —A~! compact and definite positive,

0'(0)=1+ pA"/ZAng"/2 strongly positive.

Consequently, by virtue of a theorem of theory of the operator pencils [6], for each €,
0 <e< (Bg)~!, in the interval |0, [, there is a denumerable infinity of eigenvalues vy that
tend to zero when k tends to infinity. The corresponding eigenelements { Woy } form a Riesz
basis in a subspace of y with finite defect.

For our problem, there is a denumerable infinity of eigenvalues co,% = vk_l, real positive and
that tend to oo when k — -oo.

ii) The spectrum in the domain: 0 < ®* < Pg
The equation (33) can be written

(IX + pA_l/zAzzA_l/z — (DZA_I) Wo = 7pA_1/2A2117
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Since 0? < Bg and A, contains the factor Bg, the coefficient of Wy is a self-adjoint bounded
operator that is strongly positive if Bg is sufficiently small.
Under this condition we can write

~1
Wo=—p (B+pA~ A~ 2= w?a™!) A Ay
Carrying in the equation (32), we obtain
A —N(@)V =¥, Ve(Q)
with
—1
N(?) = pApA~!/2 (1X AT 2ApAT2 - mZA_l) A4,
N (coz) is an analytical function of ®” in the domain w? < Bg; for each ®” in this domain,
it is compact operator.
Setting
Z((,OZ) =A;1— N((Dz)
we obtain the equation
(Z((,Oz)—(x)zljo(g))l_;:o, Ve J(Q)

Let us fix ®} in [0,Bg]. Since N(®?) is compact, we can apply to the operator Z(®?) a
classical Weyl theorem [6]]; we have

Ge(Z(w1)) = ce(An) = [0,Bg].
2

Let 3 € [0, Bg]; there exists for the operator Z(w?) a Weyl sequence {V, } depending on ?
and 3 [6] such that ¥, — 0 weakly in Jo(Q) ; ir(lf) [Vl s () > 03 (Z(0}) — w%IJO(Q)) Vp—
Jo(Q

0in Jo(Q).
Choosing (1)% = (1)%, we have for the corresponding Weyl sequence {5,,} depending on 0)%
only :
(Z(0]) — 01l 0)) Pn — 0 in Jo(Q).
Therefore, co% belongs to the essential spectrum of the problem

(Z((D2) — (,OZIJO(Q)) V=0

®? being arbitrary in [0, Bg], this essential spectrum is [0, Bg].0]

8. CONCLUSION

Like in papers quoted in references, we study the influence of a small heterogeneous-

ness of the liquid on the oscillations, the important point being the presence of an essential
spectum.
In works in the process of publication and in progress, we study analogous problems con-
cerning viscous and viscoelastic liquids, the oscillations of a rigid body in a bounded tank
containing a almosthomogeneous liquid ( for instance a lake ), and the influence of surface
tensions.

Acknowledgements. The authors are grateful to the anonymous referee and the editorial
board for a careful checking of the details and for helpful comments that improved this

paper.



80 H. ESSAOUINI, L. EL BAKKALI AND P. CAPODANNO EIMAA-2017/5(1)

REFERENCES

[1] P. Capodanno, D. Vivona, Mathematical study of the planar oscillations of a heavy almost homogeneous
incompressible inviscid liquid partially filling a container, Rev. Roumain. Sci. Techn. Méca. Appl., 52(2),
73 - 103, 2007.

[2] H. Essaouini, L. El Bakkali and P. Capodanno, Analysis of the small oscillations of a heavy almost-
homogeneous liquid-gas system , Mechanics Research Communications.(MRC), 37, 337 - 340, 2010.

[3] H. Essaouini, L. El Bakkali and P. Capodanno, Mathematical study of the small oscillations of a pendulum
containing an almost-homogeneous liquid and a barotropic gas, Zeitschrift fur Angewandte Matematik und
Physik.(ZAMP), 62, 849 - 868, 2011.

[4] H. Essaouini, J. El Bahaoui, L. El Bakkali and P. Capodanno, Mathematical analysis of the small oscillations
of a heavy heterogeneous viscous liquid in an open immovable container , Engineering Mathematics Letters.
(EML), 1,1-17,2014.

[5] H. Essaouini, J. El Bahaoui, L. El Bakkali and P. Capodanno, Sloshing of heterogeneous liquid in partially
filled tanks, Example of a vibration without compactness , British Journal of Mathematics and Computer
Sciences, 9(3),224 - 236, 2015.

[6] N.D. Kopachevsky and S.G. Krein, Operator approch to linear problems of Hydrodynamics, Vol. 1,
Birkhauser, Basel, 2001.

[7]1 N.N. Moiseyev and V.V. Rumyantsev, Dynamic stability of bodies containing fluid, Springer, Berlin 1968.

[8] H.J-P. Morand and R. Ohayon, Interactions fluides-structures, Masson, Paris, 1992.

[9] LM. Rapoport, Dynamics of elastic container partially filled with liquid, Springer Verlag, Berlin, 1968.

[10] J. Sanchez Huber, E. Sanchez Palencia, Vibration and coupling of continuous systems; asymptotic methods,
Springer verlag, Berlin, 1989.
[11] A. Sommerfeld, Mechanik der deformierbaren Medien, Akademische Verlagsgesellschaft, Leipzig, 1964.

H. ESSAOUINI
ABDELMALEK ESSAADI UNIVERSITY, FACULTY OF SCIENCES, M2SM ER28/FS/05,93030 TETUAN, Mo-
ROCCO

E-mail address: hilal_essaouini@yahoo.fr

L. EL BAKKALI
ABDELMALEK ESSAADI UNIVERSITY, FACULTY OF SCIENCES, M2SM ER28/FS/05, 93030 TETUAN, Mo-
ROCCO

E-mail address: elbakkali.larbi@gmail.com

P. CAPODANNO
UNIVERSITE DE FRANCHE-COMTE, 2B RUE DES JARDINS, F- 25000 BESANCON, FRANCE
E-mail address: pierre.capodanno@neuf. fr



	1. Introduction
	2. Problem statement
	3. Equations of motion
	4. Variational formulation of the problem
	5.  The spectrum of the operator A11
	6.  Operatorial equations of the problem
	7.  The spectrum of the problem
	8.  Conclusion
	References

