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MATHEMATICAL STUDY OF THE THREE DIMENSIONAL OSCILLATIONS

OF A HEAVY ALMOST HOMOGENEOUS LIQUID PARTIALLY FILLING AN

ELASTIC CONTAINER

H. ESSAOUINI, L. EL BAKKALI AND P. CAPODANNO

ABSTRACT. We present in this article a theoretical work to treat the coupling between the

structure elasticity and the heterogeneousness of a liquid. Considering an almost homoge-

neous, incompressible and inviscid liquid in an elastic container, using functional analysis,

we obtain a variational formulation of the small amplitude oscillations of the coupled prob-

lem around the equilibrium position, then two operatorial equations in a suitable Hilbert

space are analyzed. We show that the spectrum of the system is real and consists of a

countable set of eigenvalues, and an essential continuous spectrum filling an interval and

corresponding physically to a domain of resonance.

1. INTRODUCTION

The study of the classical problem of the small oscillations of an inviscid or viscous

homogeneous liquid in a rigid container has been the subject of many works [6, 7, 8]. The

case of an elastic container with homogeneous liquid was studied in details in the book [9]

and, more recently in [8]. On the other hand, the general case of a viscous heterogeneous

liquid was treated in [4], and the planar case of a heterogeneous inviscid incompressible

liquid in a rigid container was studied, first by Rayleigh and then by Capodanno and his

collaborators [1, 2, 3].

In this aim, we propose here a theoretical study of the three-dimensional oscillations

of an incompressible inviscid liquid taking into account the effects of heterogeneousness

which are neglected by the majority of authors.

In this contexte, we consider an elastic container, the external boundary of which is

fixed, that is partially filled by an almost-homogeneous heavy liquid. After writing the

general equations of motion of the system, we linearize the problem assuming small dis-

placements from an equilibrium position. As a second step, and under the hypothesis that

the liquid is almost-homogeneous, we reformulate the equations as a variational problem,

and finally, as an operatorial problem involving a bounded linear operators on suitable

Hilbert space. Finally, we show that the spectrum of the relevant operator, is composed

by a discrete part and an essential part filling an interval and corresponding physically to

a domain of resonance: we argue that the presence of the essential part of the spectrum
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is due the hypothesis of almost-homogeneity, in contrast to the classical case in which the

fluid is homogeneous and the spectrum is entirely discrete [8].

Our work can be used in various applications : tank filled by liquid; ship, train, truck

containing a liquid, where the stability of the system is important, and the knowledge of

the natural frequencies is essential in the design process of liquid tanks and implementing

active control systems in space vehicles.

2. PROBLEM STATEMENT

FIGURE 1. Model of the system.

We consider an elastic body that occupies a domain Ω′ bounded by a regular closed

fixed surface Γ and an regular closed internal surface. The domain bounded by this surface

is partially filled by an heavy incompressible inviscid liquid, that occupies in equilibrium

position a domain Ω bounded by a surface Σ and the horizontal free surface γ. We denote

by σ the part of the internal surface of the body that is above Ω and is wetted by a gas with

constant pressure P
0.

We use an orthogonal coordinate system Ox1x2x3, Ox1x2 being in the plane of γ and Ox3

directed upwards. The system is supposed at the constant temperature and in a constant

gravity field ~g =−g~x3.

We study the small oscillations of the system elastic body-liquid about its equilibrium

position in the framework of the linear theory.

3. EQUATIONS OF MOTION

3.1. Equations of motion of the elastic body

We denote by ρ′, λ′, µ′ the density and the Lamé coefficients, wich we suppose constant,

of the body.

Let ~u′0(x1,x2,x3) the displacement of the particle of the body that occupies, in the natural

state, the position (x1,x2,x3), from the natural state to the equilibrium state. We denote by
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~n(x1,x2,x3) the unit vector normal to σ and directed to the interior of Ω′. We have:

0 =−ρ′gδi3 +
∂σ′

i j(~u
′
0)

∂x j

in Ω′ (i, j = 1,2,3) (1)

~u′0|Γ = 0 (2)

σ′
i j(~u

′
0)n j =−P

0ni on σ (3)

where we have set

σ′
i j(~u

′
0) = λ′δi jdiv~u′0 + 2µ′ε′i j(~u

′
0),

εi j(~u
′
0) =

1

2

(

∂u′0i

∂x j
+

∂u′0 j

∂xi

)

.

The εi j(~u
′
0) are the components of the deformation tensor, the σ′

i j(~u
′
0) are the components

of the stress tensor.

Let~u′0(x1,x2,x3) the displacement of a particle of the body from its equilibrium position to

its position at the instant t.

We have

ρ′ ∂
2(u′i + u′0i)

∂t2
=−ρ′gδi3 +

∂σ′
i j(~u

′+~u′0)

∂x j

in Ω′ (4)

(~u′+~u′0)|Γ = 0 (5)

σ′
i j(~u

′+~u′0)n j =−P
0ni on σ (6)

Taking into account the equations (1), (2), (3), we obtain

ρ′ü′i =
∂σ′

i j(~u
′)

∂x j

in Ω′

(

ü′i =
∂2(u′i)

∂t2

)

(7)

~u′|Γ = 0 (8)

σ′
i j(~u

′)n j = 0 on σ (9)

We will write in the following the kinematic and dynamic conditions on Σ.

3.2. Equations of motion of the liquid

We suppose that the liquid is heterogeneous. We denote by ~u(x, t) the displacement from

the equilibrium state of the particle that occupies the position x(x1,x2,x3) at the instant t,

and by ρ∗(x, t), P (x, t) the density and the pressure in this point.

We have

ρ∗~̈u =−
−−→
gradP −ρ∗g~x3 (Euler’s equation) (10)

div~̇u = 0 (incompressibility) in Ω (11)

∂ρ∗

∂t
+ div(ρ∗~̇u) = 0 (continuity equation) (12)

If~n is the unit vector normal to Σ∪ γ directed to the exterior of Ω, we have the kinematic

condition

~u ·~n =~u′ ·~n on Σ (13)
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Let ρ0, p0 the density and the pressure in the equilibrium state; we have

−
−−→
gradp0 −ρ0g~x3 = 0

so that p0 and ρ0 are functions of x3 only and we have

dp0(x3)

dx3
=−ρ0(x3)g

We set
ρ∗(x, t) = ρ0(x3)+ ρ̃(x, t)+ · · · ,

P (x, t) = p0(x3)+ p(x, t)+ · · ·

where ρ̃, p are of the first order with respect to the amplitude of the oscillations and the

dots indicate terms of the second order.

The linearized continuity equation is

∂ρ̃

∂t
+ div(ρ0~̇u) = 0

or, since div~̇u = 0
∂ρ̃

∂t
+~̇u ·

−−→
gradρ0 = 0

or, integrating from the date of the equilibrium to the instant t

ρ̃ =−ρ′
0(x3)u3

Then the Euler’s equation (10) takes the form

ρ∗~̈u =−
−−→
gradp− (ρ∗−ρ0)g~x3

and finally the linearized Euler’s equation is

ρ0(x3)~̈u =−
−−→
gradp+ρ′

0(x3)gu3~x3 in Ω (14)

After integration, the equation (11) gives

div~u = 0 in Ω (15)

3.3. The dynamic conditions

a) The equation of the moving free surface γt is

x3 = u3(x1,x2,0, t)+ · · ·

or, writing un|γ for~u ·~n on γ :

x3 = un|γ + · · ·

We must write the the pressure P of the liquid is equal to P
0 on γt .

We have

p0(un|γ + · · ·)+ p|γ+ · · ·= P
0

Then, at the first order

p0(0)+ un|γ
dp0

dx3
(0)+ p|γ = P

0

or

p|γ = ρ0(0)gun|γ (16)

b) Let us write the dynamic conditions on the surface Σt , position of Σ at the instant t.

M being a point of Σ, we denote by Mℓ (resp. Ms) the particle of the liquid (resp. the
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FIGURE 2. Configurations of Σ and Σt .

body) wich occupy the position in the equilibrium position.

If M′
ℓ and M′

s are the position of Mℓ and Ms on Σt at the instant t, we have

−−→
MM′

ℓ =~u ;
−−→
MM′

s =~u′

In linear theory, we admit that the unit vectors normal to Σt in M′
ℓ and M′

s are equal to the

unit vector ~n normal to Σ in M and that the pressure of the liquid in M′
ℓ is equal to the

pressure P (M′, t) in M′, intersection of Σt with the normal in M to Σ.

Therefore, the dynamic boundary conditions on Σt can be written

σ′
i j(~u

′
0 +~u′)n j =−P (M′, t)ni

Replacing σ′
i j(~u

′
0)n j by −p0(M)ni, we obtain

σ′
i j(~u

′)n j =−[P (M′, t)− p0(M)]ni on Σ

But, un|Σ being the normal compnent of~u on Σ, we have

P (M′, t) = P (M + un|Σ~n, t) = P (M, t)+
−−→
gradP (M, t) ·un|Σ~n+ · · ·

un|Σ being of the first order, we can, in linear theory, replace
−−→
gradP (M, t) by

−−→
gradp0(M) =−ρ0(M)g~x3

so that we have

P (M′, t) = P (M, t)−ρ0(M)gun|Σ n3|Σ + · · ·

and finally

σ′
i j(~u

′)n j =−[p(M, t)−ρ0|Σgn3un]ni on Σ (17)

3.4. The case of the almost homogeneous liquid

Let h the maximum height of the liquid in the equilibrium position.

We suppose that

ρ0(x3) = ρ(1−βx3)+ o(βh),
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where ρ and β are positive constants, β being sufficiently small so that (βh)2, (βh)3,· · · are

negligible with respect to βh.

Then, the liquid is called ”almost-homogeneous in Ω”.

Like in the Boussinesq approximation for the convective motions of the viscous liquids,

substituting in the equation (14)

ρ0 by ρ and ρ′ by −ρβ,

we replace it by the approximated equation

ρ~̈u =−
−−→
gradp−ρβgu3~x3 in Ω (18)

Finally, in the case of an almost-homogeneous liquid, the equations of motion are the

equations (7), (8), (9), (18), (15), (13), (16), (17)(in the last two equations, ρ0(0) and ρ0|Σ
replaced by ρ).

4. VARIATIONAL FORMULATION OF THE PROBLEM

4.1. A formal variational formulation

For a formal calculation, we introduce the space of the kinematically admissible displace-

ments:

H =
{

(~w′,~w)t/ ~w′
|Γ = 0, div~w = 0 on Ω, wn|Σ = w′

n|Σ

}

with ~w′, ~w sufficiently smooth respectively in Ω′ and Ω. This space will be precised later.

Theorem 4.1. A formal variational equation of the problem is:














∫
Ω′

ρ′~̈u′ · ~̄w′ dΩ′+

∫
Ω

ρ~̈u · ~̄wdΩ+

[∫
Ω′

σ′
i j(~u

′)ε′i j(~̄w
′)dΩ′+ρg

∫
Σ

u′nn3w̄′
n dΣ

]

+ρg

∫
γ

un|γ w̄n|γ dγ+ρβg

∫
Ω

u3w̄3 dΩ = 0

for all admissible ~w, ~w′.

Proof. i) At first, we have
∫

Ω′
ρ′~̈u′ · ~̄w′ dΩ′ =

∫
Ω′

∂σ′
i j(~u

′)

∂x j

w̄′
i dΩ′ =

∫
Ω′

[

∂

∂x j

[σ′
i j(~u

′)w̄′
i]−σ′

i j(~u
′)

∂w̄′
i

∂x j

]

dΩ′

The σ′
i j being symmetrical, we have

∫
Ω′

σ′
i j(~u

′)
∂w̄′

i

∂x j

dΩ′ =

∫
Ω′

σ′
i j(~u

′)ε′i j(~̄w
′)dΩ′

On the other hand, the Green formula gives∫
Ω′

∂

∂x j

[σ′
i j(~u

′)w̄′
i]dΩ′ =

∫
Γ∪σ∪Σ

σ′
i j(~u

′)w̄′
ine j d(∂Ω′),

where,~ne is the unit vector that is normal to ∂Ω′ and directed to the exterior of Ω′.

We have

w̄′
i = 0 on Γ, σ′

i j(~u
′)ne j = 0 on σ,

so that the right hand side of the last integral is reduced to

−

∫
Σ

σ′
i j(~u

′)n jw̄
′
i dΣ

Taking into account the dynamic conditions (17) on Σ, we obtain∫
Ω′

ρ′~̈u′ · ~̄w′ dΩ′ =
∫

Σ
(p−ρgn3un)w̄

′
ini dΣ−

∫
Ω′

σ′
i j(~u

′)ε′i j(~̄w
′)dΩ′ (19)
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For the liquid, we have, from the equation (18):∫
Ω

ρ~̈u · ~̄wdΩ =−

∫
Ω

−−→
gradp · ~̄wdΩ−ρβg

∫
Ω

u3w̄3 dΩ

We can write

−

∫
Ω

−−→
gradp · ~̄wdΩ = −

∫
Ω
[div(p~̄w)− pdiv(~̄w)]dΩ

= −

∫
γ∪Σ

pw̄n d(∂Ω)

= −
∫

γ
ρgun|γw̄n|γ dγ−

∫
Σ

p|Σw̄n|Σ dΣ,

so that we have∫
Ω

ρ~̈u · ~̄wdΩ =−
∫

γ
ρgun|γw̄n|γ dγ−

∫
Σ

p|Σw̄n|Σ dΣ−ρβg

∫
Ω

u3w̄3 dΩ (20)

Adding (19) and (20), the terms containing p|Σ disappear since wn|Σ = w′
n|Σ and we obtain

the formal variational equation of the problem














∫
Ω′

ρ′~̈u′ · ~̄w′ dΩ′+
∫

Ω
ρ~̈u · ~̄wdΩ+

[∫
Ω′

σ′
i j(~u

′)ε′i j(~̄w
′)dΩ′+ρg

∫
Σ

u′nn3w̄′
n dΣ

]

+ρg

∫
γ

un|γ w̄n|γ dγ+ρβg

∫
Ω

u3w̄3 dΩ = 0

(21)

for all admissible ~w, ~w′.

ii) Conversely we are going to prove that, if ~u′ and ~u are functions of t with values in the

space of the admissible virtual displacements H and verifying (21),~u′ and ~u are solutions

of the problem.

We take ~w′ sufficiently smooth in Ω′ with ~w′
n|Γ = 0, but ~w sufficiently smooth in Ω, verify-

ing wn|Σ = w′
n|Σ, and we introduce a multiplier Λ associated to the condition div~w = 0.

The equation (21) takes the form














∫
Ω′

ρ′~̈u′ · ~̄w′ dΩ′+

∫
Ω

ρ~̈u · ~̄wdΩ+

[∫
Ω′

σ′
i j(~u

′)ε′i j(~̄w
′)dΩ′+ρg

∫
Σ

n3u′nw̄′
n dΣ

]

+ρg

∫
γ

un|γ w̄n|γ dγ+ρβg

∫
Ω

u3w̄3 dΩ+
∫

Ω
Λdiv~̄wdΩ = 0

for all admissible ~w, ~w′.

We have

∫
Ω′

σ′
i j(~u

′)ε′i j(~̄w
′)dΩ′ =

∫
Ω′

[

∂

∂x j

[σ′
i j(~u

′)w̄′
i]−

∂(σ′
i j(~u

′))

∂x j

w̄′
i

]

dΩ′

= −
∫

Σ
σ′

i j(~u
′)n jw̄

′
i dΣ−

∫
σ

σ′
i j(~u

′)n jw̄
′
i dσ

−

∫
Ω′

∂(σ′
i j(~u

′))

∂x j

w̄′
i dΩ′

∫
Ω

Λdiv~̄wdΩ =
∫

Ω

[

div(Λ~̄w)−
−−→
gradΛ · ~̄w

]

dΩ

=

∫
Σ

Λ|Σw̄n|Σ dΣ+

∫
γ
Λ|γw̄n|γ dγ−

∫
Ω

−−→
gradΛ · ~̄wdΩ
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Carrying in the previous variational equation, we obtain


































∫
Ω′

(

ρ′ü′i −
∂σ′

i j(~u
′)

∂x j

)

w̄′
i dΩ′+

∫
Ω

(

ρ~̈u−
−−→
gradΛ+ρβgu3~x3

)

· ~̄wdΩ

+

∫
γ

(

ρgun|γ+Λ|γ

)

w̄n|γ dγ−

∫
Σ

(

σ′
i j(~u

′)n j −ρgn3|Σu′n|Σni −Λ|Σni

)

w̄′
i|Σ dΣ

−

∫
σ

σ′
i j(~u

′)n jw̄
′
i|σ dσ = 0

Choosing ~w′ ∈ [D(Ω′)]3. So, we have wn|Σ = w′
n|Σ = 0. Then we obtain



















∫
Ω′

(

ρ′ü′i −
∂σ′

i j(~u
′)

∂x j

)

w̄′
i dΩ′+

∫
Ω

(

ρ~̈u−
−−→
gradΛ+ρβgu3~x3

)

· ~̄wdΩ

+
∫

γ

(

ρgun|γ+Λ|γ

)

w̄n|γ dγ = 0

Taking ~w = 0, compatible with wn|Σ = 0, we obtain

∫
Ω′

(

ρ′ü′i −
∂σ′

i j(~u
′)

∂x j

)

w̄′
i dΩ′ = 0 ∀~w′ ∈

[

D(Ω′)
]3

and then

ρ′ü′i −
∂σ′

i j(~u
′)

∂x j

= 0 in
(

[

D(Ω′)
]3
)′

Afterwards, we have∫
Ω

(

ρ~̈u−
−−→
gradΛ+ρβgu3~x3

)

· ~̄wdΩ+

∫
γ

(

ρgun|γ+Λ|γ

)

w̄n|γ dγ = 0

for each ~w verifying wn|Σ = 0.

Taking ~w ∈ [D(Ω)]3, compatible with wn|Σ = 0, we have

ρ~̈u−
−−→
gradΛ+ρβgu3~x3 = 0 in

[

D(Ω)′
]3

Remain ∫
γ

(

ρgun|γ+Λ|γ

)

w̄n|γ dγ = 0

for each ~w verifying wn|Σ = 0.

wn|γ being arbitrary, we have

ρgun|γ+Λ|γ = 0

Then, we have

−

∫
Σ

{

σ′
i j(~u

′)n j −
[

ρgn3u′n −Λ
]

ni

}

|Σ
w̄′

n|Σ dΣ−

∫
σ

σ′
i j(~u

′)n jw̄
′
n|σ dσ = 0

for each ~w′ such that w′
n|Γ = 0.

w′
n|Σ and w′

n|σ being arbitrary, we have

σ′
i j(~u

′)n j =
(

ρgn3u′n −Λ
)

ni on Σ

σ′
i j(~u

′)n j = 0 on σ

Setting p=−Λ [11], we obtain the Euler’s equation and the dynamic boundary conditions,

and also, the mechanical interpretation of the multiplier Λ.�
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4.2. A precise variational formulation

We suppose that~u′ and~u belong to the spaces

~u′ ∈ Ξ̂1(Ω′) =
{

~u′ ∈ Ξ1(Ω′)
def
=
[

H1(Ω′)
]3

; ~u′|Γ = 0
}

;

~u ∈ J(Ω) =
{

~u ∈ L
2(Ω)

def
=
[

L2(Ω)
]3

; div~u = 0
}

with

u′n|Σ = un|Σ

Obviously, u′
n|Σ must belong to H1/2(Σ)⊂ L2(Σ).

Since~u must belong to J(Ω), we seek it in the form

~u =~v+ ~U

with

~v ∈ J0(Ω) =
{

~v ∈ L
2(Ω); div~v = 0; vn|Σ∪γ = 0

}

~U ∈ Gh(Ω) =

{

~U =
−−→
gradΦ; Φ ∈ H1(Ω);

∫
Ω

ΦdΩ = 0; div~U = ∆Φ = 0

}

In accordance to the orthogonal decomposition in L 2(Ω) [6]

J(Ω) = J0(Ω)⊕Gh(Ω)

Let us recall [6] that

L
2(Ω) = J0(Ω)⊕G(Ω),

where G(Ω) is the space of the potential fields and that

G(Ω) = Gh(Ω)⊕G0(Ω),

where

G0(Ω) =
{−−→

gradq, q ∈ H1
0 (Ω)

}

The Euler’s equation (18) can be written

~̈v+ ~̈U =−
1

ρ

−−→
gradp−βgv3~x3 −βgU3~x3

Consequently, if P0 is the orthogonal projector from L 2(Ω) into J0(Ω), we have

~̈v =−βgP0(v3~x3)−βgP0(U3~x3) (22)

Let us set

~w = ~̃v+ ~̃U

J0(Ω) and Gh(Ω) being orthogonal, we have

∫
Ω

ρ~̈u · ~̄wdΩ =

∫
Ω

ρ

(

~̈v ·~̄̃v+ ~̈U · ~̄̃U

)

dΩ
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On the other hand, since wn|γ = 0, we have un|γ =Un|γ.

Therefore, the variational equation (21) takes the form


































∫
Ω′

ρ′~̈u′ · ~̄w′ dΩ′+

∫
Ω

ρ

(

~̈v ·~̄̃v+ ~̈U · ~̄̃U

)

dΩ

+

[∫
Ω′

σ′
i j(~u

′)ε′i j(~̄w
′)dΩ′+ρg

∫
Σ

n3|Σu′n|Σw̄′
n|Σ dΣ

]

+ρg

∫
γ

Un|γ
¯̃Un|γ dγ+ρβg

∫
Ω
(v3 +U3)

(

¯̃v3 +
¯̃U3

)

dΩ = 0

But we have

βg

∫
Ω

v3 ¯̃v3 dΩ =

∫
Ω

βgP0(v3~x3) ·~̄̃vdΩ;

βg

∫
Ω

U3 ¯̃v3 dΩ =
∫

Ω
βgP0(U3~x3) ·~̄̃vdΩ,

so that, in the precedent variational equation appears∫
Ω

ρ
[

~̈v+βgP0(v3~x3)+βgP0(U3~x3)
]

·~̄̃vdΩ = 0

Then, we can deduce from the last variational equation the following:

Theorem 4.2. The variational equation of the problem is: to find (~v, ~U ,~u′) ∈ J0(Ω)×
Gh(Ω)× Ξ̂1(Ω′) such that














∫
Ω′

ρ′~̈u′ · ~̄w′ dΩ′+

∫
Ω

ρ~̈U · ~̄̃U dΩ+

[∫
Ω′

σ′
i j(~u

′)ε′i j(~̄w
′)dΩ′+ρg

∫
Σ

n3|Σu′n|Σw̄′
n|Σ dΣ

]

+ρg

∫
γ

Un|γ Ūn|γ dγ+ρβg

∫
Ω
(v3 +U3)

¯̃U3 dΩ = 0

(23)

for all (~̃v, ~̃U,~w′) ∈ J0(Ω)×Gh(Ω)× Ξ̂1(Ω′).

4.3. Transformation of the equation (23)

In this subsection we are giving another formulation of the problem (23).

i) At first, it is well-known that in Ξ̂1(Ω′),
(∫

Ω′ σ′
i j(~u

′)ε′i j(~̄u
′)dΩ′

)1/2

defines a norm which

is equivalent to the classical norm ‖~u′‖1 of Ξ1(Ω′).
On the other hand, by virtue of a trace theorem, we have

∣

∣

∣

∣

ρg

∫
Σ

∣

∣n3|Σ

∣

∣

∣

∣

∣
u′n|Σ

∣

∣

∣

2

dΣ

∣

∣

∣

∣

≤ cρg
∥

∥~u′
∥

∥

2

1
,

c being a positive constant depending on Σ.

Therefore, if ρ or the amount of the liquid is sufficiently small,

(∫
Ω′

σ′
i j(~u

′)ε′i j(~̄u
′)dΩ′+ρg

∫
Σ

∣

∣n3|Σ

∣

∣

∣

∣

∣
u′n|Σ

∣

∣

∣

2

dΣ

)1/2

defines in Ξ̂1(Ω′) a norm equivalent to ‖~u′‖1.

We suppose it in the following. This norm is denoted by |‖~u′‖|1, the associated product

[~u′,~w′]1.

On the other hand, we remark that, if ~U ∈ Gh(Ω) ⊂ E(Ω) =
{

~U ∈ L 2(Ω); div~U = 0
}

,
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Un|Σ∪γ has sens as element of H−1/2(Σ∪ γ) [10].

Let us introduce the space

V =































W =

(

~u′

~U

)

; ~u′ ∈ Ξ̂1(Ω′) =
{

~u′ ∈ Ξ1(Ω′), ~u′|Γ = 0
}

~U =
−−→
gradΦ, Φ ∈ H̃1(Ω) =

{

Φ ∈ H1(Ω);

∫
Σ∪γ

Φd(∂Ω) = 0

}

;

div~U = 0; Un|γ ∈ L2(γ); Un|Σ = u′n|Σ ∈ H1/2(Σ)































equipped with the hilbertian norm defined by

‖W‖2
V =

∣

∣

∥

∥~u′
∥

∥

∣

∣

2

1
+

∫
Ω

∣

∣

∣

~U
∣

∣

∣

2

dΩ+
∥

∥Un|γ

∥

∥

2

L2(γ)
+
∥

∥Un|Σ

∥

∥

2

H1/2(Σ)

and setting

W̃ =

(

~w′

~̃U

)

,

the space χ, completion of V for the norm associated to the scalar product

(W,W̃ )χ =

∫
Ω′

ρ′~u′ · ~̄w′ dΩ′+

∫
Ω

ρ~U · ~̄̃U dΩ

Then, the variational equation (23) takes the form

(

Ẅ ,W̃
)

χ
+
[

~u′,~w′
]

1
+ρg

∫
γ

Un|γ
¯̃Un|γ dγ+ρβg

∫
Ω
(v3 +U3)

¯̃U3 dΩ = 0; ∀ W̃ ∈V (24)

ii) In order to obtain a definitive form of this equation, we introduce a few operators.

We set

βgP0 (v3~x3) = A11~v ; βgP0 (U3~x3) = A12W

A11 (resp A12) is bounded from J0(Ω) (resp χ) into J0(Ω).
Then, the equation (22) can be written

~̈v+A11~v+A12W = 0 (25)

and we have∫
Ω

βgv3 ¯̃v3 dΩ =
(

A11~v,~̃v
)

J0(Ω)
;

∫
Ω

βgU3 ¯̃v3 dΩ =
(

A12W,~̃v
)

J0(Ω)

A11 is self-adjoint and not negative. Its spectrum will be studied in the following parafraph.

On the other hand, we have for~v ∈ J0(Ω), W̃ ∈ χ:

∣

∣

∣

∣

∫
Ω

βgv3
¯̃U3 dΩ

∣

∣

∣

∣

≤ c0 ‖~v‖J0(Ω)

∥

∥

∥

~̃U
∥

∥

∥

L 2(Ω)
≤ c′0 ‖~v‖J0(Ω)

∥

∥W̃
∥

∥

χ

where c0 and c′0 are suitable positive constants.

Therefore, we can write ∫
Ω

βgv3
¯̃U3 dΩ =

(

A21~v,W̃
)

χ

A21 being bounded from J0(Ω) into χ.

It is easy to see that A21 and A12 are mutually adjoint.

Indeed, we have

(

A21~v,W̃
)

χ
=

∫
Ω

βgŨ3v̄3 dΩ =
(

A12W̃ ,~v
)

J0(Ω)
=
(

~v,A12W̃
)

J0(Ω)
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In the same manner, we can write

βg

∫
Ω

U3
¯̃U3dΩ =

(

A22W,W̃
)

χ

A22 being bounded from χ into χ, self-adjoint, not negative.

Finally, from the variational equation (24) we have the

Theorem 4.3. The final variational formulation of the problem is: to, find W ∈ V such

that
(

Ẅ ,W̃
)

χ
+
[

~u′,~w′
]

1
+ρg

∫
γ

Un|γ
¯̃Un|γ dγ+ρ

(

A21~v+A22W,W̃
)

χ
= 0 ∀ W̃ ∈V (26)

5. THE SPECTRUM OF THE OPERATOR A11

In order to study the spectrum of the problem, it is necessary to study the spectrum of

the self-adjoint operator A11. This operator was widely studied in [5], and we have the

following

Theorem 5.1. Let σ(A11) the spectrum of the operator A11 and σe(A11) its essential

spectrum. We have

σ(A11) = σe(A11) = [0,βg]

6. OPERATORIAL EQUATIONS OF THE PROBLEM

In this paragraph we want to deduce an operatorial equation from the variational equa-

tion (26), by studying the hermitian sesquilinear form on V ×V defined by:

a
(

W,W̃
)

=
[

~u′,~w′
]

1
+ρg

∫
γ

Un|γ
¯̃Un|γ dγ

Lemma 6.1. The hermitian sesquilinear form a
(

W,W̃
)

is continuous and coercive on

V ×V, and the embedding V ⊂ χ, obviously dense and continuous, is compact.

Proof. We use a method that can be found in the book [10].

1) It is sufficient to prove that [a(W,W )]1/2 defines on V a norm equivalent to ‖W‖V , i.e.

there exist C > 0 such that

a(W,W )≥C‖W‖2
V ∀ W ∈V

or

∣

∣

∥

∥~u′
∥

∥

∣

∣

2

1
+

∫
Ω

∣

∣

∣

~U
∣

∣

∣

2

dΩ+
∥

∥Un|γ

∥

∥

2

L2(γ)
+
∥

∥Un|Σ

∥

∥

2

H1/2(Σ)
≤C−1

[

∣

∣

∥

∥~u′
∥

∥

∣

∣

2

1
+ρg

∫
γ

∣

∣Un|γ

∣

∣

2
dγ

]

It is sufficient to prove the ineqality
∫

Ω

∣

∣

∣

~U
∣

∣

∣

2

dΩ ≤C′

(∫
γ

∣

∣Un|γ

∣

∣

2
dγ+

∫
Σ

∣

∣Un|Σ

∣

∣

2
dΣ

)

(C′ > 0) for all admissible ~U (27)

We have

Un|Σ = u′n|Σ
∥

∥

∥
u′n|Σ

∥

∥

∥

H1/2(Σ)
≤ d

∣

∣

∥

∥~u′
∥

∥

∣

∣

1
(d > 0)

by virtue of a trace theorem,
∥

∥

∥
u′n|Σ

∥

∥

∥

L2(Σ)
≤ d′

∥

∥

∥
u′n|Σ

∥

∥

∥

H1/2(Σ)
≤ dd′

∣

∣

∥

∥~u′
∥

∥

∣

∣

1
(d′ > 0)



76 H. ESSAOUINI, L. EL BAKKALI AND P. CAPODANNO EJMAA-2017/5(1)

Then, we have










∣

∣

∥

∥~u′
∥

∥

∣

∣

2

1
+

∫
Ω

∣

∣

∣

~U
∣

∣

∣

2

dΩ+
∥

∥Un|γ

∥

∥

2

L2(γ)
+
∥

∥Un|Σ

∥

∥

2

H1/2(Σ)
≤
(

1+C′d2d′2 + d2
)∣

∣

∥

∥~u′
∥

∥

∣

∣

2

1

+
(

C′+ 1
)∥

∥Un|γ

∥

∥

L2(γ)
(c.q.f.d)

We must prove the ineqality (27), i.e.

∫
Ω

∣

∣

∣

−−→
gradΦ

∣

∣

∣

2

dΩ ≤C′

[∫
Γ

∣

∣

∣

∣

∂Φ

∂n

∣

∣

γ

∣

∣

∣

∣

2

dγ+

∫
Σ

∣

∣

∣

∣

∂Φ

∂n
|Σ

∣

∣

∣

∣

2

dΣ

]

for all admissible Φ.

We consider the Neumann problem

∆Φ = 0 in Ω;
∂Φ

∂n

∣

∣

γ = δ ∈ L2(γ);
∂Φ

∂n
|Σ = τ ∈ L2(Σ)

Let Ψ ∈ H1(Ω). From
∫

Ω ∆ΦΨ̄dΩ = 0 and Green formula, we have∫
Ω

−−→
gradΦ ·

−−→
gradΨ̄dΩ =

∫
γ
δΨ̄|γdγ+

∫
Σ

τΨ̄|ΣdΣ

Ψ = 1 gives the classical compatibility condition∫
γ
δdγ+

∫
Σ

τdΣ = 0

Thus, Φ ∈ H̃1(Ω) is solution of the problem∫
Ω

−−→
gradΦ ·

−−→
gradΨ̄dΩ =

∫
γ
δΨ̄|γdγ+

∫
Σ

τΨ̄|ΣdΣ ∀Ψ ∈ H̃1(Ω) (28)

Classically, the left-hand side is a scalar product in H̃1(Ω) and by virtue of a trace theorem,

the right-hand side is a continuous linear functional on H̃1(Ω). The equation (28) has one

and only one solution by Lax-Milgram theorem.

Setting Ψ = Φ and using a trace theorem, we have∫
Ω

∣

∣

∣

−−→
gradΦ

∣

∣

∣

2

dΩ ≤ k
(

‖δ‖L2(γ)+ ‖τ‖L2(Σ)

)

· ‖Φ‖H̃1(Ω) (k > 0)

By the Poincaré inequality, ‖Φ‖H̃1(Ω) and

∥

∥

∥

−−→
gradΦ

∥

∥

∥

L 2(Ω)
define equivalent norms, so that

we have
∥

∥

∥

−−→
gradΦ

∥

∥

∥

L 2(Ω)
≤ k′

(

‖δ‖L2(γ)+ ‖τ‖L2(Σ)

)

(k′ > 0)

Which prove the inequality (27).

2) Let W p =

(

~u′p

~U p

)

∈V a sequence weakly convergent in V to W ∗ =

(

~u′∗

~U∗

)

∈V ⊂ χ
.

By Rellich theorem,~u′p converges strongly in L 2(Ω′).
Then, we must prove that∫

Ω

∣

∣

∣

~U p − ~U∗
∣

∣

∣

2

dΩ → 0 when p →+∞

Setting

~U p =
−−→
gradΦp ; ~U∗ =

−−→
gradΦ∗

we have
−−→
grad(Φp −Φ∗)→ 0 weakly in L

2(Ω)
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and then

(Φp −Φ∗)→ 0 weakly in H̃1(Ω)

Using a trace theorem, we have
{

(Φp −Φ∗)
∣

∣

γ → 0 strongly in L2(γ)

(Φp −Φ∗) |Σ → 0 strongly in L2(Σ)

The mapping

W ∈V →

(

∂Φ
∂n

∣

∣

γ
∂Φ
∂n

|Σ

)

∈ L2(γ)×H1/2(Σ)

being continuous, if we set
{

∂Φp

∂n

∣

∣

γ = δp

∂Φ∗

∂n

∣

∣

γ = δ∗
;

{

∂Φp

∂n
|Σ = τp

∂Φ∗

∂n
|Σ = δ∗

we have
{

δp − δ∗ → 0 weakly in L2(γ)

τp − τ∗ → 0 weakly in H1/2(Σ) and strongly in L2(Σ)

Now, we write (28) for Φp and Φ∗ and take the difference; we obtain∫
Ω

∣

∣

∣

−−→
grad(Φp −Φ∗)

∣

∣

∣

2

dΩ =

∫
γ
(δp − δ∗)(Φp −Φ∗)

∣

∣

γ dγ+

∫
Σ
(τp − τ∗)(Φp −Φ∗) |Σ dΣ

By virtue of the precedents results, the integrals of the right-hand side tend to zero and we

have ∫
Ω

∣

∣

∣

−−→
grad(Φp −Φ∗)

∣

∣

∣

2

dΩ → 0 (c.q.f.d)

The variational equation (26) can be written
(

Ẅ ,W̃
)

χ
+ a
(

W,W̃
)

+ρ
(

A21~v+A22W,W̃
)

χ
= 0 ∀ W̃ ∈V

Let us call A the unbounded operator of χ, that is associated to the form a(., .) and the pair

(V,χ). By virtue of a Lemma 6.1 and refrence [6], it is well known that this equation is

equivalent to the operatorial equation

Ẅ +AW +ρ(A21~v+A22W ) = 0 W ∈V (29)

Consequently we have

Theorem 6.2. The operatorial equations of the problem are










~̈v+A11~v+A12W = 0

Ẅ +AW +ρ(A21~v+A22W ) = 0

~v ∈ J0(Ω), W ∈V

Remark 6.1: Operatorial equations with bounded operators

We can eliminate the unbounded operator A by setting

A1/2W =W0 ∈ χ

We obtain the equations with bounded coefficients

~̈v+A11~v+A12A−1/2W0 = 0 (30)

A−1Ẅ0 +ρA−1/2A21~v+
(

Iχ +ρA−1/2A22A−1/2
)

W0 = 0 (31)

~v ∈ J0(Ω), W0 ∈ χ.
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The operators A−1, A12A−1/2, A−1/2A21, A−1/2A22A−1/2 are compact.�

7. THE SPECTRUM OF THE PROBLEM

Let us seek the solutions that depend on time according to the exponential law eiωt , ω
real.

We obtain

ω2~v = A11~v+A12A−1/2W0 (32)

ω2A−1W0 = ρA−1/2A21~v+
(

Iχ +ρA−1/2A22A−1/2
)

W0 (33)

or, setting ν = ω−2

~v = νA11~v+νA12A−1/2W0 (34)

A−1W0 = νρA−1/2A21~v+ν
(

Iχ +ρA−1/2A22A−1/2
)

W0 (35)

Theorem 7.1. The spectrum of the problem is composed by an essential part, which

fills the closed interval [0,βg], and a discrete part that lies outside this interval and is

comprised of a countable set of positive real eigenvalues, whose accumulation point is the

infinity. Physically, the interval [0,βg] is a domain of resonance.

Proof. i) The spectrum in the domain: ω2 > βg

We have

|ν|< (βg)−1

Since ‖A11‖ = βg, IJ0(Ω)−νA11 is invertible and the operatorial function R(ν) = (IJ0(Ω)−

νA11)
−1 is holomorphic in the domain |ν|< (βg)−1.

The equation (34)gives

~v = νR(ν)A12A−1/2W0

Carrying in the equation (35), we obtain

Q(ν)W0
def
=
[

ν2ρA−1/2A21R(ν)A12A−1/2 +ν
(

Iχ +ρA−1/2A22A−1/2
)

−A−1
]

W0 = 0

Q(ν) is a self-adjoint operatorial function, which is holomorphic in the domain |ν| <
(βg)−1.

We have

Q(0) =−A−1 compact and definite positive,

Q′(0) = Iχ +ρA−1/2A22A−1/2 strongly positive.

Consequently, by virtue of a theorem of theory of the operator pencils [6], for each ε,

0 < ε < (βg)−1, in the interval ]0,ε[, there is a denumerable infinity of eigenvalues vk that

tend to zero when k tends to infinity. The corresponding eigenelements {W0k} form a Riesz

basis in a subspace of χ with finite defect.

For our problem, there is a denumerable infinity of eigenvalues ω2
k = ν−1

k , real positive and

that tend to +∞ when k →+∞.

ii) The spectrum in the domain: 0 ≤ ω2 ≤ βg

The equation (33) can be written
(

Iχ +ρA−1/2A22A−1/2 −ω2A−1
)

W0 =−ρA−1/2A21~v
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Since ω2 ≤ βg and A22 contains the factor βg, the coefficient of W0 is a self-adjoint bounded

operator that is strongly positive if βg is sufficiently small.

Under this condition we can write

W0 =−ρ
(

Iχ +ρA−1/2A22A−1/2 −ω2A−1
)−1

A−1/2A21~v

Carrying in the equation (32), we obtain

A11~v−N(ω2)~v = ω2~v, ~v ∈ J0(Ω)

with

N(ω2) = ρA12A−1/2
(

Iχ +ρA−1/2A22A−1/2 −ω2A−1
)−1

A−1/2A21

N(ω2) is an analytical function of ω2 in the domain ω2 ≤ βg; for each ω2 in this domain,

it is compact operator.

Setting

Z(ω2) = A11 −N(ω2)

we obtain the equation
(

Z(ω2)−ω2IJ0(Ω)

)

~v = 0, ~v ∈ J0(Ω)

Let us fix ω2
1 in [0,βg]. Since N(ω2) is compact, we can apply to the operator Z(ω2

1) a

classical Weyl theorem [6]; we have

σe(Z(ω
2
1)) = σe(A11) = [0,βg].

Let ω2
2 ∈ [0,βg]; there exists for the operator Z(ω2

1) a Weyl sequence {~vn} depending on ω2
1

and ω2
2 [6] such that~vn → 0 weakly in J0(Ω) ; inf

J0(Ω)
‖~vn‖J0(Ω) > 0;

(

Z(ω2
1)−ω2

2IJ0(Ω)

)

~vn →

0 in J0(Ω).

Choosing ω2
2 = ω2

1, we have for the corresponding Weyl sequence
{

~̃vn

}

, depending on ω2
1

only :
(

Z(ω2
1)−ω2

1IJ0(Ω)

)

~̃vn → 0 in J0(Ω).

Therefore, ω2
1 belongs to the essential spectrum of the problem

(

Z(ω2)−ω2IJ0(Ω)

)

~v = 0

ω2
1 being arbitrary in [0,βg], this essential spectrum is [0,βg].�

8. CONCLUSION

Like in papers quoted in references, we study the influence of a small heterogeneous-

ness of the liquid on the oscillations, the important point being the presence of an essential

spectum.

In works in the process of publication and in progress, we study analogous problems con-

cerning viscous and viscoelastic liquids, the oscillations of a rigid body in a bounded tank

containing a almosthomogeneous liquid ( for instance a lake ), and the influence of surface

tensions.
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