VALUE-SHARING AND UNIQUENESS OF ENTIRE FUNCTIONS

HARINA P. WAGHAMORE AND RAJESHWARI S.

Abstract

In this paper, we study the uniqueness of entire functions sharing a nonzero value and obtain some results improving the results obtained by Harina P. Waghamore and Tanuja A[[5]].

1. Introduction

In the present paper, meromorphic functions are always regarded as meromorphic in the entire complex plane. We use the standard notation of the Nevanlinna valuedistribution theory, such as $T(r, f), N(r, f), \bar{N}(r, f), m(r, f)$ etc., as explained in Hayman [[6]], Yang [[8]], and Yi and Yang [[9]]. We denote by $S(r, f)$ any function such that $S(r, f)=o(T(r, f))$ as $r \rightarrow \infty$, possibly outside a set r of finite linear measure.

Let a be a finite complex number and let k be a positive integer. By $E_{k)}(a, f)$, we denote the set of zeros of $f-a$ with multiplicities at most k, where each zero is counted according to its multiplicity. Also let $\bar{E}_{k)}(a, f)$ be the set of zeros of $f-a$ whose multiplicities are not greater than k and each zero is counted only once. In addition, by $N_{(k}\left(r, \frac{1}{f-a}\right)\left(\operatorname{or} \bar{N}_{(k}\left(r, \frac{1}{f-a}\right)\right)$, we denote the counting function with respect to the set $E_{k)}(a, f)\left(o r \bar{E}_{k)}(a, f)\right)$.

We set

$$
N_{k}\left(r, \frac{1}{f-a}\right)=\bar{N}\left(r, \frac{1}{f-a}\right)+\bar{N}_{(2}\left(r, \frac{1}{f-a}\right)+\ldots+\bar{N}_{(k}\left(r, \frac{1}{f-a}\right)
$$

and define

$$
\Theta(a, f)=1-\limsup _{r \longrightarrow \infty} \frac{\bar{N}\left(r, \frac{1}{f-a}\right)}{T(r, f)}
$$

and

$$
\delta_{k}(a, f)=1-\limsup _{r \rightarrow \infty} \frac{N_{k}\left(r, \frac{1}{f-a}\right)}{T(r, f)},
$$

Let f and g be two non-constant meromorphic functions and let a be a finite complex number. We say that f and g share the value $a \mathrm{CM}$ (counting multiplicities) if f and g have the same a-points with the same multiplicities. We also say that

[^0]f and g share the value $a \mathrm{IM}$ (ignoring multiplicities) if we do not consider the multiplicities. We denote by $\bar{N}_{L}\left(r, \frac{1}{f-a}\right)$ the counting function for a-points of both f and g at which f has larger multiplicity than g (in the case where the multiplicities are not counted). Similarly, we have the notation $\bar{N}_{L}\left(r, \frac{1}{g-a}\right)$. Further, by $N_{0}\left(r, \frac{1}{F^{\prime}}\right)$, we denote the counting function of those zeros of F^{\prime} that are not zeros of $F(F-1)$.

Recently, R. S. Dyavanal [[2]] proved the following theorems.
Theorem $\mathbf{A}([[2]])$. Let f and g be two non-constant meromorphic functions, whose zeros and poles are of multiplicities atleast s, where s is a positive integer. Let $n \geq 2$ be an integer satisfying $(n+1) s \geq 12$. If $f^{n} f^{\prime}$ and $g^{n} g^{\prime}$ share the value 1 CM, then either $f=d g$, for some $(n+1)$-th root of unity d or $g(z)=c_{1} e^{c z}$ and $f(z)=c_{2} e^{-c z}$ where c_{1}, c_{2} and c are constants satisfying $\left(c_{1} c_{2}\right)^{n+1} c^{2}=-1$.
Theorem $\mathbf{B}([[2]])$. Let f and g be two non-constant meromorphic functions, whose zeros and poles are of multiplicities atleast s, where s is a positive integer. Let n be an integer satisfying $(n-2) s \geq 10$. If $f^{n}(f-1) f^{\prime}$ and $g^{n}(g-1) g^{\prime}$ share the value 1 CM , then

$$
g=\frac{(n+2)\left(1-h^{n+1}\right)}{(n+1)\left(1-h^{n+2}\right)}, \quad f=\frac{(n+2)\left(1-h^{n+1}\right) h}{(n+1)\left(1-h^{n+2}\right)}
$$

where h is a non-constant meromorphic function.
Theorem $\mathbf{C}([[2]])$. Let f and g be two transcendental entire functions, whose zeros are of multiplicities atleast s, where s is a positive integer. Let n be an integer satisfying $(n-2) s \geq 7$. If $f^{n} f^{\prime}$ and $g^{n} g^{\prime}$ share the value 1 CM , then either $f=d g$, for some $(n+1)$-th root of unity d or $g(z)=c_{1} e^{c z}$ and $f(z)=c_{2} e^{-c z}$, where c_{1}, c_{2} and c are constants satisfying $\left(c_{1} c_{2}\right)^{n+1} c^{2}=-1$.
Theorem $\mathbf{D}([[2]])$. Let f and g be two transcendental entire functions, whose zeros are of multiplicities atleast s, where s is a positive integer. Let n be an integer satisfying $(n-2) s \geq 5$. If $f^{n}(f-1) f^{\prime}$ and $g^{n}(g-1) g^{\prime}$ share the value 1 CM, then $f \equiv g$.

In 2014, Harina P. Waghamore and Tanuja A.[[5]] ask whether there exists a corresponding unicity theorem for $\left[f^{n} P(f)\right]^{(k)}$ where $P(f)$ is a polynomial. In this paper, they gave a positive answer to above question by proving the following Theorems.
Theorem E. Let f and g be two non-constant meromorphic functions, whose zeros and poles are of multiplicities atleast s, where s is a positive integer. Let $P(f)=a_{m} f^{m}+a_{m-1} f^{m-1}+\ldots+a_{1} f+a_{0},\left(a_{m} \neq 0\right)$, and $a_{i}(i=0,1, \ldots, m)$ is the first nonzero coefficient from the right, and let n, k, m be three positive integers with $s(n+m)>4 k+12$. If $\left[f^{n} P(f)\right]^{(k)}$ and $\left[g^{n} P(g)\right]^{(k)}$ share the value 1 CM , then either $f \equiv t g$ for a constant t such that $t^{d}=1$, where $d=(n+m, \ldots n+m-i, \ldots n)$, $a_{m-i} \neq 0$ for some $i=0,1 \ldots m$, or f and g satisfy the algebraic equation $R(f, g) \equiv 0$, where $R\left(\omega_{1}, \omega_{2}\right)=\omega_{1}^{n} P\left(\omega_{1}\right)-\omega_{2}^{n} P\left(\omega_{2}\right)$.
Corollary 1. Let f and g be two non-constant entire functions, whose zeros and poles are of multiplicities atleast s, where s is a positive integer. Let $P(f)=$ $a_{m} f^{m}+a_{m-1} f^{m-1}+\ldots+a_{1} f+a_{0},\left(a_{m} \neq 0\right)$, and $a_{i}(i=0,1, \ldots, m)$ is the first nonzero coefficient from the right, and let n, k, m be three positive integers with $s(n+m)>2 k+6$. If $\left[f^{n} P(f)\right]^{(k)}$ and $\left[g^{n} P(g)\right]^{(k)}$ share the value 1 CM , then the conclusions of Theorem E hold.
Theorem F. Let f and g be two non-constant meromorphic functions, whose zeros and poles are of multiplicities atleast s, where s is a positive integer. Let
$P(f)=a_{m} f^{m}+a_{m-1} f^{m-1}+\ldots+a_{1} f+a_{0},\left(a_{m} \neq 0\right)$, and $a_{i}(i=0,1, \ldots, m)$ is the first nonzero coefficient from the right, and let n, k, m be three positive integers with $s(n+m)>9 k+16$. If $\left[f^{n} P(f)\right]^{(k)}$ and $\left[g^{n} P(g)\right]^{(k)}$ share the value 1 IM , then either $f \equiv t g$ for a constant t such that $t^{d}=1$, where $d=(n+m, \ldots n+m-i, \ldots n)$, $a_{m-i} \neq 0$ for some $i=0,1 \ldots m$, or f and g satisfy the algebraic equation $R(f, g) \equiv 0$, where $R\left(\omega_{1}, \omega_{2}\right)=\omega_{1}^{n} P\left(\omega_{1}\right)-\omega_{2}^{n} P\left(\omega_{2}\right)$.
Corollary 2. Let f and g be two non-constant entire functions, whose zeros and poles are of multiplicities atleast s, where s is a positive integer. Let $P(f)=$ $a_{m} f^{m}+a_{m-1} f^{m-1}+\ldots+a_{1} f+a_{0},\left(a_{m} \neq 0\right)$, and $a_{i}(i=0,1, \ldots, m)$ is the first nonzero coefficient from the right, and let n, k, m be three positive integers with $s(n+m)>5 k+9$. If $\left[f^{n} P(f)\right]^{(k)}$ and $\left[g^{n} P(g)\right]^{(k)}$ share the value 1 IM , then the conclusions of Theorem F hold.

In the present paper, we always use $L(z)$ to denote an arbitrary polynomial of degree n, i.e.,

$$
\begin{equation*}
L(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+a_{0}=a_{n}\left(z-c_{1}\right)^{l_{1}}\left(z-c_{2}\right)^{l_{2}} \ldots\left(z-c_{s}\right)^{l_{s}} \tag{1}
\end{equation*}
$$

where $a_{i}, i=0,1, \ldots, n, a_{n} \neq 0$, and $c_{j}, j=1,2, \ldots, s$, are finite complex number constants; $c_{1}, c_{2}, \ldots, c_{s}$ are all distinct zeros of $L(z), l_{1}, l_{2}, \ldots, l_{s} . s, n$ are all positive integers satisfying the equality

$$
\begin{equation*}
l_{1}+l_{2}+\ldots+l_{s}=n \text { and } l=\max \left\{l_{1}, l_{2} \ldots l_{s}\right\} \tag{2}
\end{equation*}
$$

In this paper, we study the existence of solutions for $[L(f)]^{(k)}$ and the corresponding uniqueness theorems. Thus, we obtain the following results as a generalization of the theorems presented above:
Theorem 1.1. Let $f(z)$ and $g(z)$ be two non constant entire functions and let n, k and l be three positive integers such that $4 l>3 n+2 k+8$. If $[L(f)]^{(k)}$ and $[L(g)]^{(k)}$ share 1 CM , then either $f=b_{1} e^{b z}+c$ and $g=b_{2} e^{-b z}+c$ or f and g satisfy the algebraic equation $R(f, g) \equiv 0$, where b_{1}, b_{2} and b are three constants such that $(-1)^{k}\left(b_{1} b_{2}\right)^{n}(n b)^{2 k}=1$ and $R\left(w_{1}, w_{2}\right)=L\left(w_{1}\right)-L\left(w_{2}\right)$.
Remark 1. Put $l=n$ in theorem 1.1, we get $n>2 k+4$.
Theorem 1.2. Let $f(z)$ and $g(z)$ be two non constant entire functions and let n, k and l be three positive integers such that $7 l>6 n+5 k+7$. If $[L(f)]^{(k)}$ and $[L(g)]^{(k)}$ share 1 IM, then either $f=b_{1} e^{b z}+c$, and $g=b_{2} e^{-b z}+c$ or f and g satisfy the algebraic equation $R(f, g) \equiv 0$. where b_{1}, b_{2} and b are three constants such that $(-1)^{k}\left(b_{1} b_{2}\right)^{n}(n b)^{2 k}=1$ and $R\left(w_{1}, w_{2}\right)=L\left(w_{1}\right)-L\left(w_{2}\right)$.
Remark 2. Put $l=n$ in theorem 1.2, we get $n>5 k+7$.
Remark 3. If $L(f) \equiv L(g)$, then we get

$$
a_{n} f^{n}+a_{n-1} f^{n-1}+\ldots+a_{1} f \equiv a_{n} g^{n}+a_{n-1} g^{n-1}+\ldots+a_{1} g
$$

Let $h=\frac{f}{g}$. If h is a constant, then we substitute $f=g h$ in this equation and obtain $a_{n} g^{n}\left(h^{n}-1\right)+a_{n-1} g^{n-1}\left(h^{n-1}-1\right)+\ldots+a_{1} g(h-1) \equiv 0$. This yields $h^{d}=1, d=(n, \ldots, n-i, \ldots 1)$, and $a_{n-i} \neq 0$ for some $i=0,1, \ldots, n-1$. Thus $f \equiv t g$ for a constant t such that $t^{d}=1$. If h is not a constant, then by virtue of the equation presented above, we know that f and g satisfy the algebraic equation $R(f, g) \equiv 0$, where $R\left(w_{1}, w_{2}\right)=L\left(w_{1}\right)-L\left(w_{2}\right)$.

2. Some Lemmas

Lemma 2.1 ([[6]]) Let f be a non-constant meromorphic function, let k be a positive integer, and let c be a non-zero finite complex number. Then

$$
\begin{aligned}
T(r, f) & \leq \bar{N}(r, f)+N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f^{(k)}-c}\right)-N\left(r, \frac{1}{f^{(k+1)}}\right)+S(r, f) \\
& \leq \bar{N}(r, f)+N_{k+1}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f^{(k)}-c}\right)-N_{0}\left(r, \frac{1}{f^{(k+1)}}\right)+S(r, f)
\end{aligned}
$$

where $N_{0}\left(r, \frac{1}{f^{(k+1)}}\right)$ is the counting function which only counts those points such that $f^{(k+1)}=0$ but $f\left(f^{(k)}-c\right) \neq 0$.
Lemma 2.2 ([[6]]) Let $f(z)$ be a nonconstant meromorphic function and let $a_{1}(z)$ and $a_{2}(z)$ be two meromorphic functions such that $T\left(r, a_{i}\right)=S(r, f), i=1,2$. Then

$$
T(r, f) \leq \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f-a_{1}}\right)+\bar{N}\left(r, \frac{1}{f-a_{2}}\right)+S(r, f)
$$

Lemma 2.3([[9]]) Let $a_{n}(\neq 0), a_{n-1} \ldots a_{0}$ be constants and let f be a nonconstant meromorphic function. Then

$$
T\left(r, a_{n} f^{n}+a_{n-1} f^{n-1}+\ldots+a_{0}\right)=n T(r, f)
$$

Lemma $2.4([[4]])$ Let f and g be two transcendental entire functions, and let k be a positive integer. If $f^{(k)}$ and $g^{(k)}$ share the value 1 CM and

$$
\Delta=\left[\Theta(0, f)+\Theta(0, g)+\delta_{k+1}(0, f)+\delta_{k+1}(0, g)\right]>3
$$

then either $f^{(k)} g^{(k)} \equiv 1$ or $f \equiv g$.
Lemma 2.5 ([[7]]) Let f and g be two transcendental entire functions, and let k be a positive integer. If $f^{(k)}$ and $g^{(k)}$ share the value 1 IM and

$$
\Delta=\left[\Theta(0, f)+\Theta(0, g)+2 \delta_{k+1}(0, f)+3 \delta_{k+1}(0, g)\right]>6
$$

then either $f^{(k)} g^{(k)} \equiv 1$ or $f \equiv g$.
Lemma 2.6([[5]]) Let $f(z)$ be a nonconstant entire function and let $k(\geq 2)$ be a positive integer. If $f f^{(k)} \neq 0$, then $f=e^{a z+b}$, where a and b are constants.

3. Proofs of the Theorems.

Proof of Theorem 1.1. Let $L(z)$ and l be given by (1.1) and (1.2), respectively. Without loss of generality, we can assume that $a_{n}=1, l=l_{1}$ and $c=c_{1}$. This yields

$$
\begin{align*}
\Theta(0, L(f)) & =1-\limsup _{r \rightarrow \infty} \frac{\bar{N}\left(r, \frac{1}{L(f)}\right)}{T(r, L(f))} \tag{3}\\
& \geq 1-\limsup _{r \rightarrow \infty} \frac{\sum_{j=1}^{s} \bar{N}\left(r, \frac{1}{f-c_{j}}\right)}{n T(r, f)} \geq 1-\frac{s}{n} \geq \frac{l-1}{n}
\end{align*}
$$

similarly, we get

$$
\begin{equation*}
\Theta(0, L(g)) \geq \frac{l-1}{n} \tag{4}
\end{equation*}
$$

Moreover, we have

$$
\begin{aligned}
\delta_{k+1}(0, L(f)) & =1-\limsup _{r \rightarrow \infty} \frac{N_{k+1}\left(r, \frac{1}{L(f)}\right)}{T(r, L(f))} \\
& \geq 1-\limsup _{r \rightarrow \infty} \frac{\sum_{j=1}^{s} N_{k+1}\left(r, \frac{1}{\left(f-c_{j}\right)^{l_{1}}}\right)+N_{k+1}\left(r, \frac{1}{(f-c)^{l}}\right)}{n T(r, f)} \\
& \geq 1-\limsup _{r \rightarrow \infty} \frac{(s-1) T(r, f)+(k+1) T(r, f)+S(r, f)}{n T(r, f)} \\
& \geq 1-\frac{s+k}{n} \geq \frac{l-k-1}{n}
\end{aligned}
$$

and similarly

$$
\begin{equation*}
\delta_{k+1}(0, L(g)) \geq \frac{l-k-1}{n} \tag{6}
\end{equation*}
$$

Since $4 l>3 n+3 k+8$, from (3.1) to (3.4), we get
$\Delta=\left[\Theta(0, f)+\Theta(0, g)+\delta_{k+1}(0, f)+\delta_{k+1}(0, g)\right]>3$ we conclude that $h(z) \equiv 0$, i.e.,

$$
\frac{f^{(k+2)}(z)}{f^{(k+1)}(z)}-2 \frac{f^{(k+1)}(z)}{f^{(k)}(z)-1}=\frac{g^{(k+2)}(z)}{g^{(k+1)}(z)}-2 \frac{g^{(k+1)}(z)}{g^{(k)}(z)-1}
$$

Solving this equation, we obtain

$$
\frac{1}{f^{(k)}-1}=\frac{b g^{(k)}+a-b}{g^{(k)}-1}
$$

we can write the above equation as

$$
\begin{equation*}
\frac{1}{L(f)^{(k)}-1}=\frac{b L(g)^{(k)}+a-b}{L(g)^{(k)}-1} . \tag{7}
\end{equation*}
$$

Further, we consider the following three cases:
Case I. If $b \neq 0$ and $a=b$, then it follows from (3.9) that

$$
\begin{equation*}
\frac{1}{L(f)^{(k)}-1}=\frac{b L(g)^{(k)}}{L(g)^{(k)}-1} \tag{8}
\end{equation*}
$$

1.1. If $b \neq-1$, then it follows from (3.9) that $\left[L(f)^{(k)}\right]\left[L(g)^{(k)}\right] \equiv 1$, i.e.,

$$
\begin{equation*}
\left[(f-c)^{l}(f-c)^{l_{2}} \ldots\left(f-c_{s}\right)^{l_{s}}\right]^{(k)}\left[(g-c)^{l}(g-c)^{l_{2}} \ldots\left(g-c_{s}\right)^{l_{s}}\right]^{(k)}=1 \tag{9}
\end{equation*}
$$

1.1.1. If $s=1$, then we can rewrite (3.11) as follows:

$$
\left[(f-c)^{n}\right]^{(k)}\left[(g-c)^{n}\right]^{(k)}=1
$$

and $4 l>3 n+2 k+4, l=n$, we conclude that $n>2 k+4$. Hence, $f-c \neq 0$ and $g-c \neq 0$. Thus, according to Lemma 2.4 we find

$$
f=b_{1} e^{b z}+c, \quad g=b_{2} e^{-b z}+c
$$

where b_{1}, b_{2} and b are three constants such that $(-1)^{k}\left(b_{1} b_{2}\right)^{n}(n b)^{2 k}=1$.
1.1.2. For $s \geq 2$, we note that $4 l>3 n+2 k+4$. Hence, $l>2 k+4$. Suppose that z_{0} is an l-fold zero of $f-c$. We know that z_{0} must be an $(l-k)$-fold zero of $\left[(f-c)^{l}(f-c)^{l_{2}} \ldots\left(f-c_{s}\right)^{l_{s}}\right]^{(k)}$. Note that it follows from (3.9) that g is an entire function. This is a contradiction. Hence, $f-c \neq 0$ and $g-c \neq 0$. Thus, we get $f=e^{\alpha(z)}+c$, where $\alpha(z)$ is a non constant entire function. Therefore,

$$
\begin{equation*}
\left[f^{i}\right]^{(k)}=\left[\left(e^{\alpha}+c\right)^{i}\right]^{(k)}=p_{i}\left(\alpha^{\prime}, \alpha^{\prime \prime}, \ldots, \alpha^{(k)}\right) e^{i \alpha}, \quad i=1,2, \ldots, n \tag{10}
\end{equation*}
$$

where $p_{i}, i=1,2, \ldots, n$, are differential polynomials in $\alpha^{\prime}, \alpha^{\prime \prime}, \ldots, \alpha^{(k)}$. Clearly, if $p_{i} \not \equiv 0$ and $T\left(r, p_{i}\right)=S(r, f), i=1,2, \ldots, n$, then it follows from (3.11) and (3.12) that

$$
N\left(r, \frac{1}{p_{n} e^{(n-1) \alpha}+\ldots+p_{1}}\right)=S(r, f)
$$

In view of Lemmas 2.2 and 2.3 and the fact that $f=e^{\alpha}+c$, we get

$$
\begin{aligned}
(n-1) T(r, f-c) & =T\left(r, p_{n} e^{(n-1) \alpha}+\ldots+p_{1}\right)+S(r, f) \\
& \leq \bar{N}\left(r, \frac{1}{p_{n} e^{(n-1) \alpha}+\ldots+p_{1}}\right)+\bar{N}\left(r, \frac{1}{p_{n} e^{(n-1) \alpha}+\ldots+p_{2} e^{\alpha}}\right) \\
& \leq \bar{N}\left(r, \frac{1}{p_{n} e^{(n-2) \alpha}+\ldots+p_{2}}\right)+S(r, f) \\
& \leq(n-2) T(r, f-c)+S(r, f)
\end{aligned}
$$

which is a contradiction.
1.2. If $a=b \neq-1$, then relation (3.10) can be rewritten as

$$
\begin{equation*}
L(g)^{(k)}=\frac{-1}{b} \cdot \frac{1}{L(f)^{(k)}-(1+b) / b} \tag{11}
\end{equation*}
$$

From (3.13), we get

$$
\begin{equation*}
\bar{N}\left(r, \frac{1}{L(f)^{(k)}-(1+b) / b}\right)=\bar{N}(r, g)=S(r, f) \tag{12}
\end{equation*}
$$

By relation (3.14) and Lemma 2.1, we obtain

$$
\begin{aligned}
n T(r, f) & =T(r, L(f))+O(1) \\
& \leq N_{k+1}\left(r, \frac{1}{L(f)}\right)+N\left(r, \frac{1}{L(f)^{(k)}-(1+b) / b}\right)+S(r, f) \\
& \leq N_{k+1}\left(r, \frac{1}{(f-c)^{l}}\right)+N_{k+1}\left(r, \frac{1}{\left(f-c_{2}\right)^{l_{2}} \ldots\left(f-c_{s}\right)^{l_{s}}}\right)+S(r, f) \\
& \leq(k+s) T(r, f) \leq(k+n-l+1) T(r, f)+S(r, f)
\end{aligned}
$$

which is a contradiction because $4 l>3 n+2 k+4$.
Case II. $b \neq 0$ and $a \neq b$. We discuss the following sub cases:
2.1. Suppose that $b=-1$. Then $a \neq 0$ and relation (3.9) can be rewritten as

$$
\begin{equation*}
L(f)^{(k)}=\frac{a}{a+1-L(g)^{(k)}} \tag{13}
\end{equation*}
$$

It follows from (3.15) that

$$
\begin{equation*}
\bar{N}\left(r, \frac{1}{a+1-L(g)^{(k)}}\right)=\bar{N}(r, f)=S(r, g) \tag{14}
\end{equation*}
$$

In view of (3.16) and Lemma 2.1 and 2.4, we find

$$
n T(r, g)=T(r, L(g))+O(1) \leq N_{k+1}\left(r, \frac{1}{L(g)}\right)+S(r, g)
$$

Further, by using the argument as in Case 1.2, we arrive at a contradiction.
2.2. suppose that $b \neq-1$. then relation (3.9) be rewritten as

$$
\begin{equation*}
L(f)^{(k)}-\frac{b+1}{b}=\frac{-a}{b^{2}} \cdot \frac{1}{L(g)^{(k)}+(a-b) / b} \tag{15}
\end{equation*}
$$

It follows from (3.17) that

$$
\begin{equation*}
\bar{N}\left(r, \frac{1}{L(g)^{(k)}-(b+1) / b}\right)=\bar{N}(r, g) \tag{16}
\end{equation*}
$$

By using (3.18) and Lemmas 2.1 and 2.4, we arrive at a contradiction in exactly the same way as in Case 1.2.
Case III. $b=0$ and $a \neq 0$. Then relation (3.9) can be rewritten as

$$
\begin{align*}
& L(g)^{(k)}=a L(f)^{(k)}+(1-a) \tag{17}\\
& L(g)=a L(f)+(1-a) p_{1}(z) \tag{18}
\end{align*}
$$

where p_{1} is a polynomial with $\operatorname{deg} p_{1} \leq k$. If $a \neq 1$, then $(1-a) p_{1} \not \equiv 0$. Together with (3.20) and Lemma 2.2, this yields

$$
\begin{align*}
n T(r, g) & =T(r, L(g))+O(1) \leq \bar{N}\left(r, \frac{1}{L(g)}\right)+\bar{N}\left(r, \frac{1}{L(f)}\right)+S(r, g) \\
& \leq \sum_{i=1}^{s} \bar{N}\left(r, \frac{1}{g-c_{i}}\right)+\sum_{j=1}^{s} \bar{N}\left(r, \frac{1}{f-c_{j}}\right)+S(r, g) \tag{19}\\
& \leq s[T(r, f)+T(r, g)]+S(r, g) .
\end{align*}
$$

Since $n=l+l_{2}+\ldots+l_{s}$, we get $n-l=l_{2}+\ldots+l_{s} \geq s-1$, i.e., $n-l \geq s-1, n-s \geq l-1$. In view of the inequality $4 l>3 n+2 k+4$, we conclude that

$$
l-1>3(n-l)+2 k+4>3(s-1)+2 k+3
$$

and hence,

$$
n-s \geq l-1>3(s-l)+2 k+3
$$

i.e., $n-s>3(s-1)+2 k+3$. Therefore,

$$
s<\frac{n-2 k}{4}
$$

and thus,

$$
\begin{equation*}
n T(r, g)<\frac{n-2 k}{4}[T(r, g)+T(r, f)]+S(r, g) \tag{20}
\end{equation*}
$$

On the other hand, it follows from (3.20) and Lemma 2.3 that

$$
T(r, g)=T(r, f)+S(r, g)
$$

Substituting this relation in (3.24), we conclude that

$$
\frac{3 n+4 k}{4} T(r, g)<S(r, g)
$$

which is a contradiction.
Thus $a=1$ and therefore, it follows from (3.20) that $L(f)=L(g)$.
Further, we consider the case where f and g are polynomials. Suppose that $f-c$ and $g-c$ have u and v pairwise distinct zeros, respectively. Then $f-c$ and $g-c$ admit the representations

$$
\begin{aligned}
& f-c=k_{1}\left(z-a_{1}\right)^{n_{1}}\left(z-a_{2}\right)^{n_{2}} \ldots\left(z-a_{u}\right)^{n_{u}} \\
& g-c=k_{2}\left(z-b_{1}\right)^{m_{1}}\left(z-b_{2}\right)^{m_{2}} \ldots\left(z-b_{v}\right)^{m_{v}}
\end{aligned}
$$

and hence,

$$
\begin{align*}
& {[f-c]^{l}=k_{1}^{l}\left(z-a_{1}\right)^{l_{n_{1}}}\left(z-a_{2}\right)^{l_{n_{2}}} \ldots\left(z-a_{u}\right)^{l_{n_{u}}}} \tag{21}\\
& {[g-c]^{l}=k_{2}^{l}\left(z-b_{1}\right)^{l_{m_{1}}}\left(z-b_{2}\right)^{l_{m_{2}}} \ldots\left(z-b_{v}\right)^{l_{m_{v}}}} \tag{22}
\end{align*}
$$

where k_{1} and k_{2} are nonzero constants, $n_{i} l>2 k+4, m_{j} l>2 k+4$, and $n_{i}, m_{j}, j=$ $1,2, \ldots, u, j=1,2, \ldots, v$, are positive integers. Differentiating (3.20), we get

$$
\begin{equation*}
L(g)^{(k+1)}=a L(f)^{(k+1)} \tag{23}
\end{equation*}
$$

It follows from (3.23)(3.24) and (3.25) that

$$
\begin{align*}
& \left(z-a_{1}\right)^{l_{n_{1}}-k-1}\left(z-a_{2}\right)^{l_{n_{2}}-k-1} \ldots\left(z-a_{u}\right)^{l_{n_{u}}-k-1} \xi_{1}(z) \\
& \quad=\left(z-b_{1}\right)^{l_{m_{1}}-k-1}\left(z-b_{2}\right)^{l_{m_{2}}-k-1} \ldots\left(z-b_{v}\right)^{l_{m_{v}}-k-1} \xi_{2}(z) \tag{24}
\end{align*}
$$

where ξ_{1} and ξ_{2} are polynomials, $\operatorname{deg} \xi_{1}=(n-l) \Sigma_{i=1}^{u} n_{i}+(u-1)(k+1)$, and $\operatorname{deg} \xi_{2}=(n-l) \Sigma_{j=1}^{v} m_{j}+(v-1)(k+1)$. Thus, in view of the fact that $4 l>3 n+2 k+4$, we find $3 l-2 n>(n-l)+2 k+4>2 k+4$. Then $(3 l-2 n) n_{i}>2 k+4,(3 l-2 n) m_{j}>$ $2 k+4, i=1,2, \ldots, u, j=1,2, \ldots, v$. Hence,

$$
\begin{aligned}
& \sum_{i=1}^{u}\left[n_{i} l-(k+1)\right]-\sum_{i=1}^{v} n_{i}(n-l)=\sum_{i=1}^{u}\left[n_{i}(3 l-2 n)-(k+1)\right] \\
& >u(k+3)>(u-1)(k+1)
\end{aligned}
$$

i.e.,

$$
\Sigma_{i=1}^{u}\left[n_{i} l-(k+1)\right]>(n-l) \Sigma_{i=1}^{v} n_{i}+(u-1)(k+1) .
$$

Similarly,

$$
\Sigma_{j=1}^{v}\left[m_{j} l-(k+1)\right]>(n-l) \Sigma_{j=1}^{v} m_{j}+(v-1)(k+1) .
$$

Thus, by using (3.26), we show that there exists z_{0} such that $L\left(f\left(z_{0}\right)\right)=L\left(g\left(z_{0}\right)\right)=$ 0 , where the multiplicity of z_{0} is greater than $2 k+4$. Together with (3.20), this yields $p_{1}(z)=0$, which also proves the claim.
Therefore, it follows from (3.19) and (3.20) that $a=1$ and, therefore, $L(f) \equiv L(g)$. This completes the proof of Theorem 1.1.

Proof of Theorem 1.2.

Let $f(z)$ and l be given by (1.1) and (1.2), respectively. Without loss of generality, we can assume that $a_{n}=1, l=l_{1}$ and $c=c_{1}$. This yields

$$
\begin{align*}
\Theta(0, L(f)) & =1-\limsup _{r \rightarrow \infty} \frac{\bar{N}\left(r, \frac{1}{L(f)}\right)}{T(r, L(f))} \\
& \geq 1-\limsup _{r \rightarrow \infty} \frac{\sum_{j=1}^{s} \bar{N}\left(r, \frac{1}{f-c_{j}}\right)}{n T(r, f)} \geq 1-\frac{s}{n} \geq \frac{l-1}{n} \tag{25}
\end{align*}
$$

similarly, we get

$$
\begin{equation*}
\Theta(0, L(g)) \geq \frac{l-1}{n} \tag{26}
\end{equation*}
$$

Moreover, we have

$$
\begin{align*}
& \delta_{k+1}(0, L(f)) \geq \frac{l-k-1}{n} \tag{27}\\
& \delta_{k+1}(0, L(g)) \geq \frac{l-k-1}{n} \tag{28}
\end{align*}
$$

Since $(4 k+14) l>(4 k+13) n+9 k+12$, from (3.23) to (3.36), we get

$$
\Delta=\left[\Theta(0, F)+\Theta(0, G)+\delta_{k+1}(0, F)+\delta_{k+1}(0, G)\right]>6
$$

Proceeding as in the proof of the theorem 1.1, we get Theorem 1.2.

References

[1] Harina P. Waghamore and Tanuja A. Uniqueness and value sharing of meromorphic functions, Kyungpook Math. J. 54(2014), 511-519.
[2] S.S. Bhoosnurmath and R.S. Dyavanal, Uniqueness and value-sharing of meromorphic functions, Comput. Math. Appl., 53(2007), 1191-1205.
[3] R.S. Dyavanal, Uniqueness and value-sharing of differential polynomials of meromorphic functions, J. Math. Anal. Appl. 374(2011), 335-345.
[4] G. Frank, Eine Vermutung Von Hayman uber nullstellen meromorpher funktion, Math. Z. 149, 29-36(1976).
[5] W. K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964.
[6] P. Sahoo, Uniqueness of meromorphic functions when two differential polynomials share one value IM, Mat. Bech. 62, 2(2010), 169-182.
[7] L. Yang, Value Distribution Theory, Springer Verlag, Berlin, 1993.
[8] H.X. Yi, C.C. Yang, Unicity Theory of Meromorphic Functions, Science Press, Beijing, 1995.
[9] C.C.Yang, On deficiencies of differential polynomials II, Math. Z.,149, 107-112 (1972).
(HARINA P.WAGHAMORE) Department of Mathematics, Jnanabharathi Campus, Bangalore University, Bangalore-560 001, INDIA

E-mail address: harinapw@gmail.com
(RAJESHWARI S.) Department of Mathematics, Jnanabharathi Campus, Bangalore University, Bangalore-560 001, INDIA

E-mail address: rajeshwaripreetham@gmail.com

[^0]: 2010 Mathematics Subject Classification. 34A12, 34A30, 34D20.
 Key words and phrases. Differential equations, stability, existence, uniqueness.
 Submitted April 29, 2016.

