
Electronic Journal of Mathematical Analysis and Applications

Vol. 5(1) Jan. 2017, pp. 148- 154.

ISSN: 2090-729(online)

http://fcag-egypt.com/Journals/EJMAA/

————————————————————————————————

A NEW SEQUENCE REALIZING LUCAS NUMBERS, AND THE

LUCAS BOUND

E. ÖZKAN, A. GEÇER, AND İ. ALTUN

Abstract. We define a set L(n) of vectors with positive integral entries. We
show that the cardinality of L(n) is the nth Lucas number Ln, for n ≥ 1. We

then show that the number l(n) of M -sequences of length n is bounded by the

Lucas number Ln, for n ≥ 1. This is an analogue of similar statements with
Fibonacci numbers Fn instead of Lucas numbers.

1. Introduction

First, we recall the well-known definitions of the Fibonacci and Lucas numbers.
The Fibonacci number Fn is defined by the recurrence relation

Fn = Fn−1 + Fn−2, n ≥ 2,

with seed values F0 = 0 and F1 = 1.
The Lucas number Ln is defined by the recurrence relation

Ln = Ln−1 + Ln−2, n ≥ 2,

with seed values L0 = 2 and L1 = 1.
In recent years, there has been much interest in applications of Fibonacci and

Lucas numbers. They appear in many branches of mathematics. These include
group theory, calculus, applied mathematics, linear algebra, etc. Also, these num-
bers have many important applications to diverse fields such as computer science,
physics, biology, and statistics. We can see applications of the Fibonacci sequence in
group theory in [4,6] and also see some generalized Fibonacci and Lucas sequences
in [3,5].

In this work, we give an application of Lucas numbers and M -sequences. We
recall some definitions.

A multiset is a finite sequence of elements that may contain repeated elements.
The order of the elements is irrelevant, but their multiplicities are part of the
structure. So, a multiset S with elements in N can be uniquely written in the form
S = {b1, b2, . . ., bk−1, bk}≤, where bi ∈ N, k ≥ 0, and the subscript ”≤” indicates
that we have arranged the elements in weakly increasing order: b1 ≤ b2 ≤ ...
≤ bk. The dimension of a multiset S is the number of elements in S, counting
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multiplicities. So the multiset S above has dimension |S| = k, and we call it a
k -multiset. If k = 0 then S is empty and |S| = 0.

A multicomplex is a finite collection of multisets that is closed under taking
submultisets. The dimension of a multicomplex is the greatest dimension of a
multiset it contains. The m-vector of a multicomplex is (m0,m1, m2, . . . , md),
where mi is the number of multisets of dimension i in the multicomplex. We have
m0 = 1.

Let M be a collection of monomials xi11 x
i2
2 ...x

in
n ,ij ≥ 0, such that if a is a mono-

mial in M, and b is a monomial which divides a, then b is in M. Then M is a
multicomplex where the mutisets are encoded as monomials. The dimension of the
multiset is the degree of the monomial it defines.

A sequence is called an M-sequence if it is the m-vector of the multicomplex M,
where mi is the number of monomials of degree i in M. Rather than bounding
the degree and number of variables, we fix the length λ(m) :=

∑
imi. This is the

number of the elements in the multicomplex M.
Following [2], for n ≥ 1, let l (n) denote the number of M -sequences of length

n. In fact, the authors of [2] define the set

M (n) = {m = (m0, m1, ...)|m is an M - sequence and λ(m) = n},

and set l(n) = |M (n)| for its cardinality. The sets M (1), M (2), . . . , are mutually
disjoint.

Using Macaulay’s Theorem, the authors of [1, Theorem 4.2.10] constructed all
possible M -sequences of a given length. In Table 1, we list the M -sequences of
length at most 7, from which we deduce that the first few terms of the sequence
{l (n)}n≥1 of [2] are the numbers 1, 1, 2, 3, 5, 8, 12. They are bounded by, but
not equal to, the Fibonacci numbers.

λ 1 2 3 4 5 6 7
1 11 111 1111 11111 111111 1111111

12 121 1211 12111 121111
13 122 1221 12211

131 123 1231
14 1311 1222

132 13111
141 1321
15 133

1411
142
151
16

Total 1 1 2 3 5 8 12

Table 1. The M -sequences of length at most 7 obtained by using Definition
2.1. We write t0t1t2 . . . ts for the M -sequence (t0, t1, . . . , ts). E.g., 1221 is the M -
sequence (1, 2, 2, 1). For example, when λ = 4, the m-vector of M = {x3

1, x
2
1, x1, 1}

is (1, 1, 1, 1), of M = {x2
1, x1, x2, 1} is (1, 2, 1), of M = {x1, x2, x3, 1} is (1, 3).

Let us recall the Fibonacci bound of [2] before we define the Lucas bound.
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2. Fibonacci bound

Definition 2.1. For n ≥ 1, define recursively the Fibonacci set F (n) of vectors
with entries in N as follows: F(1) ={(1)}; F(2) ={(1,1)};

For n ≥ 3 define F (n) := C(n) ∪ D(n) where (see [2])

C(n) := {(1, t1, ..., ts, 1) | (1, t1, ..., ts) ∈ F (n − 1)},

D (n) :=
{(

1, t1, ..., ts−1, ts + 1
)∣∣ (1, t1, ..., ts) ∈ F (n − 1) ,with ts−1 > 1 or s = 1}.

The sets C(n), D(n) are disjoint for each n. The sets F (1), F (2), . . . , are mutually
disjoint.

For example,

F (3) = {(1, 1, 1), (1, 2)};
F (4) = {(1, 1, 1, 1), (1, 2, 1), (1, 3)};
F (5) = {(1, 1, 1, 1, 1), (1, 2, 1, 1), (1, 3, 1), (1, 2, 2), (1, 4)};
F (6) = {(1, 1, 1, 1, 1, 1), (1, 2, 1, 1, 1), (1, 3, 1, 1), (1, 2, 2, 1)(1, 4, 1), (1, 3, 2), (1, 2, 3),

(1, 5)};
F (7) = {(1, 1, 1, 1, 1, 1, 1), (1, 2, 1, 1, 1, 1), (1, 3, 1, 1, 1), (1, 2, 2, 1, 1), (1, 4, 1, 1),

(1, 3, 2, 1), (1, 2, 3, 1), (1, 5, 1), (1, 2, 2, 2), (1, 4, 2), (1, 3, 3), (1, 2, 4), (1, 6)};
F (8) = {(1, 1, 1, 1, 1, 1, 1, 1), (1, 2, 1, 1, 1, 1, 1), (1, 3, 1, 1, 1, 1), (1, 2, 2, 1, 1, 1), (1, 4, 1, 1, 1),

(1, 3, 2, 1, 1), (1, 2, 3, 1, 1), (1, 5, 1, 1), (1, 2, 2, 2, 1), (1, 4, 2, 1), (1, 3, 3, 1), (1, 2, 4, 1),

(1, 6, 1), (1, 3, 2, 2), (1, 2, 3, 2), (1, 5, 2), (1, 2, 2, 3), (1, 4, 3), (1, 3, 4), (1, 2, 5), (1, 7)}.

Theorem 2.2. For n ≥ 1, the cardinality of F (n) is equal to the nth Fibonacci
number Fn (see [2], Lemma 2.3).
Theorem 2.3. For all n ≥ 1, M(n) ⊆ F (n). In particular, the sequence l(n)
is bounded above by the Fibonacci sequence l(n) ≤ Fn (see [2], Theorem 2.4).

3. Lucas bound

Definition 3.1. For n ≥ 1, define recursively the Lucas set L(n) of vectors with
entries in N as follows:

(1) L (1) = {(1)} ; ;L (2) = {(1, 1, 1) , (1) , (1, 2)}.
(2) For n ≥ 3 define L(n) := C(n) ∪ D(n) where

C(n) := {(1, t1, ..., ts, 1) | (1, t1, ..., ts) ∈ L(n − 1)}

D (n) :=
{(

1, t1, ... , ts−1, ts + 1
)∣∣ (1, t1, ..., ts) ∈ L (n − 1) , with ts−1 > 1 or s = 1} .

Remark 3.2. The sets C(n) and D(n) of Definition 3.1 form a disjoint set partition
of L(n). The sets L (1), L (2), . . . , are mutually disjoint.

The first few sets L(n) are
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L(1) = {(1)};
L(2) = {(1, 1, 1), (1), (1, 2)};
L(3) = {(1, 1, 1, 1), (1, 1), (1, 2, 1), (1, 3)};
L(4) = {(1, 1, 1, 1, 1), (1, 1, 1), (1, 2, 1, 1), (1, 2, 2), (1, 3, 1), (1, 2), (1, 4)};
L(5) = {(1, 1, 1, 1, 1, 1), (1, 1, 1, 1), (1, 2, 1, 1, 1), (1, 2, 2, 1), (1, 3, 1, 1), (1, 2, 1), (1, 4, 1),

(1, 2, 3), (1, 3, 2), (1, 3), (1, 5)};
L(6) = {(1, 1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1), (1, 2, 1, 1, 1, 1), (1, 2, 2, 1, 1), (1, 3, 1, 1, 1), (1, 2, 1, 1),

(1, 4, 1, 1), (1, 2, 3, 1), (1, 3, 2, 1), (1, 3, 1), (1, 5, 1), (1, 2, 2, 2), (1, 2, 2), (1, 4, 2), (1, 2, 4),

(1, 3, 3), (1, 4), (1, 6)};
L(7) = {(1, 1, 1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1), (1, 2, 1, 1, 1, 1, 1), (1, 2, 2, 1, 1, 1), (1, 3, 1, 1, 1, 1),

(1, 2, 1, 1, 1), (1, 4, 1, 1, 1), (1, 2, 3, 1, 1), (1, 3, 2, 1, 1), (1, 3, 1, 1), (1, 5, 1, 1), (1, 2, 2, 2, 1),

(1, 2, 2, 1), (1, 4, 2, 1), (1, 2, 4, 1), (1, 3, 3, 1), (1, 4, 1), (1, 6, 1), (1, 2, 3, 2), (1, 3, 2, 2),

(1, 3, 2), (1, 5, 2), (1, 2, 2, 3), (1, 2, 3), (1, 4, 3), (1, 2, 5), (1, 3, 4), (1, 5), (1, 7)}.

In Table 2, we find the M -sequences of length at most 5 and the first few terms
of the sequence.

λ 1 2 3 4 5
1 111 1111 11111 111111

1 11 111 1111
12 121 1211 12111

13 131 1221
122 1311
14 123
12 132

141
121
13
15

Total 1 3 4 7 11

Table 2. The M -sequences of length at most 5 obtained by using Definition
3.1. We write t0t1t2 . . . ts for the M -sequence (t0, t1, . . . , ts).

Theorem 3.3. The cardinality of L(n) is the n th Lucas number Ln, n ≥ 1.
Proof. We prove this by induction on n. We have Ln = Ln−1 + Ln−2, n ≥ 2,
L0 = 2 and L1 = 1. Hence

L0 = 2 , L1 = 1 , L2 = 3 , L3 = 4 , L4 = 7, · · · .

For n = 1, the claim is true, since |L(1)| = L1 = 1.
For n = 2, the claim is true, since |L(2)| = L2 = 3.
Suppose the claim is true for all r < k, that is |L(r)| = Lr for all r < k.
We have to prove that the claim is true for n = k, that is, |L(k)| = Lk.
We have |L(k − 2)| = Lk−2 and |L(k − 1)| = Lk−1.
From these equalities we have

|L(k − 2)|+ |L(k − 1)| = Lk−2 + Lk−1 = Lk.
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Hence
|L(k)| = Lk.

�
Theorem 3.4. For all n ≥ 2, M(n + 1) ⊆ L(n). In particular, the sequence
l(n+ 1) is bounded from above by the Lucas sequence.

Proof. By the construction one can check that L (n) is the set of all integer vectors
(1, t1, ..., ts) with 1 + t1 + t2 + · · ·+ ts = n+ 1 and the property that if ti = 1 then
tj = 1 for all j ≥ i.

Let m = (1, m1, ..., ms) ∈M (n+ 1) be an M - sequence of length n .
Using Macaulay’s Theorem it is not hard to see that if mi = 1 for some i ≥ 1,

then mj = 1 for all j ≥ i . We prove this by induction on n. We have

M(n+ 1) ⊆ L(n), n ≥ 2,

For n = 2 , the claim is true, since M (3) ⊆ L (2).
M (3) = {(1, 1, 1) , (1, 2)} and L (2) = {(1, 1, 1) , (1) , (1, 2)}.

For n = 3, the claim is true, since M (4) ⊆ L (3).
M (4) = {(1, 1, 1, 1) , (1, 2, 1) , (1, 3)} and L (3) = {(1, 1, 1, 1) , (1, 1) , (1, 2, 1) , (1, 3)}.

By induction we assume that M(k) ⊆ L(k − 1) and M (k + 1) ⊆ L (k).
We have to prove that the claim is true for n = k+ 1, that is, M(k+ 2) ⊆ L(k+ 1).
Let s(S ) denote the number of elements of a set S.
We have M (k) ⊆ L (k − 1) ⇒ s (M (k)) ≤ s (L (k − 1)),

M (k + 1) ⊆ L (k) ⇒ s (M (k + 1)) ≤ s (L (k)) ,

s (M (k) ∪M (k + 1)) = s (M (k)) + s (M (k + 1))− s (M (k) ∩M (k + 1)) ,

s (M (k) ∩M (k + 1)) = 0,

hence
s (M (k) ∪M (k + 1)) = s (M (k)) + s (M (k + 1)) .

From these equalities we have

M (k) ∪M (k + 1) ⊆ L (k − 1) ∪ L (k) .

In the same way, we have

s (L (k − 1) ∪ L (k)) = s (L (k − 1)) + s (L (k))− s (L (k − 1) ∩ L (k)) ,

s (L (k − 1) ∩ L (k)) = 0,

s (L (k − 1) ∪ L (k)) = s (L (k − 1)) + s (L (k))

and
s (M (k)) + s (M (k + 1)) ≤ s (L (k − 1)) + s (L (k)) .

Hence

s (M (k)) + s (M (k + 1)) = s (M (k + 2)) , s (L (k − 1)) + s (L (k)) = s (L (k + 1)) .

We know
s (M (k + 2)) ≤ s (L (k + 1)) .

Hence
M (k + 2) ⊆ L (k + 1) .

Thus M(n+ 1) ⊆ L(n). �
Theorem 3.5. For all n ≥ 2, we have the relation

L (n) \M (n+ 1) = M (n− 1) .

Proof. We prove this by induction on n.
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For n = 2 , the claim is true, since L (2) \M (3) = M (1).
For n = 3 , the claim is true, since L (3) \M (4) = M (2).
Suppose the claim is true for some n = k ≥ 3, that is L (k) \M (k + 1) =

M (k − 1).
We have to prove that the claim is true for n = k + 1, that is,

L (k + 1) \M (k + 2) = M (k) .

The identity L (k) \M (k + 1) = M (k − 1) implies L (k) = M (k − 1) ∪M (k + 1).
From these equalities, we can easily see that

L (k + 1) \M (k + 2) = M (k) .

�
Corollary 3.6. For all n ≥ 2, we have |L (n)| − |F (n+ 1)| = |F (n− 1)|.
Proof. We prove that by induction on n.

For n = 2 , the claim |L(2)|−|F (3)| = |F (1)| is true, since |L(2)| = 3, |F (3)| = 2
and |F (1)| = 1.

Suppose the claim is true for all n ≤ k for some k ≥ 2, that is

|L(n)| − |F (n+ 1)| = |F (n− 1)|.

We have to prove that the claim is true for n = k + 1, that is

|L(k + 1)| − |F (k + 2)| = |F (k)|.

Thus by induction we have

|L(k − 1)| = |F (k − 2)|+ |F (k)|

|L(k)| = |F (k − 1)|+ |F (k + 1)|
From these equalities, we have

|L(k − 1)|+ |L(k)| = |F (k − 2)|+ |F (k − 1)|+ |F (k)|+ |F (k + 1)|.

From the last equality,

|L(k + 1)| − |F (k + 2)| = |F (k)|

since |L(k − 1)|+ |L(k)| = |L(k + 1)|, |F (k − 2)|+ |F (k − 1)| = |F (k)| and

|F (k)|+ |F (k + 1)| = |F (k + 2)|.

�
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