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ON THE GROWTH PROPERTIES OF COMPOSITE FUNCTIONS

ANALYTIC IN THE UNIT DISC FROM THE VIEW POINT OF

THEIR RELATIVE L∗- TYPES AND RELATIVE L∗-WEAK

TYPES

SANJIB KUMAR DATTA,TANMAY BISWAS AND PULAK SAHOO

Abstract. In this paper we introduce the idea of relative Nevanlinna L∗ -type

and relative Nevanlinna L∗ -weak type in the Unit disc U = {z : |z| < 1} .
Hence we study some comparative growth properties of composition of two
analytic function in the unit disc U on the basis of relative Nevanlinna L∗

-type and relative Nevanlinna L∗-weak type.

1. Introduction

A function f , analytic in the unit disc U = {z : |z| < 1} , is said to be of finite
Nevanlinna order [10] if there exist a number µ such that Nevanlinna characteristic
function

T (r, f) =
1

2π

2π∫
0

log+
∣∣f (

reiθ
)∣∣ dθ

satisfies T (r, f) < (1− r)
−µ

for all r in 0 < r0 (µ) < r < 1. The greatest lower
bound of all such numbers µ is called the Nevanlinna order of f . Thus the Nevan-
linna order ρf of f is given by

ρf = lim sup
r→1

log T (r, f)

− log (1− r)
.

Similarly, the Nevanlinna lower order λf of f is given by

λf = lim inf
r→1

log T (r, f)

− log (1− r)
.

Datta et. al. [4] introduced the notion of Nevanlinna L-order for an analytic

function f in the unit disc U = {z : |z| < 1} where L = L
(

1
1−r

)
is a positive

continuous function in the unit disc U increasing slowly i.e., L
(

a
1−r

)
∼ L

(
1

1−r

)
as r → 1, for every positive constant ‘a’, in the following manner:
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Definition 1. If f be analytic in U, then the Nevanlinna L-order ρLf and the

Nevanlinna L-lower order λL
f of f are defined as

ρLf =
log T (r, f)

log

(
L( 1

1−r )
(1−r)

) and λL
f = lim inf

r→1

log T (r, f)

log

(
L( 1

1−r )
(1−r)

) .

Now we introduce the concepts of relative Nevanlinna L∗-order and relative
Nevanlinna L∗-lower order of an analytic function f with respect to another analytic
function g in the unit disc U which are as follows:

Definition 2. If f be analytic in U and g be entire, then the relative Nevanlinna
L∗-order of f with respect to g, denoted by ρL

∗

g (f) is defined by

ρL
∗

g (f) = inf

µ > 0 : Tf (r) < Tg

exp
{
L
(

1
1−r

)}
(1− r)

µ

for all 0 < r0 (µ) < r < 1

 .

Similarly, the relative Nevanlinna L∗-order of f with respect to g, denoted by λL∗

g (f)
is given by

λL∗

g (f) = lim inf
r→1

log T−1
g Tf (r)

log

(
exp{L( 1

1−r )}
(1−r)

) .

When g (z) = exp z, the definition coincides with the definition of the Nevan-
linna L∗-order and the Nevanlinna L∗-lower order.

To compare the relative growth of two analytic functions having same non
zero finite relative Nevanlinna L∗-order with respect to another entire function, one
may introduce the definitions of relative Nevanlinna L∗-type and relative Nevan-
linna L∗-lower type of analytic functions with respect to an entire function in the
following manner:

Definition 3. The relative Nevanlinna L∗-type and relative Nevanlinna L∗-lower
type denoted respectively by σL∗

g (f) and σL∗

g (f) of an analytic function f with
respect to an entire function g are respectively defined as follows:

σL∗

g (f) = lim sup
r→1

T−1
g Tf (r)[

exp{L( 1
1−r )}

(1−r)

]ρL∗
g (f)

and

σL∗

g (f) = lim inf
r→1

T−1
g Tf (r)[

exp{L( 1
1−r )}

(1−r)

]ρL∗
g (f)

, 0 < ρL
∗

g (f) < ∞ .

Analogusly to determine the relative growth of two analytic functions having
same non zero finite relative Nevanlinna L∗-lower order with respect to another
entire function one may introduce the definition of relative Nevanlinna L∗-weak
type of an analytic functions having finite positive relative Nevanlinna L∗-lower
order with respect to an entire function in the following way:
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Definition 4. The relative Nevanlinna L∗-weak type denoted by τL
∗

g (f) of an an-
alytic function f with respect to an entire function g is defined as follows:

τL
∗

g (f) = lim inf
r→1

T−1
g Tf (r)[

exp{L( 1
1−r )}

(1−r)

]λL∗
g (f)

, 0 < λL∗

g (f) < ∞ .

Also one may define the growth indicator τL
∗

g (f) of an analytic function f in
the following manner :

τL
∗

g (f) = lim sup
r→1

T−1
g Tf (r)[

exp{L( 1
1−r )}

(1−r)

]λL∗
g (f)

, 0 < λL∗

g (f) < ∞ .

For analytic functions, the notions of the growth indicators such as Nevanlinna
order and Nevanlinna type are classical in complex analysis and during the past
decades, several researchers have already been exploring their studies in the area
of comparative growth properties of analytic functions in different directions using
the classical growth indicators. But at that time, the concepts of relative Nevan-
linna order, relative Nevanlinna type and relative Nevanlinna weak type of analytic
functions are not at all known to the researchers of this area. Therefore the studies
of the growths of analytic functions in the light of their relative Nevanlinna order
(relative Nevanlinna L∗-order) relative Nevanlinna type (relative Nevanlinna L∗-
type ) and relative weak type (relative Nevanlinna L∗-weak) are the prime concern
of this paper. In fact some light has already been thrown on such type of works
in [1], [2], [5], [6], [7] , [8] and [9]. Actually in this paper we establish some new
results depending on the comparative growth properties of composite analytic func-
tion in the unit disc U = {z : |z| < 1} using relative Nevanlinna L∗-order, relative
Nevanlinna L∗- type and relative Nevanlinna L∗-weak type as compared to the
corresponding left and right factors. We do not explain the standard definitions
and notations in the theory of entire functions as those are available in [11].

2. Theorems.

In this section we present the main results of the paper.

Theorem 1. If f , g be any two analytic functions and h, k be any two entire
functions such that 0 < σL∗

h (f ◦ g) ≤ σL∗

h (f ◦ g) < ∞, 0 < σL∗

k (f) ≤ σL∗

k (f) < ∞
and ρL

∗

h (f ◦ g) = ρL
∗

k (f), then

σL∗

h (f ◦ g)
σL∗
k (f)

≤ lim inf
r→1

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤ σL∗

h (f ◦ g)
σL∗
k (f)

≤ lim sup
r→1

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤ σL∗

h (f ◦ g)
σL∗
k (f)

.

Proof. From the definition of σL∗

k (f) and σL∗

h (f ◦ g), we have for arbitrary positive

ε and for all sufficiently large values of
(

1
1−r

)
that

T−1
h Tf◦g (r) ≥

(
σL∗

h (f ◦ g)− ε
)exp

{
L
(

1
1−r

)}
(1− r)

ρL∗
h (f◦g)

, (1)
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and

T−1
k Tf (r) ≤

(
σL∗

k (f) + ε
)exp

{
L
(

1
1−r

)}
(1− r)

ρL∗
k (f)

(2)

fNow from (1), (2) and the condition ρL
∗

h (f ◦ g) = ρL
∗

k (f) , it follows for all suffi-

ciently large values of
(

1
1−r

)
that

T−1
h Tf◦g (r)

T−1
k Tf (r)

≥ σL∗

h (f ◦ g)− ε

σL∗
k (f) + ε

.

As ε (> 0) is arbitrary , we obtain from above that

lim inf
r→1

T−1
h Tf◦g (r)

T−1
k Tf (r)

≥ σL∗

h (f ◦ g)
σL∗
k (f)

. (3)

Again for a sequence of values of
(

1
1−r

)
tending to infinity,

T−1
h Tf◦g (r) ≤

(
σL∗

h (f ◦ g) + ε
)exp

{
L
(

1
1−r

)}
(1− r)

ρL∗
h (f◦g)

(4)

and for all sufficiently large values of
(

1
1−r

)
,

T−1
k Tf (r) ≥

(
σL∗

k (f)− ε
)exp

{
L
(

1
1−r

)}
(1− r)

ρL∗
k (f)

. (5)

Combining (4) and (5) and the condition ρL
∗

h (f ◦ g) = ρL
∗

k (f) , we get for a sequence

of values of
(

1
1−r

)
tending to infinity that

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤ σL∗

h (f ◦ g) + ε

σL∗
k (f)− ε

.

Since ε (> 0) is arbitrary, it follows from above that

lim inf
r→1

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤ σL∗

h (f ◦ g)
σL∗
k (f)

. (6)

Also for a sequence of values of
(

1
1−r

)
tending to infinity, it follows that

T−1
k Tf (r) ≤

(
σL∗

k (f) + ε
)exp

{
L
(

1
1−r

)}
(1− r)

ρL∗
k (f)

. (7)

Now from (1), (7) and the condition ρL
∗

h (f ◦ g) = ρL
∗

k (f) , we obtain for a sequence

of values of
(

1
1−r

)
tending to infinity that

T−1
h Tf◦g (r)

T−1
k Tf (r)

≥ σL∗

h (f ◦ g)− ε

σL∗
k (f) + ε

.
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As ε (> 0) is arbitrary, we get from above that

lim sup
r→1

T−1
h Tf◦g (r)

T−1
k Tf (r)

≥ σL∗

h (f ◦ g)
σL∗
k (f)

. (8)

Also for all sufficiently large values of
(

1
1−r

)
,

T−1
h Tf◦g (r) ≤

(
σL∗

h (f ◦ g) + ε
)exp

{
L
(

1
1−r

)}
(1− r)

ρL∗
h (f◦g)

. (9)

In view of the condition ρL
∗

h (f ◦ g) = ρL
∗

k (f) , it follows from (5) and (9) for all

sufficiently large values of
(

1
1−r

)
that

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤ σL∗

h (f ◦ g) + ε

σL∗
k (f)− ε

.

Since ε (> 0) is arbitrary, we obtain that

lim sup
r→1

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤ σL∗

h (f ◦ g)
σL∗
k (f)

. (10)

Thus the theorem follows from (3) , (6) , (8) and (10) . �

The following theorem can be proved in the line of Theorem 1 and so its
proof is omitted.

Theorem 2. If f , g be any two analytic functions and h, k be any two entire
functions with 0 < σL∗

h (f ◦ g) ≤ σL∗

h (f ◦ g) < ∞, 0 < σL∗

k (g) ≤ σL∗

k (g) < ∞ and

ρL
∗

h (f ◦ g) = ρL
∗

k (g), then

σL∗

h (f ◦ g)
σL∗
k (g)

≤ lim inf
r→1

T−1
h Tf◦g (r)

T−1
k Tg (r)

≤ σL∗

h (f ◦ g)
σL∗
k (g)

≤ lim sup
r→1

T−1
h Tf◦g (r)

T−1
k Tg (r)

≤ σL∗

h (f ◦ g)
σL∗
k (g)

.

Theorem 3. If f , g be any two analytic functions and h, k be any two entire
functions such that 0 < σL∗

h (f ◦ g) < ∞, 0 < σL∗

k (f) < ∞ and ρL
∗

h (f ◦ g) =

ρL
∗

k (f), then

lim inf
r→1

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤ σL∗

h (f ◦ g)
σL∗
k (f)

≤ lim sup
r→1

T−1
h Tf◦g (r)

T−1
k Tf (r)

.

Proof. From the definition of σL∗

k (f) s we get for a sequence of values of
(

1
1−r

)
tending to infinity that

T−1
k Tf (r) ≥

(
σL∗

k (f)− ε
)exp

{
L
(

1
1−r

)}
(1− r)

ρL∗
k (f)

(11)
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fNow from (9), (11) and the condition ρL
∗

h (f ◦ g) = ρL
∗

k (f) , it follows for a sequence

of values of
(

1
1−r

)
tending to infinity that

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤ σL∗

h (f ◦ g) + ε

σL∗
k (f)− ε

.

As ε (> 0) is arbitrary, we obtain that

lim inf
r→1

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤ σL∗

h (f ◦ g)
σL∗
k (f)

. (12)

Again for a sequence of values of
(

1
1−r

)
tending to infinity that

T−1
h Tf◦g (r) ≥

(
σL∗

h (f ◦ g)− ε
)exp

{
L
(

1
1−r

)}
(1− r)

ρL∗
h (f◦g)

. (13)

So combining (2) and (13) and in view of the condition ρL
∗

h (f ◦ g) = ρL
∗

k (f) , we

get for a sequence of values of
(

1
1−r

)
tending to infinity that

T−1
h Tf◦g (r)

T−1
k Tf (r)

≥ σL∗

h (f ◦ g)− ε

σL∗
k (f) + ε

.

Since ε (> 0) is arbitrary, it follows that

lim sup
r→1

T−1
h Tf◦g (r)

T−1
k Tf (r)

≥ σL∗

h (f ◦ g)
σL∗
k (f)

. (14)

Thus the theorem follows from (12) and (14) . �

The following theorem can be carried out in the line of Theorem 3 and
therefore we omit its proof.

Theorem 4. If f , g be any two analytic functions and h, k be any two entire
functions with 0 < σL∗

h (f ◦ g) < ∞, 0 < σL∗

k (g) < ∞ and ρL
∗

h (f ◦ g) = ρL
∗

k (g),
then

lim inf
r→1

T−1
h Tf◦g (r)

T−1
k Tg (r)

≤ σL∗

h (f ◦ g)
σL∗
k (g)

≤ lim sup
r→1

T−1
h Tf◦g (r)

T−1
k Tg (r)

.

The following theorem is a natural consequence of Theorem 1 and Theorem 3:

Theorem 5. If f , g be any two analytic functions and h, k be any two entire
functions such that 0 < σL∗

h (f ◦ g) ≤ σL∗

h (f ◦ g) < ∞, 0 < σL∗

k (f) ≤ σL∗

k (f) < ∞
and ρL

∗

h (f ◦ g) = ρL
∗

k (f), then

lim inf
r→1

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤ min

{
σL∗

h (f ◦ g)
σL∗
k (f)

,
σL∗

h (f ◦ g)
σL∗
k (f)

}

≤ max

{
σL∗

h (f ◦ g)
σL∗
k (f)

,
σL∗

h (f ◦ g)
σL∗
k (f)

}
≤ lim sup

r→1

T−1
h Tf◦g (r)

T−1
k Tf (r)

.

Analogously one may state the following theorem without its proof.



EJMAA-2017/5(1) GROWTH PROPERTIES OF COMPOSITE FUNCTIONS 161

Theorem 6. If f , g be any two analytic functions and h, k be any two entire
functions with 0 < σL∗

h (f ◦ g) ≤ σL∗

h (f ◦ g) < ∞, 0 < σL∗

k (g) ≤ σL∗

k (g) < ∞ and

ρL
∗

h (f ◦ g) = ρL
∗

k (g), then

lim inf
r→1

T−1
h Tf◦g (r)

T−1
k Tg (r)

≤ min

{
σL∗

h (f ◦ g)
σL∗
k (g)

,
σL∗

h (f ◦ g)
σL∗
k (g)

}

≤ max

{
σL∗

h (f ◦ g)
σL∗
k (g)

,
σL∗

h (f ◦ g)
σL∗
k (g)

}
≤ lim sup

r→1

T−1
h Tf◦g (r)

T−1
k Tg (r)

.

Now in the line of Theorem 1, Theorem 3, Theorem 5 and Theorem 2,
Theorem 4, Theorem 6 respectively one can easily prove the following six theorems
using the notion of relative Nevanlinna L∗-weak type of a meromorphic function
with respect to an entire function and therefore their proofs are omitted.

Theorem 7. If f , g be any two analytic functions and h, k be any two entire
functions such that 0 < τL

∗

h (f ◦ g) ≤ τL
∗

h (f ◦ g) < ∞, 0 < τL
∗

k (f) ≤ τL
∗

k (f) < ∞
and λL∗

h (f ◦ g) = λL∗

k (f), then

τL
∗

h (f ◦ g)
τL

∗
k (f)

≤ lim inf
r→1

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤ τL
∗

h (f ◦ g)
τL

∗
k (f)

≤ lim sup
r→1

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤ τL
∗

h (f ◦ g)
τL

∗
k (f)

.

Theorem 8. If f , g be any two analytic functions and h, k be any two entire
functions with 0 < τL

∗

h (f ◦ g) < ∞, 0 < τL
∗

k (f) < ∞ and λL∗

h (f ◦ g) = λL∗

k (f),
then

lim inf
r→1

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤ τL
∗

h (f ◦ g)
τL

∗
k (f)

≤ lim sup
r→1

T−1
h Tf◦g (r)

T−1
k Tf (r)

.

Theorem 9. If f , g be any two analytic functions and h, k be any two entire
functions such that 0 < τL

∗

h (f ◦ g) ≤ τL
∗

h (f ◦ g) < ∞, 0 < τL
∗

k (f) ≤ τL
∗

k (f) < ∞
and λL∗

h (f ◦ g) = λL∗

k (f), then

lim inf
r→1

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤ min

{
τL

∗

h (f ◦ g)
τL

∗
k (f)

,
τL

∗

h (f ◦ g)
τL

∗
k (f)

}

≤ max

{
τL

∗

h (f ◦ g)
τL

∗
k (f)

,
τL

∗

h (f ◦ g)
τL

∗
k (f)

}
≤ lim sup

r→1

T−1
h Tf◦g (r)

T−1
k Tf (r)

.

Theorem 10. If f , g be any two analytic functions and h, k be any two entire
functions with 0 < τL

∗

h (f ◦ g) ≤ τL
∗

h (f ◦ g) < ∞, 0 < τL
∗

k (g) ≤ τL
∗

k (g) < ∞ and

λL∗

h (f ◦ g) = λL∗

k (g), then

τL
∗

h (f ◦ g)
τL

∗
k (g)

≤ lim inf
r→1

T−1
h Tf◦g (r)

T−1
k Tg (r)

≤ τL
∗

h (f ◦ g)
τL

∗
k (g)

≤ lim sup
r→1

T−1
h Tf◦g (r)

T−1
k Tg (r)

≤ τL
∗

h (f ◦ g)
τL

∗
k (g)

.
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Theorem 11. If f , g be any two analytic functions and h, k be any two entire
functions such that 0 < τL

∗

h (f ◦ g) < ∞, 0 < τL
∗

k (g) < ∞ and λL∗

h (f ◦ g) =

λL∗

k (g), then

lim inf
r→1

T−1
h Tf◦g (r)

T−1
k Tg (r)

≤ τL
∗

h (f ◦ g)
τL

∗
k (g)

≤ lim sup
r→1

T−1
h Tf◦g (r)

T−1
k Tg (r)

.

Theorem 12. If f , g be any two analytic functions and h, k be any two entire
functions with 0 < τL

∗

h (f ◦ g) ≤ τL
∗

h (f ◦ g) < ∞, 0 < τL
∗

k (g) ≤ τL
∗

k (g) < ∞ and

λL∗

h (f ◦ g) = λL∗

k (g), then

lim inf
r→1

T−1
h Tf◦g (r)

T−1
k Tg (r)

≤ min

{
τL

∗

h (f ◦ g)
τL

∗
k (g)

,
τL

∗

h (f ◦ g)
τL

∗
k (g)

}

≤ max

{
τL

∗

h (f ◦ g)
τL

∗
k (g)

,
τL

∗

h (f ◦ g)
τL

∗
k (g)

}
≤ lim sup

r→1

T−1
h Tf◦g (r)

T−1
k Tg (r)

.

We may now state the following theorems without their proofs based on rel-
ative Nevanlinna L∗- type and relative Nevanlinna L∗-weak type of a meromorphic
fucntion with respect to an entire function:

Theorem 13. If f , g be any two analytic functions and h, k be any two entire
functions such that 0 < σL∗

h (f ◦ g) ≤ σL∗

h (f ◦ g) < ∞, 0 < τL
∗

k (f) ≤ τL
∗

k (f) < ∞
and ρL

∗

h (f ◦ g) = λL∗

k (f), then

σL∗

h (f ◦ g)
τL

∗
k (f)

≤ lim inf
r→1

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤ σL∗

h (f ◦ g)
τL

∗
k (f)

≤ lim sup
r→1

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤ σL∗

h (f ◦ g)
τL

∗
k (f)

.

Theorem 14. If f , g be any two analytic functions and h, k be any two entire
functions with 0 < σL∗

h (f ◦ g) < ∞, 0 < τL
∗

k (f) < ∞ and ρL
∗

h (f ◦ g) = λL∗

k (f),
then

lim inf
r→1

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤ σL∗

h (f ◦ g)
τL

∗
k (f)

≤ lim sup
r→1

T−1
h Tf◦g (r)

T−1
k Tf (r)

.

Theorem 15. If f , g be any two analytic functions and h, k be any two entire
functions such that 0 < σL∗

h (f ◦ g) ≤ σL∗

h (f ◦ g) < ∞, 0 < τL
∗

k (f) ≤ τL
∗

k (f) < ∞
and ρL

∗

h (f ◦ g) = λL∗

k (f), then

lim inf
r→1

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤ min

{
σL∗

h (f ◦ g)
τL

∗
k (f)

,
σL∗

h (f ◦ g)
τL

∗
k (f)

}

≤ max

{
σL∗

h (f ◦ g)
τL

∗
k (f)

,
σL∗

h (f ◦ g)
τL

∗
k (f)

}
≤ lim sup

r→1

T−1
h Tf◦g (r)

T−1
k Tf (r)

.

Theorem 16. If f , g be any two analytic functions and h, k be any two entire
functions with 0 < τL

∗

h (f ◦ g) ≤ τL
∗

h (f ◦ g) < ∞, 0 < σL∗

k (f) ≤ σL∗

k (f) < ∞ and
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λL∗

h (f ◦ g) = ρL
∗

k (f), then

τL
∗

h (f ◦ g)
σL∗
k (f)

≤ lim inf
r→1

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤ τL
∗

h (f ◦ g)
σL∗
k (f)

≤ lim sup
r→1

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤ τL
∗

h (f ◦ g)
σL∗
k (f)

.

Theorem 17. If f , g be any two analytic functions and h, k be any two entire
functions such that 0 < τL

∗

h (f ◦ g) < ∞, 0 < σL∗

k (f) < ∞ and λL∗

h (f ◦ g) =

ρL
∗

k (f), then

lim inf
r→1

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤ τL
∗

h (f ◦ g)
σL∗
k (f)

≤ lim sup
r→1

T−1
h Tf◦g (r)

T−1
k Tf (r)

.

Theorem 18. If f , g be any two analytic functions and h, k be any two entire
functions with 0 < τL

∗

h (f ◦ g) ≤ τL
∗

h (f ◦ g) < ∞, 0 < σL∗

k (f) ≤ σL∗

k (f) < ∞ and

λL∗

h (f ◦ g) = ρL
∗

k (f), then

lim inf
r→1

T−1
h Tf◦g (r)

T−1
k Tf (r)

≤ min

{
τL

∗

h (f ◦ g)
σL∗
k (f)

,
τL

∗

h (f ◦ g)
σL∗
k (f)

}

≤ max

{
τL

∗

h (f ◦ g)
σL∗
k (f)

,
τL

∗

h (f ◦ g)
σL∗
k (f)

}
≤ lim sup

r→1

T−1
h Tf◦g (r)

T−1
k Tf (r)

.

Theorem 19. If f , g be any two analytic functions and h, k be any two entire
functions such that 0 < σL∗

h (f ◦ g) ≤ σL∗

h (f ◦ g) < ∞, 0 < τL
∗

k (g) ≤ τL
∗

k (g) < ∞
and ρL

∗

h (f ◦ g) = λ (g), then

σL∗

h (f ◦ g)
τL

∗
k (g)

≤ lim inf
r→1

T−1
h Tf◦g (r)

T−1
k Tg (r)

≤ σL∗

h (f ◦ g)
τL

∗
k (g)

≤ lim sup
r→1

T−1
h Tf◦g (r)

T−1
k Tg (r)

≤ σL∗

h (f ◦ g)
τL

∗
k (g)

.

Theorem 20. If f , g be any two analytic functions and h, k be any two entire
functions with 0 < σL∗

h (f ◦ g) < ∞, 0 < τL
∗

k (g) < ∞ and ρL
∗

h (f ◦ g) = λ (g), then

lim inf
r→1

T−1
h Tf◦g (r)

T−1
k Tg (r)

≤ σL∗

h (f ◦ g)
τL

∗
k (g)

≤ lim sup
r→1

T−1
h Tf◦g (r)

T−1
k Tg (r)

.

Theorem 21. If f , g be any two analytic functions and h, k be any two entire
functions such that 0 < σL∗

h (f ◦ g) ≤ σL∗

h (f ◦ g) < ∞, 0 < τL
∗

k (g) ≤ τL
∗

k (g) < ∞
and ρL

∗

h (f ◦ g) = λ (g), then

lim inf
r→1

T−1
h Tf◦g (r)

T−1
k Tg (r)

≤ min

{
σL∗

h (f ◦ g)
τL

∗
k (g)

,
σL∗

h (f ◦ g)
τL

∗
k (g)

}

≤ max

{
σL∗

h (f ◦ g)
τL

∗
k (g)

,
σL∗

h (f ◦ g)
τL

∗
k (g)

}
≤ lim sup

r→1

T−1
h Tf◦g (r)

T−1
k Tg (r)

.
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Theorem 22. If f , g be any two analytic functions and h, k be any two entire
functions with 0 < τL

∗

h (f ◦ g) ≤ τL
∗

h (f ◦ g) < ∞, 0 < σL∗

k (g) ≤ σL∗

k (g) < ∞ and

λL∗

h (f ◦ g) = ρL
∗

k (g), then

τL
∗

h (f ◦ g)
σL∗
k (g)

≤ lim inf
r→1

T−1
h Tf◦g (r)

T−1
k Tg (r)

≤ τL
∗

h (f ◦ g)
σL∗
k (g)

≤ lim sup
r→1

T−1
h Tf◦g (r)

T−1
k Tg (r)

≤ τL
∗

h (f ◦ g)
σL∗
k (g)

.

Theorem 23. If f , g be any two analytic functions and h, k be any two entire
functions such that 0 < τL

∗

h (f ◦ g) < ∞, 0 < σL∗

k (g) < ∞ and λL∗

h (f ◦ g) =

ρL
∗

k (g), then

lim inf
r→1

T−1
h Tf◦g (r)

T−1
k Tg (r)

≤ τL
∗

h (f ◦ g)
σL∗
k (g)

≤ lim sup
r→1

T−1
h Tf◦g (r)

T−1
k Tg (r)

.

Theorem 24. If f , g be any two analytic functions and h, k be any two entire
functions with 0 < τL

∗

h (f ◦ g) ≤ τL
∗

h (f ◦ g) < ∞, 0 < σL∗

k (g) ≤ σL∗

k (g) < ∞ and

λL∗

h (f ◦ g) = ρL
∗

k (g), then

lim inf
r→1

T−1
h Tf◦g (r)

T−1
k Tg (r)

≤ min

{
τL

∗

h (f ◦ g)
σL∗
k (g)

,
τL

∗

h (f ◦ g)
σL∗
k (g)

}

≤ max

{
τL

∗

h (f ◦ g)
σL∗
k (g)

,
τL

∗

h (f ◦ g)
σL∗
k (g)

}
≤ lim sup

r→1

T−1
h Tf◦g (r)

T−1
k Tg (r)

.
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