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ON SOME SOLVABLE SYSTEMS OF DIFFERENCE EQUATIONS

WITH SOLUTIONS ASSOCIATED TO FIBONACCI NUMBERS

YACINE HALIM AND JULIUS FERGY T. RABAGO

Abstract. This paper deal with form, the periodicity and the stability of the

solutions of the systems of difference equations

xn+1 =
1

±1± yn−k
, yn+1 =

1

±1± xn−k
, n, k ∈ N0,

where N0 = N ∪ {0} and the initial conditions x−k, x−k+1, . . ., x0, y−k,

y−k+1, . . ., y0 are non zero real numbers.

1. Introduction

Real phenomena in Biology, Economics, Physics, and so forth are usually mod-
eled by differential and difference equations (where the former is use for continuous
case and the latter is use for discrete case).

Recently, there have been a growing interest in the study of solving differ-
ence equations, see for example, [2]-[8], [13]-[16], and the references cited therein.
In these researches, authors are interested in investigating the form, periodicity,
boundedness, (local and global) stability, and asymptotic behavior of solutions of
various difference equations of nonlinear types.

In [17], D. T. Tollu, Y. Yazlik, and N. Taskara investigated the dynamics of the
solutions of the two difference equations

xn+1 =
1

±1 + xn
, n ∈ N0,

which were then extended by J. B. Bacani and J. F. T. Rabago to the two difference
equations

xn+1 =
q

±p+ xν
n

, n ∈ N0,

with p, q ∈ R+ and ν ∈ N in [1]. Following the results found in the latter paper,
Y. Halim and M. Bayram studied in [11] the solutions, stability character, and
asymptotic behavior of the difference equation

xn+1 =
α

±β + γxn−k
, n ∈ N0.
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The results found in [1], [11], and [17] are intriguing mainly because the form of
solutions obtained for these difference equations contained expressions for Fibonacci
and Horadam numbers.

Motivated by these fascinating results, we shall determine the form and investi-
gate the periodicity and global character of the solutions of the systems

xn+1 =
1

±1± yn−k
, yn+1 =

1

±1± xn−k
, n ∈ N0. (1.1)

where k ∈ N0 and the initial conditions are nonzero real numbers.
Now, we turn on the organization of the rest of the paper. In the succeeding

section (Section 2) we shall give a brief introduction of Fibonacci numbers and
discuss an overview of some basic tools in the analysis of difference equations. In
Section 3, we shall study the dynamics of the system

xn+1 =
1

1 + yn−k
, yn+1 =

1

1 + xn−k
, n ∈ N0. (1.2)

More precisely, we shall give the form of its solutions and investigate the asymp-
totic stability of its positive solutions. For the other systems which are in the
form as in (1.1), the form of their respective solutions are obtained through simple
substitutions in (1.2) (see Section 4).

2. Preliminaries

A well-known recurrence sequence of order two is the widely studied Fibonacci
sequence {Fn}∞n=1 recursively defined by the recurrence relation

F1 = F2 = 1, Fn+1 = Fn + Fn−1 (n ≥ 1). (2.1)

As a result of the definition (2.1), it is conventional to define F0 = 0. Various
problems involving Fibonacci numbers have been formulated and extensively stud-
ied by many authors. Different generalizations and extensions of Fibonacci se-
quence have also been introduced and thoroughly investigated (see for example
[12]). An interesting property of this integer sequence is that the ratio of its
successive terms converges to the well-known golden mean (or the golden ratio)

ϕ = 1+
√
5

2 = 1.6180339887 . . .. For more fascinating properties of Fibonacci num-
bers we refer the readers to [15].

Now, in the rest of this section we shall present some basic notations and results
on the study of nonlinear difference equation which will be useful in our investiga-
tion, for more details, see for example [9].

Let f and g be two continuously differentiable functions:

f : Ik+1 × Jk+1 −→ I, g : Ik+1 × Jk+1 −→ J, I, J ⊆ R

and for n, k ∈ N0, consider the system of difference equations{
xn+1 = f (xn, xn−1, . . . , xn−k, yn, yn−1, . . . , yn−k)
yn+1 = g (xn, xn−1, . . . , xn−k, yn, yn−1, . . . , yn−k)

(2.2)

where (x−k, x−k+1, . . . , x0) ∈ Ik+1 and (y−k, y−k+1, . . . , y0) ∈ Jk+1.
Define the map

H : Ik+1 × Jk+1 −→ Ik+1 × Jk+1

by

H(W ) = (f0(W ), f1(W ), . . . , fk(W ), g0(W ), g1(W ), . . . , gk(W ))
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where

W = (u0, u1, . . . , uk, v0, v1, . . . , vk)
T ,

f0(W ) = f(W ), f1(W ) = u0, . . . , fk(W ) = uk−1,

g0(W ) = g(W ), g1(W ) = v0, . . . , gk(W ) = vk−1.

Let

Wn = [xn, xn−1, . . . , xn−k, yn, yn−1, . . . , yn−k]
T
,

then, we can easily see that system (2.2) is equivalent to the following system
written in vector form

Wn+1 = H(Wn), n = 0, 1, . . . , (2.3)

that is 

xn+1 = f (xn, xn−1, . . . , xn−k, yn, yn−1, . . . , yn−k)
xn = xn

...
xn−k+1 = xn−k+1

yn+1 = g (xn, xn−1, . . . , xn−k, yn, yn−1 . . . , , yn−k)
yn = yn

...
yn−k+1 = yn−k+1

.

Definition 1 (Equilibrium point). An equilibrium point (x, y) ∈ I × J of system
(2.2) is a solution of the system{

x = f (x, x, . . . , x, y, y, . . . , y) ,
y = g (x, x, . . . , x, y, y, . . . , y) .

Furthermore, an equilibrium point W ∈ Ik+1 × Jk+1 of system (2.3) is a solution
of the system

W = H(W ).

Definition 2 (Stability). Let W be an equilibrium point of system (2.3) and ∥ . ∥
be any norm (e.g. the Euclidean norm).

(1) The equilibrium point W is called stable (or locally stable) if for every ϵ > 0
exist δ such that ∥W0 −W∥ < δ implies ∥Wn −W∥ < ϵ for n ≥ 0.

(2) The equilibrium point W is called asymptotically stable (or locally asymp-
totically stable) if it is stable and there exist γ > 0 such that ∥W0−W∥ < γ
implies

∥Wn −W∥ → 0, n → +∞.

(3) The equilibrium point W is said to be global attractor (respectively global
attractor with basin of attraction a set G ⊆ Ik+1 × Jk+1, if for every W0

(respectively for every W0 ∈ G)

∥Wn −W∥ → 0, n → +∞.

(4) The equilibrium point W is called globally asymptotically stable (respectively
globally asymptotically stable relative to G) if it is asymptotically stable, and
if for every W0 (respectively for every W0 ∈ G),

∥Wn −W∥ → 0, n → +∞.
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(5) The equilibrium point W is called unstable if it is not stable.

Remark 1. Clearly, (x, y) ∈ I × J is an equilibrium point for system (2.2) if and
only if W = (x, x, . . . , x, y, y, . . . , y) ∈ Ik+1×Jk+1 is an equilibrium point of system
(2.3).

From here on, by the stability of the equilibrium points of system (2.2), we mean
the stability of the corresponding equilibrium points of the equivalent system (2.3).

The linearized system, associated to system (2.3), about the equilibrium point

W = (x, x, · · · , x, y, y, · · · , y)

is given by

Wn+1 = AWn, n = 0, 1, . . .

where A is the Jacobian matrix of the map H at the equilibrium point W given by

A =



∂f0
∂u0

(W ) ∂f0
∂u1

(W ) . . . ∂f0
∂uk

(W ) ∂f0
∂v0

(W ) ∂f0
∂v1

(W ) . . . ∂f0
∂vk

(W )
∂f1
∂u0

(W ) ∂f1
∂u1

(W ) . . . ∂f1
∂uk

(W ) ∂f1
∂v0

(W ) ∂f1
∂v1

(W ) . . . ∂f1
∂vk

(W )
...

...
...

...
...

...
...

...
∂fk
∂u0

(W ) ∂fk
∂u1

(W ) . . . ∂fk
∂uk

(W ) ∂fk
∂v0

(W ) ∂fk
∂v1

(W ) . . . ∂fk
∂vk

(W )
∂g0
∂u0

(W ) ∂g0
∂u1

(W ) . . . ∂g0
∂uk

(W ) ∂g0
∂v0

(W ) ∂g0
∂v1

(W ) . . . ∂g0
∂vk

(W )
∂g1
∂u0

(W ) ∂g1
∂u1

(W ) . . . ∂g1
∂uk

(W ) ∂g1
∂v0

(W ) ∂g1
∂v1

(W ) . . . ∂g1
∂vk

(W )
...

...
...

...
...

...
...

...
∂gk
∂u0

(W ) ∂gk
∂u1

(W ) . . . ∂gk
∂uk

(W ) ∂gk
∂v0

(W ) ∂gk
∂v1

(W ) . . . ∂gk
∂vk

(W )


Theorem 1 (Linearized stability). If all the eigenvalues of the Jacobian matrix A
lie in the open unit disk |λ| < 1, then the equilibrium point W of system (2.3) is
asymptotically stable. On the other hand, if at least one eigenvalue of the Jacobian
matrix A have absolute value greater than one, then the equilibrium point W of
system (2.3) is unstable.

Now, we are in the position to investigate the form and behavior of solutions of
the system (1.2) and this is the content of the next section.

3. The system xn+1 = 1
1+yn−k

, yn+1 = 1
1+xn−k

In this section, we give the explicit form of solutions of the system of difference
equations

xn+1 =
1

1 + yn−k
, yn+1 =

1

1 + xn−k
(3.1)

where the initial values are arbitrary nonzero real numbers with the restriction that

x−k, y−k, . . . , x0, y0 /∈
{
− F2n

F2n−1

}∞
n=0

∪{
− F2n+1

F2n

}∞
n=0

.

3.1. Form of the solutions. The following theorem describes the form of the
solutions of system (3.1).

Theorem 2. Let {xn, yn}n≥−k be a solution of (3.1). Then, for n = 0, 1, . . . ,
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x2(k+1)n+i =
F2n+1 + F2nyi−(k+1)

F2n+2 + F2n+1yi−(k+1)
, i = 1, 2, ..., k + 1,

y2(k+1)n+i =
F2n+1 + F2nxi−(k+1)

F2n+2 + F2n+1xi−(k+1)
, i = 1, 2, ..., k + 1,

x2(k+1)n+i =
F2n+2 + F2n+1xi−(2k+2)

F2n+3 + F2n+2xi−(2k+2)
, i = k + 2, ..., 2k + 2,

y2(k+1)n+i =
F2n+2 + F2n+1yi−(2k+2)

F2n+3 + F2n+2yi−(2k+2)
, i = k + 2, ..., 2k + 2.

Proof. From (3.1) we have

x1 =
1

1 + y−k
, x2 =

1

1 + y−k+1
, . . . , xk+1 =

1

1 + y0
,

y1 =
1

1 + x−k
, y2 =

1

1 + x−k+1
, . . . , yk+1 =

1

1 + x0
,

and

xk+2 =
1 + x−k

2 + x−k
, xk+3 =

1 + x−k+1

2 + x−k+1
, . . . , x2k+2 =

1 + x0

2 + x0
,

yk+2 =
1 + y−k

2 + y−k
, yk+3 =

1 + y−k+1

2 + y−k+1
, . . . , y2k+2 =

1 + y0
2 + y0

.

So, the result hold for n = 0. Suppose now that n ≥ 1 and that our assumption
holds for n− 1. That is,

x2(k+1)(n−1)+i =
F2n−1 + F2n−2yi−(k+1)

F2n + F2n−1yi−(k+1)
, i = 1, 2, . . . , k + 1, (3.2)

y2(k+1)(n−1)+i =
F2n−1 + F2n−2xi−(k+1)

F2n + F2n−1xi−(k+1)
, i = 1, 2, . . . , k + 1, (3.3)

x2(k+1)(n−1)+i =
F2n + F2n−1xi−(2k+2)

F2n+1 + F2nxi−(2k+2)
, i = k + 2, k + 3, . . . , 2k + 2, (3.4)

y2(k+1)(n−1)+i =
F2n + F2n−1yi−(2k+2)

F2n+1 + F2nyi−(2k+2)
, i = k + 2, k + 3, . . . , 2k + 2. (3.5)

For i = 1, . . . , k + 1, it follows from (3.1), (3.2), and (3.3) that

x2(k+1)n+i =
1

1 + y2(k+1)n−(1+k)+i

=
1

1 + 1
1+x2(k+1)(n−1)+i

=

(F2n+F2n−1)+(F2n−1+F2n−2)yi−(k+1)

F2n+F2n−1yi−(k+1)

2F2n+F2n−1+2F2n−1yi−(k+1)+F2n−2yi−(k+1)

F2n+F2n−1yi−(k+1)

=
F2n+1 + F2nyi−(k+1)

F2n+1 + F2n + (F2n−1 + F2n)yi−(k+1)

=
F2n+1 + F2nyi−(k+1)

F2n+2 + F2n+1yi−(k+1)
,
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and

y2(k+1)n+i =
1

1 + x2(k+1)n−(1+k)+i

=
1

1 + 1
1+y2(k+1)(n−1)+i

=

(F2n+F2n−1)+(F2n−1+F2n−2)xi−(k+1)

F2n+F2n−1xi−(k+1)

2F2n+F2n−1+2F2n−1xi−(k+1)+F2n−2xi−(k+1)

F2n+F2n−1xi−(k+1)

=
F2n+1 + F2nxi−(k+1)

F2n+1 + F2n + (F2n−1 + F2n)xi−(k+1)

=
F2n+1 + F2nxi−(k+1)

F2n+2 + F2n+1xi−(k+1)
.

Similarly, for i = k + 2, k + 3, . . . , 2k + 2, from(3.1), (3.4), and (3.5), we get

x2(k+1)n+i =
1

1 + y2(k+1)n−(1+k)+i

=
1

1 + 1
1+x2(k+1)(n−1)+i

=

F2n+1+F2n+F2nxi−(2k+2)+F2n−1xi−(2k+2)

F2n+1+F2nxi−(2k+2)

2F2n+1+F2n+2F2nxi−(2k+2)+F2n−1xi−(2k+2)

F2n+1+F2nxi−(2k+2)

=
F2n+2 + F2n+1xi−(2k+2)

F2n+1 + F2n+2 + F2nxi−(2k+2) + F2n+1xi−(2k+2)

=
F2n+2 + F2n+1xi−(2k+2)

F2n+3 + F2n+2xi−2(k+2)
,

and

y2(k+1)n+i =
1

1 + x2(k+1)n−(1+k)+i

=
1

1 + 1
1+y2(k+1)(n−1)+i

=

F2n+1+F2n+F2nyi−(2k+2)+F2n−1yi−(2k+2)

F2n+1+F2nyi−(2k+2)

2F2n+1+F2n+2F2nyi−(2k+2)+F2n−1yi−(2k+2)

F2n+1+F2nyi−(2k+2)

=
F2n+2 + F2n+1yi−(2k+2)

F2n+1 + F2n+2 + F2nyi−(2k+2) + F2n+1yi−(2k+2)

=
F2n+2 + F2n+1yi−(2k+2)

F2n+3 + F2n+2yi−2(k+2)
.

�

3.2. Global stability of positive solutions. In this section we study the asymp-
totic behavior of positive solutions of the system (3.1).
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Let I = J = (0,+∞) and consider the functions

f : Ik+1 × Jk+1 −→ I, g : Ik+1 × Jk+1 −→ J

defined by

f(u0, u1, . . . , uk, v0, v1, . . . , vk) =
1

1 + vk
,

g(u0, u1, . . . , uk, v0, v1, . . . , vk) =
1

1 + uk
.

Corollary 1. System (3.1) has a unique equilibrium point in I × J , namely

E :=

(
−1 +

√
5

2
,
−1 +

√
5

2

)
.

Proof. Clearly the system

x =
1

1 + y
, y =

1

1 + x
,

has a unique solution in I × J which is

(x, y) =

(
−1 +

√
5

2
,
−1 +

√
5

2

)
.

�

Theorem 3. The equilibrium point E is locally asymptotically stable.

Proof. The the linearized system about the equilibrium point

W =

(
−1 +

√
5

2
, . . . ,

−1 +
√
5

2
,
−1 +

√
5

2
, . . . ,

−1 +
√
5

2

)
∈ Ik+1 × Jk+1

is given by

Xn+1 = AXn, Xn = (xn, xn−1, . . . , xn−k, yn, yn−1, . . . , yn−k)
T

(3.6)

and

A =

[
B C
C B

]
where B,C are (k + 1)× (k + 1) matrix and given by

B =



0 · · · · · · · · · · · · 0

1
. . .

. . .
. . .

. . .
...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

0 · · · · · · 0 1 0
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and

C =



0 . . . . . . . . . 0 −3+
√
5

2
...

. . .
. . . · · ·

... 0
...

. . .
. . .

. . .
...

...
...

. . .
. . .

. . .
...

...
0 . . . . . . . . . 0 0
0 . . . . . . . . . 0 0


.

Let

P (λ) = det(A− λI2k+2) = det

[
B − λIk+1 C
C B − λIk+1

]
.

So, after some elementary calculations, we get

P (λ) = λ2k+2 −

(
−3 +

√
5

2

)2

.

Now, consider the two functions defined by

a(λ) = λ2k+2, b(λ) =

(
−3 +

√
5

2

)2

.

We have

|b(λ)| < |a(λ)| , ∀λ : |λ| = 1

Thus, by Rouche’s theorem, all zeros of P (λ) = a(λ)− b(λ) = 0 lie in |λ| < 1. So,
by theorem (1), we get that E is locally asymptotically stable. �

Theorem 4. The equilibrium point E is globally asymptotically stable.

Proof. Let {xn, yn}n≥−k be a solution of (3.1). By theorem (3) we need only to
prove that E is global attractor, that is

lim
n→∞

(xn, xn−1, . . . , xn−k, yn, yn−1, . . . , yn−k) = E,

or equivalently

lim
n→∞

(xn, yn) = E.

To do this, we prove that for i = 1, . . . , 2k + 1 we have

lim
n→+∞

x2(k+1)n+i = lim
n→+∞

y2(k+1)n+i =
−1 +

√
5

2
.

For i = 1, . . . , k + 1, it follows from theorem (2) that

lim
n→+∞

x2(k+1)n+i = lim
n→+∞

F2n+1 + F2nyi−(k+1)

F2n+2 + F2n+1yi−(k+1)

= lim
n→+∞

1 + F2n

F2n+1
yi−(k+1)

F2n+2

F2n+1
+ yi−(k+1)

. (3.7)
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and

lim
n→+∞

y2(k+1)n+i = lim
n→+∞

F2n+1 + F2nxi−(k+1)

F2n+2 + F2n+1xi−(k+1)

= lim
n→+∞

1 + F2n

F2n+1
xi−(k+1)

F2n+2

F2n+1
+ xi−(k+1)

. (3.8)

Using Binet’s formula

Fn =
αn − βn

α− β
, n ∈ N0 (3.9)

where α = 1+
√
5

2 , β = 1−
√
5

2 , we get

lim
n→+∞

F2n

F2n+1
= lim

n→+∞

α2n × 1−( β
α )

2n

α−β

α2n+1 × 1−( β
α )

2n+1

α−β

=
1

α
, (3.10)

similarly we get

lim
n→+∞

F2n+2

F2n+1
= α. (3.11)

Thus, from (3.7)-(3.11), we get

lim
n→+∞

x2(k+1)n+i =
1 + 1

αyi−(k+1)

α+ yi−(k+1)
=

1

α
=

−1 +
√
5

2
,

lim
n→+∞

y2(k+1)n+i =
1 + 1

αxi−(k+1)

α+ xi−(k+1)
=

1

α
=

−1 +
√
5

2
.

By the same arguments, we get, for i = k + 2, k + 2, . . . , 2k + 1:

lim
n→+∞

x2(k+1)n+i = lim
n→+∞

y2(k+1)n+i =
−1 +

√
5

2
.

�

Remark 2. If xi0−(k+1) = x = −1+
√
5

2 (respectively yi0−(k+1) = y = −1+
√
5

2 ) for
some 1 ≤ i0 ≤ k + 1, then for n = 0, 1, . . .,

y(k+1)n+i0 =
−1 +

√
5

2
(respectively x(k+1)n+i0 =

−1 +
√
5

2
).

Using the fact that

x = y =
1

1 + x
=

1

1 + y

and theorem (2), we get

y(k+1)n+i0 =
F2n+1 + F2nx

F2n+2 + F2n+1x
=

F2n+1 +
F2n

1+x

F2n+2 + F2n+1x
=

F2n+1+F2n+xF2n+1

1+x

F2n+2 + F2n+1x

=

F2n+2+xF2n+1

1+x

F2n+2 + F2n+1x
=

1

1 + x
= x,
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and

x(k+1)n+i0 =
F2n+1 + F2ny

F2n+2 + F2n+1y
=

F2n+1 +
F2n

1+y

F2n+2 + F2n+1y
=

F2n+1+F2n+yF2n+1

1+y

F2n+2 + F2n+1y

=

F2n+2+yF2n+1

1+y

F2n+2 + F2n+1y
=

1

1 + y
= y.

Similarly, if xi0−(2k+2) = x = −1+
√
5

2 (respectively yi0−(2k+2) = y = −1+
√
5

2 ) for
some k + 2 ≤ i0 ≤ 2k + 2, then for n = 0, 1, . . .,

y(k+1)n+i0 =
−1 +

√
5

2
(respectively x(k+1)n+i0 =

−1 +
√
5

2
).

Example 1. For confirming results of this section, we consider the following nu-
merical example.

Let k = 5 in Eq.(3.1), then we obtain the system

xn+1 =
1

1 + yn−5
, yn+1 =

1

1 + xn−5
. (3.12)

Assume x−5 = 1, x−4 = 1.6, x−3 = 3.4, x−2 = 6.1, x−1 = 2, x0 = 1.3, y−5 = 0.7,
y−4 = 4.2, y−3 = 0.3, y−2 = 2.4, y−1 = 0.2 and y0 = 5 (see Fig. (1)).

0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n

X
(n

),
Y

(n
)

 

 
X(n)
Y(n)

Figure 1. This figure shows that the solution of the Eq.(3.12) is
global attractor, that is lim

n→∞
(xn, yn) = E.

3.3. Other systems. The other systems which are of the form as in (1.1) can
recovered from (3.1) by appropriate substitution and this is seen in the proof of the
following corollaries:
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Corollary 2. Let {xn, yn}n≥−k be a solution of

xn+1 =
1

−1 + yn−k
, yn+1 =

1

−1 + xn−k
. (3.13)

where the initial values are arbitrary real numbers with x−k, y−k, . . . , x0, y0 /∈
{

F2n

F2n−1

}∞
n=0

∪{F2n+1

F2n

}∞
n=0

.

Then, for n = 1, 2, . . . , we have

x2(k+1)n+i =
F2n+1−F2nyi−(k+1)

F2n+2−F2n+1yi−(k+1)
, i = 1, 2, . . . , k + 1,

x2(k+1)n+i =
F2n+2−F2n+1xi−(2k+2)

F2n+3−F2n+2xi−(2k+2)
, i = k + 2, k + 3, . . . , 2k + 2,

y2(k+1)n+i =
F2n+1−F2nxi−(k+1)

F2n+2−F2n+1xi−(k+1)
, i = 1, 2, . . . , k + 1,

y2(k+1)n+i =
F2n+2−F2n+1yi−(2k+2)

F2n+3−F2n+2yi−(2k+2)
, i = k + 2, k + 3, . . . , 2k + 2.

Proof. It follows from theorem (2) by replacing (xn, yn) by (−xn,−yn). �

Corollary 3. Let {xn, yn}n≥−k be a solution of

xn+1 =
1

1− yn−k
, yn+1 =

1

−1− xn−k
. (3.14)

where the initial values are arbitrary real numbers such that y−k, . . . , y0 /∈
{

F2n

F2n−1

}∞
n=0

∪{F2n+1

F2n

}∞
n=0

,

and x−k, . . . , , x0 /∈
{
− F2n

F2n−1

}∞
n=0

∪{
− F2n+1

F2n

}∞
n=0

. Then, for n = 0, 1, . . . , we have

x2(k+1)n+i =
F2n+1−F2nyi−(k+1)

F2n+2−F2n+1yi−(k+1)
, i = 1, 2, . . . , k + 1,

x2(k+1)n+i =
F2n+2+F2n+1xi−(2k+2)

F2n+3+F2n+2xi−(2k+2)
, i = k + 2, k + 3, . . . , 2k + 2,

y2(k+1)n+i =
F2n+1+F2nxi−(k+1)

F2n+2+F2n+1xi−(k+1)
, i = 1, 2, . . . , k + 1,

y2(k+1)n+i =
F2n+2−F2n+1yi−(2k+2)

F2n+3−F2n+2yi−(2k+2)
, i = k + 2, k + 3, . . . , 2k + 2,

Proof. It follows from theorem (2) by replacing yn by −yn. �

Corollary 4. Let {xn, yn}n≥−k be a solution of

xn+1 =
1

−1− yn−k
, yn+1 =

1

1− xn−k
. (3.15)

where the initial values are arbitrary real numbers such that x−k, . . . , x0 /∈
{

F2n

F2n−1
. . .
}∞
n=0

∪{F2n+1

F2n

}∞
n=0

and y−k, . . . , y0 /∈
{
− F2n

F2n−1

}∞
n=0

∪{
− F2n+1

F2n

}∞
n=0

. Then, for n = 0, 1, . . . , we have

x2(k+1)n+i =
F2n+1+F2nyi−(k+1)

F2n+2+F2n+1yi−(k+1)
, i = 1, 2, . . . , k + 1,

x2(k+1)n+i =
F2n+2−F2n+1xi−(2k+2)

F2n+3−F2n+2xi−(2k+2)
, i = k + 2, k + 3, . . . , 2k + 2,

y2(k+1)n+i =
F2n+1−F2nxi−(k+1)

F2n+2−F2n+1xi−(k+1)
, i = 1, 2, . . . , k + 1,

y2(k+1)n+i =
F2n+2+F2n+1yi−(2k+2)

F2n+3+F2n+2yi−(2k+2)
, i = k + 2, k + 3, . . . , 2k + 2,

Proof. It follows from theorem (2) by replacing xn by −xn. �

4. Conclusion

We have studied in this work the system of difference equations (3.1) and gave
the explicit form of its solutions in terms of Fibonacci numbers. We have also
investigated the asymptotic behavior of positive solutions of the system (3.1) and
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showed that the solutions of equations in (3.1) actually converge to E. We expect
that more fascinating results shall be obtained by many researchers in relation to
Fibonacci numbers and related sequences in future papers.
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