PERIODIC AND SUBHARMONIC SOLUTIONS FOR SECOND-ORDER p-LAPLACIAN DIFFERENCE EQUATIONS CONTAINING BOTH ADVANCE AND RETARDATION

LIANG DING, JINLONG WEI

Abstract

We obtain some new existence results on nontrivial periodic and subharmonic solutions for second-order p-Laplacian difference equations containing both advance and retardation. Without the nonnegativity restriction on vector field F, we greatly improve the existing results (e.g. see [4-6]).

1. Introduction

Let $\mathbb{R}, \mathbb{N}, \mathbb{Z}$, stand the set of all real numbers, natural numbers, and integers, respectively. For $a \leq b \in \mathbb{Z}$, we define $\mathbb{Z}[a]=\{a, a+1, \ldots\}, \mathbb{Z}[a, b]=\{a, a+1, \ldots, b\}$.

Consider the following nonlinear discrete system

$$
\begin{equation*}
\Delta\left(\varphi_{p}\left(\Delta x_{n-1}\right)\right)+f\left(n, x_{n+1}, x_{n}, x_{n-1}\right)=0, \quad \forall n \in \mathbb{Z} \tag{1.1}
\end{equation*}
$$

where $\Delta x_{n}=x_{n+1}-x_{n}, \Delta^{2} x_{n}=\Delta\left(\Delta x_{n}\right), \varphi_{p}(s)=|s|^{p-2} s(2 \leq p<\infty), f:$ $\mathbb{Z} \times \mathbb{R}^{3} \rightarrow \mathbb{R}, f(t, \cdot, \cdot, \cdot) \in C\left(\mathbb{R}^{3}\right)$. More precisely, f is given by

$$
\left\{\begin{array}{l}
f(t, u, v, w)=F_{2}^{\prime}(t-1, v, w)+F_{3}^{\prime}(t, u, v) \\
F_{2}^{\prime}(t-1, v, w)=\frac{\partial F(t-1, v, w)}{\partial v}, \quad F_{3}^{\prime}(t, u, v)=\frac{\partial F(t, u, v)}{\partial v}
\end{array}\right.
$$

for some function $F \in C^{1}\left(\mathbb{R}^{3}\right)$.
Clearly, system (1.1) may be thinking as a discrete analogue of the functional differential equation below

$$
\left[\varphi_{p}\left(x^{\prime}\right)\right]^{\prime}+f(t, x(t+1), x(t), x(t-1))=0, \quad t \in \mathbb{R}
$$

which is arising in the study of the existence of solitary waves of lattice differential equations, see [1-3].

When dealing with (1.1), there are many excellent works (e.g. see [4-6]). [4] is the first paper to deal with the existence of periodic and subharmonic solutions of discrete system (1.1), and the results of [5-6] are based on [4].

In [4], by using the critical point theory, Chen and Fang consider the existence of periodic and subharmonic solutions of discrete system (1.1) for the case of $F \geq 0$.

[^0]Employing the critical point theory, in [5], Yu, Shi, and Guo study a special case of (1.1). Without any periodic assumptions, they gain some different existence results on nontrivial homoclinic orbit for nonlinear advance and retardation difference equations.

In [6], Lin and Zhou argue some extensions of system (1.1). Then the critical theory uses, they derive some sufficient conditions on the existence and multiplicity of periodic and subharmonic solutions to a 2 nth-order nonlinear advance and retardation ϕ-Laplacian difference equation. Besides, if one fetches $\phi(x)=|x|^{p-2}(1<$ $p<\infty), r_{k}=1$ and $n=1$, Theorem 3.1 in [6] reduces to Theorem 3.1 in [4]. So the existence results in [6] are extensions in [4].

For other related works on the existence of periodic solutions, for nonlinear difference equations, we refer the authors to see [7-8], for second-order (or higherorder) discrete Hamiltonian system, one can consult to [9-11], and for the boundary value problems, to read [12] and the references cited up there.

It is remarked that, in (1.1), f depends on x_{n+1} and x_{n-1}, the traditional ways of establishing the functional in $[3-5,7-8,10-12]$ are inapplicable. Besides, one discovers that $F(t, u, v) \in \mathbb{R}$. However, as far as we know, there are very few research works on (1.1) without the nonnegativity restriction on vector field F. For example, in [4-6], all the authors make the same assumption on F, i.e., $F \geq 0$.

The main purpose of this paper is to consider the existence of nontrivial periodic and subharmonic solutions of discrete system (1.1) for the case of $F \leq 0$. In (1.1), since $F \leq 0$, the methods used in [4-6] are not available. More precisely, let $p \geq 2$ and $q m \geq 5$, with the help of the constructing triple $(J(x), Y \oplus Z, \mathrm{P})$ (given in Section 2), we obtain the existence of nontrivial periodic and subharmonic solutions of (1.1) for nonpositivity vector field F.

We assume that
$\left(A_{1}\right) 0<q, m \in \mathbb{N}, q m \geq 5$ and for every $(t, x, y, z) \in \mathbb{Z} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}, f(t+$ $m, x, y, z)=f(t, x, y, z)$;
$\left(A_{2}\right) \quad F(t, u, v) \leq 0$ and satisfies

$$
\lim _{\rho \rightarrow 0} \frac{F(t, u, v)}{\rho^{p}}=0 \text { where } \rho=\sqrt{u^{2}+v^{2}}
$$

$\left(A_{3}\right)$ there exist constants $a_{1}>0, a_{2}>0$ and $\beta \geq p+1$, such that

$$
F(t, u, v) \leq-a_{1}\left(\sqrt{u^{2}+v^{2}}\right)^{\beta}+a_{2} \quad \text { for } \forall(t, u, v) \in \mathbb{R}^{3}
$$

Our main result is given by
Theorem 1.1. For any given positive integers q and m, let $q m \geq 5$ and $p \in[2, \infty)$, suppose conditions $\left(A_{1}\right)-\left(A_{3}\right)$ are satisfied. Then, system (1.1) has at least two nontrivial $q m$-periodic solutions, here a solution $\left\{x_{n}\right\}$ of (1.1) is said to be periodic with period $q m$ if $\left\{x_{n}\right\} \in E_{q m}$. Moreover, if $\left\{x_{n}\right\} \in E_{q m}$ and $x_{1}=\ldots=x_{q m}=0$, $\left\{x_{n}\right\}$ is called to be trivial.
Corollary 1.1. For $p \in[2, \infty)$, assume $F(t, u, v)$ satisfies conditions $\left(A_{1}\right),\left(A_{2}\right)$ and
$\left(A_{4}\right)$ there exist constants $\beta \geq p+1$ and $a_{1}>0$, such that

$$
F(t, u, v) \leq-a_{1}\left(\sqrt{u^{2}+v^{2}}\right)^{\beta}
$$

Then, system (1.1) has at least two nontrivial $q m$-periodic solutions.
We give an representative example to make our results on the system (1.1) more clear.

Example 1.1. Suppose that

$$
\begin{aligned}
f(t, u, v, w)= & -2(p+1) v\left[\left(1+\cos ^{2} \frac{\pi t}{m}\right)\left(u^{2}+v^{2}\right)^{p}\right. \\
& \left.+\left(1+\cos ^{2} \frac{\pi(t-1)}{m}\right)\left(v^{2}+w^{2}\right)^{p}\right]
\end{aligned}
$$

Take

$$
F(t, u, v)=-\left(1+\cos ^{2} \frac{\pi t}{m}\right)\left(u^{2}+v^{2}\right)^{p+1}
$$

we have

$$
\begin{aligned}
& F_{2}^{\prime}(t-1, v, w)+F_{3}^{\prime}(t, u, v) \\
= & -2(p+1) v\left[\left(1+\cos ^{2} \frac{\pi t}{m}\right)\left(u^{2}+v^{2}\right)^{p}+\left(1+\cos ^{2} \frac{\pi(t-1)}{m}\right)\left(v^{2}+w^{2}\right)^{p}\right]
\end{aligned}
$$

Proof. It is clear that $F \in C^{1}\left(\mathbb{R}^{3}, \mathbb{R}\right)$, and $\left(A_{1}\right),\left(A_{2}\right)$ and $\left(A_{3}\right)$ are satisfied, so system (1.1) has at least two nontrivial $q m$-periodic solutions.

2. Notations and useful lemmas

Before proving Theorem 1.1, we introduce some notions and notations initially.

- Let W be the set of sequences, i.e. $W=\left\{w=\left\{w_{k}\right\}_{k}, w_{k} \in \mathbb{R}, k \in \mathbb{N}\right\}$ and when $x, y \in W, a, b \in \mathbb{R}, a x+b y$ is given by $a x+b y=\left\{a x_{k}+b y_{k}\right\}_{k=-\infty}^{+\infty}$. For any given positive integers q and $m, E_{q m} \subset W$, meeting that

$$
E_{q m}=\left\{w=\left\{w_{k}\right\} \in W \mid w_{k+q m}=w_{k}, k \in \mathbb{Z}\right\}
$$

Then with the common Euclid inner product $\left(\|x\|=\left(\sum_{k=1}^{q m} x_{k}^{2}\right)^{\frac{1}{2}}\right), E_{q m}$ is a $q m$-dimensional Hilbert space. Let $\|\cdot\|_{\alpha}$ denote by

$$
\|x\|_{\alpha}=\left(\sum_{k=1}^{q m}\left|x_{k}\right|^{\alpha}\right)^{\frac{1}{\alpha}}, \alpha \in(1, \infty)
$$

then there exist positive constants $C_{1} \leq C_{2}, C_{3} \leq C_{4}$ and $C_{5} \leq C_{6}$ such that

$$
\begin{array}{ll}
C_{1}\|x\|_{p} \leq\|x\| \leq C_{2}\|x\|_{p}, \quad \forall p \in[2, \infty), \quad \forall x \in E_{q m} \\
C_{3}\|x\|_{\beta} \leq\|x\| \leq C_{4}\|x\|_{\beta}, \quad \forall \beta \in[3, \infty), \quad \forall x \in E_{q m}
\end{array}
$$

- Let H be a real Hilbert space, $J \in C^{1}(H)$ is said to satisfy PS condition if any sequence $\left\{x_{k}\right\} \subset H$ for which $\left\{J\left(x_{k}\right)\right\}$ is bounded and $J^{\prime}\left(x_{k}\right) \rightarrow 0$, as $k \rightarrow \infty$, possesses a convergent subsequence in H.
- Set $Z=\left\{\left(x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}, x_{n+1}, \ldots, x_{q m}\right) \in E_{q m} \mid \Delta x_{n-1}=-\Delta x_{n}=\right.$ $\left.c, \Delta x_{1}=\ldots=\Delta x_{n-2}=\Delta x_{n+1}=\ldots=\Delta x_{q m}=0, c \in \mathbb{R}\right\}$ and $Y=Z^{\perp}$, then $E_{q m}=Y \oplus Z$.

Remark 2.1. The orthogonal direct sum decomposition related to $\Delta x_{j}(j=$ $1,2, \ldots, q m)$, and $\left\{(u, u, \ldots, u)^{\top} \in E_{q m} \mid u \in \mathbb{R}\right\} \subseteq Y$ is very different from the known research works, and when $x \in Y$, we can conclude that $x \neq(u, u, \ldots, u)^{\top}$.

We now give some useful lemmas, which will serve us well later.
Lemma 2.1.([3]) Let $q m \geq 3, S$ be a matrix

$$
S=\left(\begin{array}{cccccc}
2 & -1 & 0 & \cdots & 0 & -1 \\
-1 & 2 & -1 & \cdots & 0 & 0 \\
0 & -1 & 2 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
-1 & 0 & 0 & \cdots & -1 & 2
\end{array}\right)_{q m \times q m}
$$

If $0 \neq c \in \mathbb{R}$, then the eigenvector of S associated with the eigenvalue 0 , is $\xi=$ $(c, c, \ldots, c)^{\top}$. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{q m-1}$ be the other eigenvalues of S, then $\lambda_{j}>0$. Moreover, for all $j \in \mathbb{Z}[1, q m-1]$
$\lambda_{\min }=\min _{j} \lambda_{j}=2\left(1-\cos \frac{2 \pi}{q m}\right), \lambda_{\max }=\max _{j} \lambda_{j}=\left\{\begin{array}{l}4, \quad \text { if } q m \text { is even }, \\ 2\left(1+\cos \frac{\pi}{q m}\right), \text { if } q m \text { is odd } .\end{array}\right.$
Lemma 2.2. Let P be a matrix and $q m \geq 5$, such that for any $\left(\Delta x_{1}, \ldots, \Delta x_{q m}\right)^{\top} \in$ $\mathbb{R}^{q m}$,

$$
\left(\Delta x_{1}, \cdots, \Delta x_{q m}\right)^{\top} P\left(\Delta x_{1}, \cdots, \Delta x_{q m}\right)=\sum_{k=1}^{q m}\left(\Delta x_{k}\right)^{2}+2 \Delta x_{n-1} \Delta x_{n}
$$

where

Then the eigenvalues of P are $\underbrace{1,1, \ldots, 1}_{q m-2}, 0,2$. Moreover, matrix P has $q m$ linearly independent eigenvectors, and when $x \in Y$, the eigenvalues of P are positive.

Proof. It is easy to compute that the eigenvalues of P are $\underbrace{1,1, \ldots, 1}_{q m-2}, 0,2$, and matrix P has $q m$ linearly independent eigenvectors. Since $Z=\left\{\left(x_{1}, x_{2}, \ldots, x_{q m}\right) \in\right.$ $E_{q m} \mid \Delta x_{n-1}=-\Delta x_{n}=c, \Delta x_{1}=\ldots=\Delta x_{n-2}=\Delta x_{n+1}=\ldots=\Delta x_{q m}=0, c \in$ $\mathbb{R}\}$ and $Y=Z^{\perp}$, then when $x \in Y$, the eigenvalues of P are positive.

Let $k \in \mathbb{Z}[1, q m]$, and $q m \geq 5$, we define our new functional $J(x)$ on $E_{q m}$ as follows:

$$
\begin{equation*}
J(x)=\sum_{k=1}^{q m} \frac{2 \lambda_{\max }^{\frac{p}{2}}\left(\frac{1}{C_{1}}\right)^{p}}{p \lambda_{\min } \gamma_{\min }}\left[\left(\Delta x_{k}\right)^{2}+2 \Delta x_{n-1} \Delta x_{n}\right]+\sum_{k=1}^{q m}\left[-\frac{1}{p}\left|\Delta x_{k}\right|^{p}+F\left(k, x_{k+1}, x_{k}\right)\right] \tag{2.1}
\end{equation*}
$$

where $\gamma_{\text {min }}$ is the smallest positive eigenvalue of P.
Clearly, for any $x=\left\{x_{k}\right\}_{k \in \mathbb{Z}} \in E_{q m}$, according to $x_{0}=x_{q m}, x_{1}=x_{q m+1}$, one computes that

$$
\frac{\partial J}{\partial x_{n}}=\Delta\left(\varphi_{p}\left(\Delta x_{n-1}\right)\right)+f\left(n, x_{n+1}, x_{n}, x_{n-1}\right), \quad \forall n \in \mathbb{Z}[1, q m], \quad i=1,2
$$

Thus, the existence of critical points of J_{i} on $E_{q m}$ may implies the existence of periodic solutions of system (1.1).

Remark 2.2. We have the following identity:
$\frac{\partial\left[\left(\Delta x_{1}, \cdots, \Delta x_{q m}\right)^{\top} P\left(\Delta x_{1}, \cdots, \Delta x_{q m}\right)\right]}{\partial x_{n}}=\frac{\partial\left[\sum_{k=1}^{q m}\left[\left(\Delta x_{k}\right)^{2}+2 \Delta x_{n-1} \Delta x_{n}\right]\right]}{\partial x_{n}}=0$.
Lemma 2.3. Let $\left(A_{3}\right)$ be valid, then the functional $J(x)$ is bounded from above on $E_{q m}$.
Proof. It is clear that,

$$
\begin{equation*}
\sum_{k=1}^{q m}\left(\Delta x_{k}\right)^{2}=\sum_{k=1}^{q m}\left(x_{k+1}-x_{k}\right)^{2}=\sum_{k=1}^{q m}\left(2 x_{k}^{2}-2 x_{k} x_{k+1}\right) \tag{2.2}
\end{equation*}
$$

Then, for all $x \in E_{q m}$, by $\left(A_{3}\right)$ and Lemma 2.1, we have

$$
\begin{align*}
J(x) & \leq \sum_{k=1}^{q m}\left[\frac{4 \lambda_{\max }^{\frac{p}{2}}\left(\frac{1}{C_{1}}\right)^{p}}{p \lambda_{\min } \gamma_{\min }}\left(\Delta x_{k}\right)^{2}\right]+\sum_{k=1}^{q m}\left[-\frac{1}{p}\left|\Delta x_{k}\right|^{p}+F\left(k, x_{k+1}, x_{k}\right)\right] \\
& \leq \frac{4 \lambda_{\max }^{\frac{p}{2}}\left(\frac{1}{C_{1}}\right)^{p}}{p \lambda_{\min } \gamma_{\min }} \sum_{k=1}^{q m}\left(\Delta x_{k}\right)^{2}+\sum_{k=1}^{q m} F\left(k, x_{k+1}, x_{k}\right) \\
& \leq \frac{4 \lambda_{\max }^{\frac{p}{2}}\left(\frac{1}{C_{1}}\right)^{p}}{p \lambda_{\min } \gamma_{\min }} \sum_{k=1}^{q m} 2\left(x_{k}^{2}-x_{k} x_{k+1}\right)-a_{1} \sum_{k=1}^{q m}\left(\sqrt{x_{k+1}^{2}+x_{k}^{2}}\right)^{\beta}+a_{2} q m \\
& \leq \frac{4 \lambda_{\max }^{\frac{p}{2}}\left(\frac{1}{C_{1}}\right)^{p}}{p \lambda_{\min } \gamma_{\min }} x^{\top} S x-a_{1} \sum_{k=1}^{q m}\left|x_{k}\right|^{\beta}+a_{2} q m \\
& \leq \frac{4 \lambda_{\max }^{\frac{p}{2}+1}\left(\frac{1}{C_{1}}\right)^{p}}{p \lambda_{\min } \gamma_{\min }}\|x\|^{2}-a_{1}\left(\frac{1}{C_{4}}\right)^{\beta}\|x\|^{\beta}+a_{2} q m \tag{2.3}
\end{align*}
$$

Since $\beta \geq p+1>2$, from (2.3), there exists a constant $M_{1}>0$, such that $J(x) \leq M_{1}$ for every $x \in E_{q m}$.

Lemma 2.4. Let $\left(A_{3}\right)$ hold, then $J(x)$ satisfies PS condition.
Proof. Let $x^{(j)} \in E_{q m}$, for all $j \in \mathbb{N}$, be such that $\left\{J\left(x^{(j)}\right)\right\}$ is bounded. By Lemma 2.3, there exists $M_{2}>0$, such that

$$
-M_{2} \leq J\left(x^{(j)}\right) \leq \frac{4 \lambda_{\max }^{\frac{p}{2}+1}\left(\frac{1}{C_{1}}\right)^{p}}{p \lambda_{\min } \gamma_{\min }}\|x\|^{2}-a_{1}\left(\frac{1}{C_{4}}\right)^{\beta}\|x\|^{\beta}+a_{2} q m
$$

which implies

$$
a_{1}\left(\frac{1}{C_{4}}\right)^{\beta}\|x\|^{\beta}-\frac{4 \lambda_{\max }^{\frac{p}{2}+1}\left(\frac{1}{C_{1}}\right)^{p}}{p \lambda_{\min } \gamma_{\min }}\|x\|^{2} \leq M_{2}+a_{2} q m
$$

For $\beta>2$, there exsit a constant $M_{3}>0$ such that for every $k \in \mathbb{N},\left\|x^{(k)}\right\| \leq M_{3}$.
Therefore, $\left\{x^{(k)}\right\}$ is bounded in $E_{q m}$. Since $E_{q m}$ is finite dimensional, then the $\mathrm{P}-\mathrm{S}$ condition is satisfied.
Lemma 2.5. (Linking Theorem) [13, Theorem 5.3]. Let H be a real Hilbert space, $H=H_{1} \oplus H_{2}$, where H_{1} is a finite-dimensional subspace of H. Assume that $J \in C^{1}(H)$ satisfies the PS condition and
$\left(\mathrm{D}_{1}\right)$ there exist constants $\sigma>0$ and $\rho>0$, such that $\left.J\right|_{\partial B_{\rho} \cap H_{2}} \geq \sigma$;
$\left(\mathrm{D}_{2}\right)$ there is an $e \in \partial B_{1} \cap H_{2}$ and a constant $R_{1}>\rho$, such that $\left.J\right|_{\partial Q} \leq 0$, where $Q=\left(\bar{B}_{R_{1}} \cap H_{1}\right) \oplus\left\{r e \mid 0<r<R_{1}\right\}, B_{\rho}$ denotes the open ball in X with radius ρ and centered at 0 and ∂B_{ρ} represents its boundary. Then, J possesses a critical value $c \geq \sigma$, here

$$
c=\inf _{h \in \Gamma} \max _{u \in Q} J(h(u)), \Gamma=\left\{h \in C(\bar{Q}, H)|h|_{\partial Q}=i d\right\}
$$

and id denotes the identity operator.

3. Proof of main result

It is time for us to give details for proving the Theorem 1.1.
Proof. For any $x \in Y$, let $\Delta x=\left(\Delta x_{1}, \Delta x_{2}, \ldots, \Delta x_{q m}\right)^{\top}$, from (2.1)-(2.2), we have

$$
\begin{align*}
J(x) \geq & \frac{2 \lambda_{\max }^{\frac{p}{2}}\left(\frac{1}{C_{1}}\right)^{p}}{p \lambda_{\min } \gamma_{\min }} \sum_{k=1}^{q m}\left[\left(\Delta x_{k}\right)^{2}+2 \Delta x_{n-1} \Delta x_{n}\right] \\
& -\frac{1}{p}\left(\frac{1}{C_{1}}\right)^{p}\left(\left[\sum_{k=1}^{q m}\left|\Delta x_{k}\right|^{2}\right]^{\frac{1}{2}}\right)^{p}+\sum_{k=1}^{q m} F\left(k, x_{k+1}, x_{k}\right) \\
= & \frac{2 \lambda_{\max }^{\frac{p}{2}}\left(\frac{1}{C_{1}}\right)^{p}}{p \lambda_{\min } \gamma_{\min }}(\Delta x)^{\top} P(\Delta x)-\frac{1}{p}\left(\frac{1}{C_{1}}\right)^{p}\left[\sum_{k=1}^{q m}\left(2 x_{s}^{2}-2 x_{k} x_{k+1}\right)\right]^{\frac{p}{2}} \\
& +\sum_{k=1}^{q m} F\left(k, x_{k+1}, x_{k}\right) \\
= & \frac{2 \lambda_{\max }^{\frac{p}{2}}\left(\frac{1}{C_{1}}\right)^{p}}{p \lambda_{\min } \gamma_{\min }}(\Delta x)^{\top} P(\Delta x)-\frac{1}{p}\left(\frac{1}{C_{1}}\right)^{p}\left(x^{\top} S x\right)^{\frac{p}{2}}+\sum_{k=1}^{q m} F\left(k, x_{k+1}, x_{k}\right) \tag{3.1}
\end{align*}
$$

In view of condition $\left(A_{2}\right)$, we have

$$
\lim _{\rho \rightarrow 0} \frac{F(t, u, v)}{\rho^{p}}=0, \quad \rho=\sqrt{u^{2}+v^{2}}
$$

Now, if one chooses $\varepsilon=2^{-\frac{p}{2}-2}\left(\frac{1}{p}\right) \lambda_{\max }^{\frac{p}{2}}\left(\frac{1}{C_{1}}\right)^{p}$, there exists a sufficiently small positive number δ, such that

$$
|F(t, u, v)| \leq 2^{-\frac{p}{2}-2}\left(\frac{1}{p}\right) \lambda_{\max }^{\frac{p}{2}}\left(\sqrt{u^{2}+v^{2}}\right)^{p}, \forall \rho<\delta
$$

For $\|x\| \leq \delta$, with the help of Lemma 2.2, from (3.1), we have

$$
\begin{align*}
J(x) \geq & \frac{2 \lambda_{\max }^{\frac{p}{2}}\left(\frac{1}{C_{1}}\right)^{p}}{p \lambda_{\min }}\|\Delta x\|^{2}-\frac{1}{p}\left(C_{1}\right)^{p}\left(x^{\top} S x\right)^{\frac{p}{2}} \\
& -2^{-\frac{p}{2}-2}\left(\frac{1}{p}\right) \lambda_{\max }^{\frac{p}{2}} \sum_{k=1}^{q m}\left[2^{\frac{p}{2}} \max \left\{\left|x_{k+1}\right|^{p},\left|x_{k}\right|^{p}\right\}\right] \\
\geq & \frac{2 \lambda_{\max }^{\frac{p}{2}}\left(\frac{1}{C_{1}}\right)^{p}}{p \lambda_{\min }}\|\Delta x\|^{2}-\frac{1}{p}\left(\frac{1}{C_{1}}\right)^{p}\left(x^{\top} S x\right)^{\frac{p}{2}}-2^{-\frac{p}{2}-2}\left(\frac{1}{p}\right) \lambda_{\max }^{\frac{p}{2}} 2^{\frac{p}{2}+1}\|x\|_{p}^{p} \\
\geq & \frac{2 \lambda_{\max }^{\frac{p}{2}}\left(\frac{1}{C_{1}}\right)^{p}}{p \lambda_{\min }}\|\Delta x\|^{2}-\frac{1}{p}\left(\frac{1}{C_{1}}\right)^{p}\left(x^{\top} S x\right)^{\frac{p}{2}} \\
& -2^{-\frac{p}{2}-2}\left(\frac{1}{p}\right) \lambda_{\max }^{\frac{p}{2}} 2^{\frac{p}{2}+1}\left(\frac{1}{C_{1}}\right)^{p}\|x\|^{p} . \tag{3.2}
\end{align*}
$$

By Lemma 2.1 and Remark 2.2, from (3.2), then

$$
\begin{align*}
J(x) & \geq \frac{2 \lambda_{\max }^{\frac{p}{2}}\left(\frac{1}{C_{1}}\right)^{p}}{p \lambda_{\min }}\|\Delta x\|^{2}-\frac{1}{p}\left(\frac{1}{C_{1}}\right)^{p} \lambda_{\max }^{\frac{p}{2}}\|x\|^{p}-\frac{1}{2 p} \lambda_{\max }^{\frac{p}{2}}\left(\frac{1}{C_{1}}\right)^{p}\|x\|^{p} \\
& =\frac{2 \lambda_{\max }^{\frac{p}{2}}\left(\frac{1}{C_{1}}\right)^{p}}{p \lambda_{\min }} x^{\top} S x-\frac{1}{p}\left(\frac{1}{C_{1}}\right)^{p} \lambda_{\max }^{\frac{p}{2}}\|x\|^{p}-\frac{1}{2 p} \lambda_{\max }^{\frac{p}{2}}\left(\frac{1}{C_{1}}\right)^{p}\|x\|^{p} \\
& \geq \frac{2 \lambda_{\max }^{\frac{p}{2}}\left(\frac{1}{C_{1}}\right)^{p}}{p}\|x\|^{2}-\frac{3}{2 p} \lambda_{\max }^{\frac{p}{2}}\left(\frac{1}{C_{1}}\right)^{p}\|x\|^{p} \tag{3.3}
\end{align*}
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{q m}\right)^{\top}$.
Observing that δ is sufficiently small and $p \geq 2$, thus we get from (3.3)

$$
J(x) \geq \frac{2}{p} \lambda_{\max }^{\frac{p}{2}}\left(\frac{1}{C_{1}}\right)^{p}\|x\|^{2}-\frac{3}{2 p} \lambda_{\max }^{\frac{p}{2}}\left(\frac{1}{C_{1}}\right)^{p}\|x\|^{p}=\frac{1}{2 p} \lambda_{\max }^{\frac{p}{2}}\left(\frac{1}{C_{1}}\right)^{p}\|x\|^{2}
$$

If one takes $\sigma=\frac{1}{2 p} \lambda_{\max }^{\frac{p}{2}}\left(\frac{1}{C_{1}}\right)^{p} \delta^{2}$, then

$$
J(x) \geq \sigma>0, \quad \forall x \in Y \cap \partial B_{\delta}
$$

So,

$$
c_{1}=\sup _{x \in E_{q m}} J(x) \geq \sigma>0
$$

which hints that J satisfies the condition $\left(D_{1}\right)$ in Lemma 2.5.
Finally, we verify condition $\left(D_{2}\right)$ of the linking theorem. By Lemma 2.4, $J(x)$ meets P-S condition. Taking $e \in \partial B_{1} \cap Y$, for any $z \in Z, r \in \mathbb{R}$, let $x=r e+z$, from (2.6),

$$
J(x) \leq \frac{4 \lambda_{\max }^{\frac{p}{2}+1}\left(\frac{1}{C_{1}}\right)^{p}}{p \lambda_{\min } \gamma_{\min }}\|x\|^{2}-a_{1}\left(\frac{1}{C_{4}}\right)^{\beta}\|x\|^{\beta}+a_{2} q m
$$

It is clear that, there exists a big enough constant $R_{3}>0$, such that $J(x) \leq 0$, for all $x \in \partial Q$, where

$$
Q=\left(\bar{B}_{R_{3}} \cap Z\right) \oplus\left\{r e \mid 0<r<R_{3}\right\} .
$$

Employing linking theorem (Lemma 2.5), J exists a critical value $c \geq \sigma>0$, where

$$
c=\inf _{h \in \Gamma} \max _{x \in Q} J(h(x)), \quad \Gamma=\left\{h \in C\left(\bar{Q}, E_{q m}\right)|h|_{\partial Q}=i d\right\} .
$$

From Lemma 2.3, we get $\lim _{\|x\| \rightarrow \infty} J(x)=-\infty$, so $-J$ is coercive. Set $c_{1}=$ $\sup _{x \in E_{q m}} J(x)$. By the continuity of J on $E_{q m}$, there exists $\bar{x} \in E_{q m}$, such that $x \in E_{q m}$
$J(\bar{x})=c_{1}$, and \bar{x} is a critical point of J. Obviously, when $x_{1}=\ldots=x_{q m}$, we have $\Delta x_{1}=\ldots=\Delta x_{q m}=0$. Employing (2.4) and $F(t, u, v) \leq 0$, we obtain

$$
J(x)=\sum_{k=1}^{q m} F\left(k, x_{k+1}, x_{k}\right) \leq 0,
$$

Thus, $J(x)$ does not acquire its maximum c_{1}. Then, the critical point associated with the critical value c_{1} of J is a nontrivial $q m$-periodic solutions of system (1.1).

By now, we obtain a nontrivial $q m$-periodic solution. The rest of the proof of the other nontrivial $q m$-periodic solution is similar to that of [7, Theorem 1.1] or [4, Theorem 3.1], we omit the details. Now, the proof of our Theorem 1.1 is now complete, that means system (1.1) has at least two nontrivial $q m$-periodic solutions.
Remark 3.1 In the proof of Theorem 1.1, in order to obtain that $J(x)$ satisfies condition $\left(D_{1}\right)$ of the linking theorem, we let $p \in[2, \infty)$.

References

[1] Sme D. Smets and M. Willem: Solitary waves with prescribed speed on infinite lattices. Journal of Functional Analysis, 149(1), 266-275 (1997).
[2] Aga R.P. Agarwal, K. Perera and D. O'Regan: Multiple positive solutions of singular and nonsingular discrete problems via variational methods. Nonlinear Analysis, 58(1), 69-73 (2004).
[3] Zhou Z. Zhou, J.S. Yu and Z.M. Guo: Periodic solutions of higher-dimensional discrete systems. Proceedings of the Royal Society of Edinburgh, 134A, 1013-1022 (2004).
[4] Chen P. Chen ans H. Fang: Existence of periodic and subharmonic solutions for second-order p-Laplacian difference equations. Advances in Difference Equations, 2007 (2007).
[5] Yu J.S. Yu, H.P. Shi and Z.M. Guo: Homoclinic orbits for nonlinear difference equations containing both advance and retardation. Journal of Mathematical Analysis and Applications, 352(2), 799-806 (2009).
[6] Lin G.H. Lin and Z. Zhou: Periodic and subharmonic solutions for a 2nth-order difference equation containing both advance and retardation with ϕ-Laplacian. Advances in Difference Equations, 2014(1), 1-14 (2014).
[7] Guo Z.M. Guo and J.S. Yu: Existence of periodic and subharmonic solutions for second-order superlinear differece equations. Science in China: Mathematics, 46(4): 506-515 (2003).
[8] Shi H.P. Shi: Periodic and subharmonic solutions for second-order nonlinear difference equations. Journal of Applied Mathematics and Computing, 48, 157-171 (2014).
[9] Xue Y.F. Xue and C.L Tang: Existence of a periodic solution for subquadratic second-order discrete Hamiltonian system. Nonlinear Analysis: Theory, Methods \& Applications, 67(7), 2072-2080 (2007).
[10] Deng J.S. Yu, X.Q. Deng and Z.M. Guo: Periodic solutions of a discrete Hamiltonian system with a change of sign in the potential. Journal of Mathematical Analysis and Applications, $324(2)$, 1140-1151 (2006).
[11] Liu X. Liu, Y.B. Zhang, H.P. Shi and X.Q. Deng: Existence of Periodic Solutions for a $2 n$ thOrder Difference Equation Involving p-Laplacian. Bulletin of the Malaysian Mathematical Sciences Society, 38, 1107-1125 (2015).
[12] Cai X.H. Cai and J.S. Yu: Existence theorems for second-order discrete boundary value problems. Journal of Mathematical Analysis and Applications, 320(2), 649-661 (2006).
[13] Rab P.H. Rabinowitz: Minimax Methods in Critical Point Theory with Applications to Differential Equations. American Mathematical Society Bookstore, 65 (1986).

Liang Ding

Department of Mathematics, Sichuan University, Chengdu 610064, P.R.China
E-mail address: lovemathlovemath@126.com
Jinlong Wei (corresponding author)
School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan 430073, Hubei, P.R.China

E-mail address: weijinlong.hust@gmail.com

[^0]: 2010 Mathematics Subject Classification. 34K13, 47J25, 34L30.
 Key words and phrases. p-Laplacian difference equations; Nontrivial periodic solutions; Critical points.

 Submitted Jun. 13, 2016.

