Electronic Journal of Mathematical Analysis and Applications

Vol. 5(1) Jan. 2017, pp. 187-195.

ISSN: 2090-729(online)

http://fcag-egypt.com/Journals/EJMAA/

PERIODIC AND SUBHARMONIC SOLUTIONS FOR SECOND-ORDER p-LAPLACIAN DIFFERENCE EQUATIONS CONTAINING BOTH ADVANCE AND RETARDATION

LIANG DING, JINLONG WEI

ABSTRACT. We obtain some new existence results on nontrivial periodic and subharmonic solutions for second-order p-Laplacian difference equations containing both advance and retardation. Without the nonnegativity restriction on vector field F, we greatly improve the existing results (e.g. see [4-6]).

1. Introduction

Let \mathbb{R} , \mathbb{N} , \mathbb{Z} , stand the set of all real numbers, natural numbers, and integers, respectively. For $a \leq b \in \mathbb{Z}$, we define $\mathbb{Z}[a] = \{a, a+1, \ldots\}$, $\mathbb{Z}[a, b] = \{a, a+1, \ldots, b\}$.

Consider the following nonlinear discrete system

$$\Delta(\varphi_p(\Delta x_{n-1})) + f(n, x_{n+1}, x_n, x_{n-1}) = 0, \quad \forall n \in \mathbb{Z},$$

$$(1.1)$$

where $\Delta x_n = x_{n+1} - x_n$, $\Delta^2 x_n = \Delta(\Delta x_n)$, $\varphi_p(s) = |s|^{p-2} s (2 \le p < \infty)$, $f: \mathbb{Z} \times \mathbb{R}^3 \to \mathbb{R}$, $f(t, \cdot, \cdot, \cdot) \in C(\mathbb{R}^3)$. More precisely, f is given by

$$\left\{ \begin{array}{l} f(t,\,u,\,v,\,w) = F_2'(t-1,\,v,\,w) + F_3'(t,\,u,\,v) \\ F_2'(t-1,\,v,\,w) = \frac{\partial F(t-1,\,v,\,w)}{\partial v}, \quad F_3'(t,\,u,\,v) = \frac{\partial F(t,\,u,\,v)}{\partial v}, \end{array} \right.$$

for some function $F \in C^1(\mathbb{R}^3)$.

Clearly, system (1.1) may be thinking as a discrete analogue of the functional differential equation below

$$[\varphi_p(x')]' + f(t, x(t+1), x(t), x(t-1)) = 0, t \in \mathbb{R},$$

which is arising in the study of the existence of solitary waves of lattice differential equations, see [1-3].

When dealing with (1.1), there are many excellent works (e.g. see [4-6]). [4] is the first paper to deal with the existence of periodic and subharmonic solutions of discrete system (1.1), and the results of [5-6] are based on [4].

In [4], by using the critical point theory, Chen and Fang consider the existence of periodic and subharmonic solutions of discrete system (1.1) for the case of $F \ge 0$.

²⁰¹⁰ Mathematics Subject Classification. 34K13, 47J25, 34L30.

 $Key\ words\ and\ phrases.\ p$ —Laplacian difference equations; Nontrivial periodic solutions; Critical points.

Submitted Jun. 13, 2016.

Employing the critical point theory, in [5], Yu, Shi, and Guo study a special case of (1.1). Without any periodic assumptions, they gain some different existence results on nontrivial homoclinic orbit for nonlinear advance and retardation difference equations.

In [6], Lin and Zhou argue some extensions of system (1.1). Then the critical theory uses, they derive some sufficient conditions on the existence and multiplicity of periodic and subharmonic solutions to a 2nth-order nonlinear advance and retardation ϕ -Laplacian difference equation. Besides, if one fetches $\phi(x) = |x|^{p-2} (1 , <math>r_k = 1$ and n = 1, Theorem 3.1 in [6] reduces to Theorem 3.1 in [4]. So the existence results in [6] are extensions in [4].

For other related works on the existence of periodic solutions, for nonlinear difference equations, we refer the authors to see [7-8], for second-order (or higher-order) discrete Hamiltonian system, one can consult to [9-11], and for the boundary value problems, to read [12] and the references cited up there.

It is remarked that, in (1.1), f depends on x_{n+1} and x_{n-1} , the traditional ways of establishing the functional in [3-5, 7-8, 10-12] are inapplicable. Besides, one discovers that $F(t, u, v) \in \mathbb{R}$. However, as far as we know, there are very few research works on (1.1) without the nonnegativity restriction on vector field F. For example, in [4-6], all the authors make the same assumption on F, i.e., $F \geq 0$.

The main purpose of this paper is to consider the existence of nontrivial periodic and subharmonic solutions of discrete system (1.1) for the case of $F \leq 0$. In (1.1), since $F \leq 0$, the methods used in [4-6] are not available. More precisely, let $p \geq 2$ and $qm \geq 5$, with the help of the constructing triple $(J(x), Y \oplus Z, P)$ (given in Section 2), we obtain the existence of nontrivial periodic and subharmonic solutions of (1.1) for nonpositivity vector field F.

We assume that

- (A_1) $0 < q, m \in \mathbb{N}, qm \ge 5$ and for every $(t, x, y, z) \in \mathbb{Z} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}, f(t + m, x, y, z) = f(t, x, y, z);$
- (A_2) $F(t, u, v) \leq 0$ and satisfies

$$\lim_{\rho \to 0} \frac{F(t, u, v)}{\rho^p} = 0 \quad where \quad \rho = \sqrt{u^2 + v^2};$$

 (A_3) there exist constants $a_1 > 0$, $a_2 > 0$ and $\beta \ge p + 1$, such that

$$F(t, u, v) \le -a_1 \left(\sqrt{u^2 + v^2}\right)^{\beta} + a_2 \text{ for } \forall (t, u, v) \in \mathbb{R}^3.$$

Our main result is given by

Theorem 1.1. For any given positive integers q and m, let $qm \geq 5$ and $p \in [2, \infty)$, suppose conditions $(A_1) - (A_3)$ are satisfied. Then, system (1.1) has at least two nontrivial qm-periodic solutions, here a solution $\{x_n\}$ of (1.1) is said to be periodic with period qm if $\{x_n\} \in E_{qm}$. Moreover, if $\{x_n\} \in E_{qm}$ and $x_1 = \dots = x_{qm} = 0$, $\{x_n\}$ is called to be trivial.

Corollary 1.1. For $p \in [2, \infty)$, assume F(t, u, v) satisfies conditions (A_1) , (A_2) and

 (A_4) there exist constants $\beta \geq p+1$ and $a_1>0$, such that

$$F(t, u, v) \le -a_1 \left(\sqrt{u^2 + v^2}\right)^{\beta}$$
.

Then, system (1.1) has at least two nontrivial qm-periodic solutions.

We give an representative example to make our results on the system (1.1) more clear.

Example 1.1. Suppose that

$$f(t, u, v, w) = -2(p+1)v \left[\left(1 + \cos^2 \frac{\pi t}{m} \right) (u^2 + v^2)^p + \left(1 + \cos^2 \frac{\pi (t-1)}{m} \right) (v^2 + w^2)^p \right].$$

Take

$$F(t, u, v) = -\left(1 + \cos^2\frac{\pi t}{m}\right)(u^2 + v^2)^{p+1}.$$

we have

$$F_2'(t-1, v, w) + F_3'(t, u, v)$$

$$= -2(p+1)v\left[\left(1+\cos^2\frac{\pi t}{m}\right)(u^2+v^2)^p + (1+\cos^2\frac{\pi(t-1)}{m})(v^2+w^2)^p\right].$$

Proof. It is clear that $F \in C^1(\mathbb{R}^3, \mathbb{R})$, and (A_1) , (A_2) and (A_3) are satisfied, so system (1.1) has at least two nontrivial qm-periodic solutions.

2. Notations and useful Lemmas

Before proving Theorem 1.1, we introduce some notions and notations initially.

• Let W be the set of sequences, i.e. $W = \{w = \{w_k\}_k, w_k \in \mathbb{R}, k \in \mathbb{N}\}$ and when $x, y \in W$, $a, b \in \mathbb{R}$, ax + by is given by $ax + by = \{ax_k + by_k\}_{k=-\infty}^{+\infty}$. For any given positive integers q and m, $E_{qm} \subset W$, meeting that

$$E_{qm} = \{ w = \{ w_k \} \in W \mid w_{k+qm} = w_k, \ k \in \mathbb{Z} \}.$$

Then with the common Euclid inner product $(\|x\| = (\sum_{k=1}^{qm} x_k^2)^{\frac{1}{2}})$, E_{qm} is a qm-dimensional Hilbert space. Let $\|\cdot\|_{\alpha}$ denote by

$$||x||_{\alpha} = (\sum_{k=1}^{qm} |x_k|^{\alpha})^{\frac{1}{\alpha}}, \ \alpha \in (1, \infty),$$

then there exist positive constants $C_1 \leq C_2$, $C_3 \leq C_4$ and $C_5 \leq C_6$ such that

$$C_1 ||x||_p \le ||x|| \le C_2 ||x||_p, \quad \forall \ p \in [2, \infty), \quad \forall \ x \in E_{qm},$$

 $C_3 ||x||_\beta \le ||x|| \le C_4 ||x||_\beta, \quad \forall \ \beta \in [3, \infty), \quad \forall \ x \in E_{qm}.$

• Let H be a real Hilbert space, $J \in C^1(H)$ is said to satisfy PS condition if any sequence $\{x_k\} \subset H$ for which $\{J(x_k)\}$ is bounded and $J'(x_k) \to 0$, as $k \to \infty$, possesses a convergent subsequence in H.

• Set $Z = \{(x_1, x_2, \dots, x_{n-1}, x_n, x_{n+1}, \dots, x_{qm}) \in E_{qm} \mid \Delta x_{n-1} = -\Delta x_n = c, \ \Delta x_1 = \dots = \Delta x_{n-2} = \Delta x_{n+1} = \dots = \Delta x_{qm} = 0, \ c \in \mathbb{R}\} \text{ and } Y = Z^{\perp}, \text{ then } E_{qm} = Y \oplus Z.$

Remark 2.1. The orthogonal direct sum decomposition related to Δx_j (j = 1, 2, ..., qm), and $\{(u, u, ..., u)^\top \in E_{qm} \mid u \in \mathbb{R}\} \subseteq Y$ is very different from the known research works, and when $x \in Y$, we can conclude that $x \neq (u, u, ..., u)^\top$.

We now give some useful lemmas, which will serve us well later.

Lemma 2.1.([3]) Let $qm \geq 3$, S be a matrix

$$S = \begin{pmatrix} 2 & -1 & 0 & \cdots & 0 & -1 \\ -1 & 2 & -1 & \cdots & 0 & 0 \\ 0 & -1 & 2 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ -1 & 0 & 0 & \cdots & -1 & 2 \end{pmatrix}_{qm \times qm}.$$

If $0 \neq c \in \mathbb{R}$, then the eigenvector of S associated with the eigenvalue 0, is $\xi = (c, c, \dots, c)^{\top}$. Let $\lambda_1, \lambda_2, \dots, \lambda_{qm-1}$ be the other eigenvalues of S, then $\lambda_j > 0$. Moreover, for all $j \in \mathbb{Z}[1, qm-1]$

$$\lambda_{\min} = \min_j \lambda_j = 2(1-\cos\frac{2\pi}{qm}), \ \lambda_{\max} = \max_j \lambda_j = \left\{ \begin{array}{l} 4, \quad \text{if qm is even,} \\ 2(1+\cos\frac{\pi}{qm}), \ \text{if qm is odd.} \end{array} \right.$$

Lemma 2.2. Let P be a matrix and $qm \geq 5$, such that for any $(\Delta x_1, ..., \Delta x_{qm})^{\top} \in \mathbb{R}^{qm}$,

$$(\Delta x_1, \cdots, \Delta x_{qm})^{\top} P(\Delta x_1, \cdots, \Delta x_{qm}) = \sum_{k=1}^{qm} (\Delta x_k)^2 + 2\Delta x_{n-1} \Delta x_n,$$

where

$$P = \begin{pmatrix} 1 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & 0 \\ 0 & 1 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \cdots & \cdots & \cdots & \cdots & \vdots \\ \vdots & \cdots & \ddots & \ddots & 0 & 0 & \cdots & \cdots & \ddots & \vdots \\ \vdots & \cdots & \cdots & 0 & 1 & 1 & 0 & \cdots & \cdots & \vdots \\ \vdots & \cdots & \cdots & 0 & 1 & 1 & 0 & \cdots & \cdots & \vdots \\ \vdots & \cdots & \cdots & \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & 1 & 0 \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & 1 \end{pmatrix}_{qm \times qm}$$

Then the eigenvalues of P are $\underbrace{1,1,\ldots,1}_{qm-2}$, 0, 2. Moreover, matrix P has qm linearly

independent eigenvectors, and when $x \in Y$, the eigenvalues of P are positive.

Proof. It is easy to compute that the eigenvalues of P are $\underbrace{1,1,\ldots,1}_{2}$, 0, 2, and

matrix P has qm linearly independent eigenvectors. Since $Z = \{(x_1, x_2, \dots, x_{qm}) \in E_{qm} \mid \Delta x_{n-1} = -\Delta x_n = c, \ \Delta x_1 = \dots = \Delta x_{n-2} = \Delta x_{n+1} = \dots = \Delta x_{qm} = 0, \ c \in \mathbb{R} \}$ and $Y = Z^{\perp}$, then when $x \in Y$, the eigenvalues of P are positive.

Let $k \in \mathbb{Z}[1, qm]$, and $qm \geq 5$, we define our new functional J(x) on E_{qm} as follows:

$$J(x) = \sum_{k=1}^{qm} \frac{2\lambda_{\max}^{\frac{p}{2}} (\frac{1}{C_1})^p}{p\lambda_{\min}\gamma_{\min}} [(\Delta x_k)^2 + 2\Delta x_{n-1}\Delta x_n] + \sum_{k=1}^{qm} [-\frac{1}{p}|\Delta x_k|^p + F(k, x_{k+1}, x_k)],$$
(2.1)

where γ_{\min} is the smallest positive eigenvalue of P.

Clearly, for any $x = \{x_k\}_{k \in \mathbb{Z}} \in E_{qm}$, according to $x_0 = x_{qm}$, $x_1 = x_{qm+1}$, one computes that

$$\frac{\partial J}{\partial x_n} = \Delta \left(\varphi_p(\Delta x_{n-1}) \right) + f(n, x_{n+1}, x_n, x_{n-1}), \quad \forall \ n \in \mathbb{Z}[1, qm], \quad i = 1, 2.$$

Thus, the existence of critical points of J_i on E_{qm} may implies the existence of periodic solutions of system (1.1).

Remark 2.2. We have the following identity:

$$\frac{\partial \left[(\Delta x_1, \cdots, \Delta x_{qm})^\top P(\Delta x_1, \cdots, \Delta x_{qm}) \right]}{\partial x_n} = \frac{\partial \left[\sum_{k=1}^{qm} \left[(\Delta x_k)^2 + 2\Delta x_{n-1} \Delta x_n \right] \right]}{\partial x_n} = 0.$$

Lemma 2.3. Let (A_3) be valid, then the functional J(x) is bounded from above on E_{qm} .

Proof. It is clear that,

$$\sum_{k=1}^{qm} (\Delta x_k)^2 = \sum_{k=1}^{qm} (x_{k+1} - x_k)^2 = \sum_{k=1}^{qm} (2x_k^2 - 2x_k x_{k+1}).$$
 (2.2)

Then, for all $x \in E_{qm}$, by (A_3) and Lemma 2.1, we have

$$J(x) \leq \sum_{k=1}^{qm} \left[\frac{4\lambda_{\max}^{\frac{p}{2}}(\frac{1}{C_{1}})^{p}}{p\lambda_{\min}\gamma_{\min}} (\Delta x_{k})^{2} \right] + \sum_{k=1}^{qm} \left[-\frac{1}{p} |\Delta x_{k}|^{p} + F(k, x_{k+1}, x_{k}) \right]$$

$$\leq \frac{4\lambda_{\max}^{\frac{p}{2}}(\frac{1}{C_{1}})^{p}}{p\lambda_{\min}\gamma_{\min}} \sum_{k=1}^{qm} (\Delta x_{k})^{2} + \sum_{k=1}^{qm} F(k, x_{k+1}, x_{k})$$

$$\leq \frac{4\lambda_{\max}^{\frac{p}{2}}(\frac{1}{C_{1}})^{p}}{p\lambda_{\min}\gamma_{\min}} \sum_{k=1}^{qm} 2(x_{k}^{2} - x_{k}x_{k+1}) - a_{1} \sum_{k=1}^{qm} \left(\sqrt{x_{k+1}^{2} + x_{k}^{2}} \right)^{\beta} + a_{2}qm$$

$$\leq \frac{4\lambda_{\max}^{\frac{p}{2}}(\frac{1}{C_{1}})^{p}}{p\lambda_{\min}\gamma_{\min}} \|x\|^{2} - a_{1} \left(\frac{1}{C_{4}} \right)^{\beta} \|x\|^{\beta} + a_{2}qm. \tag{2.3}$$

Since $\beta \geq p+1 > 2$, from (2.3), there exists a constant $M_1 > 0$, such that $J(x) \leq M_1$ for every $x \in E_{qm}$.

Lemma 2.4. Let (A_3) hold, then J(x) satisfies PS condition.

Proof. Let $x^{(j)} \in E_{qm}$, for all $j \in \mathbb{N}$, be such that $\{J(x^{(j)})\}$ is bounded. By Lemma 2.3, there exists $M_2 > 0$, such that

$$-M_2 \le J(x^{(j)}) \le \frac{4\lambda_{\max}^{\frac{p}{2}+1}(\frac{1}{C_1})^p}{p\lambda_{\min}\gamma_{\min}} ||x||^2 - a_1(\frac{1}{C_4})^{\beta} ||x||^{\beta} + a_2qm,$$

which implies

$$a_1 \left(\frac{1}{C_4}\right)^{\beta} ||x||^{\beta} - \frac{4\lambda_{\max}^{\frac{p}{2}+1} \left(\frac{1}{C_1}\right)^p}{p\lambda_{\min}\gamma_{\min}} ||x||^2 \le M_2 + a_2 qm.$$

For $\beta > 2$, there exist a constant $M_3 > 0$ such that for every $k \in \mathbb{N}$, $||x^{(k)}|| \leq M_3$.

Therefore, $\{x^{(k)}\}$ is bounded in E_{qm} . Since E_{qm} is finite dimensional, then the P-S condition is satisfied.

Lemma 2.5. (Linking Theorem) [13, Theorem 5.3]. Let H be a real Hilbert space, $H = H_1 \oplus H_2$, where H_1 is a finite-dimensional subspace of H. Assume that $J \in C^1(H)$ satisfies the PS condition and

(D₁) there exist constants $\sigma > 0$ and $\rho > 0$, such that $J|_{\partial B_{\rho} \cap H_2} \geq \sigma$;

(D₂) there is an $e \in \partial B_1 \cap H_2$ and a constant $R_1 > \rho$, such that $J|_{\partial Q} \leq 0$, where $Q = (\overline{B}_{R_1} \cap H_1) \oplus \{re| 0 < r < R_1\}$, B_{ρ} denotes the open ball in X with radius ρ and centered at 0 and ∂B_{ρ} represents its boundary. Then, J possesses a critical value $c > \sigma$, here

$$c = \inf_{h \in \Gamma} \max_{u \in Q} J(h(u)), \Gamma = \{h \in C(\overline{Q}, H) \mid h|_{\,\partial Q} = id\},$$

and id denotes the identity operator.

3. Proof of main result

It is time for us to give details for proving the Theorem 1.1.

Proof. For any $x \in Y$, let $\Delta x = (\Delta x_1, \Delta x_2, \dots, \Delta x_{qm})^{\top}$, from (2.1)-(2.2), we have

$$J(x) \geq \frac{2\lambda_{\max}^{\frac{r}{2}}(\frac{1}{C_{1}})^{p}}{p\lambda_{\min}\gamma_{\min}} \sum_{k=1}^{qm} \left[(\Delta x_{k})^{2} + 2\Delta x_{n-1}\Delta x_{n} \right]$$

$$-\frac{1}{p} \left(\frac{1}{C_{1}} \right)^{p} \left(\left[\sum_{k=1}^{qm} |\Delta x_{k}|^{2} \right]^{\frac{1}{2}} \right)^{p} + \sum_{k=1}^{qm} F(k, x_{k+1}, x_{k})$$

$$= \frac{2\lambda_{\max}^{\frac{p}{2}}(\frac{1}{C_{1}})^{p}}{p\lambda_{\min}\gamma_{\min}} (\Delta x)^{\top} P(\Delta x) - \frac{1}{p} \left(\frac{1}{C_{1}} \right)^{p} \left[\sum_{k=1}^{qm} (2x_{s}^{2} - 2x_{k}x_{k+1}) \right]^{\frac{p}{2}}$$

$$+ \sum_{k=1}^{qm} F(k, x_{k+1}, x_{k})$$

$$= \frac{2\lambda_{\max}^{\frac{p}{2}}(\frac{1}{C_{1}})^{p}}{p\lambda_{\min}\gamma_{\min}} (\Delta x)^{\top} P(\Delta x) - \frac{1}{p} \left(\frac{1}{C_{1}} \right)^{p} \left(x^{\top} S x \right)^{\frac{p}{2}} + \sum_{k=1}^{qm} F(k, x_{k+1}, x_{k}). \quad (3.1)$$

In view of condition (A_2) , we have

$$\lim_{\rho \to 0} \frac{F(t, u, v)}{\rho^p} = 0, \quad \rho = \sqrt{u^2 + v^2}.$$

Now, if one chooses $\varepsilon = 2^{-\frac{p}{2}-2}(\frac{1}{p})\lambda_{\max}^{\frac{p}{2}}(\frac{1}{C_1})^p$, there exists a sufficiently small positive number δ , such that

$$|F(t, u, v)| \le 2^{-\frac{p}{2} - 2} (\frac{1}{p}) \lambda_{\max}^{\frac{p}{2}} \left(\sqrt{u^2 + v^2} \right)^p, \ \forall \ \rho < \delta.$$

For $||x|| \leq \delta$, with the help of Lemma 2.2, from (3.1), we have

$$J(x) \geq \frac{2\lambda_{\max}^{\frac{p}{2}}(\frac{1}{C_{1}})^{p}}{p\lambda_{\min}} \|\Delta x\|^{2} - \frac{1}{p}(C_{1})^{p} \left(x^{\top}Sx\right)^{\frac{p}{2}}$$

$$-2^{-\frac{p}{2}-2}(\frac{1}{p})\lambda_{\max}^{\frac{p}{2}} \sum_{k=1}^{qm} [2^{\frac{p}{2}} \max\{|x_{k+1}|^{p}, |x_{k}|^{p}\}]$$

$$\geq \frac{2\lambda_{\max}^{\frac{p}{2}}(\frac{1}{C_{1}})^{p}}{p\lambda_{\min}} \|\Delta x\|^{2} - \frac{1}{p}(\frac{1}{C_{1}})^{p} \left(x^{\top}Sx\right)^{\frac{p}{2}} - 2^{-\frac{p}{2}-2}(\frac{1}{p})\lambda_{\max}^{\frac{p}{2}}2^{\frac{p}{2}+1} \|x\|_{p}^{p}$$

$$\geq \frac{2\lambda_{\max}^{\frac{p}{2}}(\frac{1}{C_{1}})^{p}}{p\lambda_{\min}} \|\Delta x\|^{2} - \frac{1}{p}(\frac{1}{C_{1}})^{p} \left(x^{\top}Sx\right)^{\frac{p}{2}}$$

$$-2^{-\frac{p}{2}-2}(\frac{1}{p})\lambda_{\max}^{\frac{p}{2}}2^{\frac{p}{2}+1}(\frac{1}{C_{1}})^{p} \|x\|^{p}. \tag{3.2}$$

By Lemma 2.1 and Remark 2.2, from (3.2), then

$$J(x) \geq \frac{2\lambda_{\max}^{\frac{p}{2}}(\frac{1}{C_{1}})^{p}}{p\lambda_{\min}} \|\Delta x\|^{2} - \frac{1}{p}(\frac{1}{C_{1}})^{p}\lambda_{\max}^{\frac{p}{2}} \|x\|^{p} - \frac{1}{2p}\lambda_{\max}^{\frac{p}{2}}(\frac{1}{C_{1}})^{p} \|x\|^{p}$$

$$= \frac{2\lambda_{\max}^{\frac{p}{2}}(\frac{1}{C_{1}})^{p}}{p\lambda_{\min}} x^{\top} Sx - \frac{1}{p}(\frac{1}{C_{1}})^{p}\lambda_{\max}^{\frac{p}{2}} \|x\|^{p} - \frac{1}{2p}\lambda_{\max}^{\frac{p}{2}}(\frac{1}{C_{1}})^{p} \|x\|^{p}$$

$$\geq \frac{2\lambda_{\max}^{\frac{p}{2}}(\frac{1}{C_{1}})^{p}}{p} \|x\|^{2} - \frac{3}{2p}\lambda_{\max}^{\frac{p}{2}}(\frac{1}{C_{1}})^{p} \|x\|^{p}, \qquad (3.3)$$

where $x = (x_1, x_2, \dots, x_{qm})^{\top}$.

Observing that δ is sufficiently small and $p \geq 2$, thus we get from (3.3)

$$J(x) \ge \frac{2}{p} \lambda_{\max}^{\frac{p}{2}} \left(\frac{1}{C_1}\right)^p ||x||^2 - \frac{3}{2p} \lambda_{\max}^{\frac{p}{2}} \left(\frac{1}{C_1}\right)^p ||x||^p = \frac{1}{2p} \lambda_{\max}^{\frac{p}{2}} \left(\frac{1}{C_1}\right)^p ||x||^2.$$

If one takes $\sigma = \frac{1}{2p} \lambda_{\max}^{\frac{p}{2}} \left(\frac{1}{C_1}\right)^p \delta^2$, then

$$J(x) \ge \sigma > 0, \quad \forall x \in Y \cap \partial B_{\delta}.$$

So,

$$c_1 = \sup_{x \in E_{qm}} J(x) \ge \sigma > 0,$$

which hints that J satisfies the condition (D_1) in Lemma 2.5.

Finally, we verify condition (D_2) of the linking theorem. By Lemma 2.4, J(x)meets P-S condition. Taking $e \in \partial B_1 \cap Y$, for any $z \in Z$, $r \in \mathbb{R}$, let x = re + z, from (2.6),

$$J(x) \le \frac{4\lambda_{\max}^{\frac{p}{2}+1} (\frac{1}{C_1})^p}{p\lambda_{\min}\gamma_{\min}} ||x||^2 - a_1 (\frac{1}{C_4})^{\beta} ||x||^{\beta} + a_2 qm.$$

It is clear that, there exists a big enough constant $R_3 > 0$, such that $J(x) \leq 0$, for all $x \in \partial Q$, where

$$Q = (\overline{B}_{R_3} \cap Z) \oplus \{ re | 0 < r < R_3 \}.$$

Employing linking theorem (Lemma 2.5), J exists a critical value $c \geq \sigma > 0$, where

$$c = \inf_{h \in \Gamma} \max_{x \in Q} J(h(x)), \qquad \Gamma = \{ h \in C(\overline{Q}, E_{qm}) |h|_{\partial Q} = id \}.$$

From Lemma 2.3, we get $\lim_{\|x\|\to\infty} J(x) = -\infty$, so -J is coercive. Set $c_1 = \sup_{x\in E_{qm}} J(x)$. By the continuity of J on E_{qm} , there exists $\bar{x}\in E_{qm}$, such that $J(\bar{x})=c_1$, and \bar{x} is a critical point of J. Obviously, when $x_1=\ldots=x_{qm}$, we have $\Delta x_1=\ldots=\Delta x_{qm}=0$. Employing (2.4) and $F(t,u,v)\leq 0$, we obtain

$$J(x) = \sum_{k=1}^{qm} F(k, x_{k+1}, x_k) \le 0,$$

Thus, J(x) does not acquire its maximum c_1 . Then, the critical point associated with the critical value c_1 of J is a nontrivial qm-periodic solutions of system (1.1).

By now, we obtain a nontrivial qm-periodic solution. The rest of the proof of the other nontrivial qm-periodic solution is similar to that of [7, Theorem 1.1] or [4, Theorem 3.1], we omit the details. Now, the proof of our Theorem 1.1 is now complete, that means system (1.1) has at least two nontrivial qm-periodic solutions.

Remark 3.1 In the proof of Theorem 1.1, in order to obtain that J(x) satisfies condition (D_1) of the linking theorem, we let $p \in [2, \infty)$.

References

- [1] Sme D. Smets and M. Willem: Solitary waves with prescribed speed on infinite lattices. Journal of Functional Analysis, 149(1), 266-275 (1997).
- [2] Aga R.P. Agarwal, K. Perera and D. O'Regan: Multiple positive solutions of singular and nonsingular discrete problems via variational methods. Nonlinear Analysis, 58(1), 69-73 (2004).
- [3] Zhou Z. Zhou, J.S. Yu and Z.M. Guo: Periodic solutions of higher-dimensional discrete systems. Proceedings of the Royal Society of Edinburgh, 134A, 1013-1022 (2004).
- [4] Chen P. Chen ans H. Fang: Existence of periodic and subharmonic solutions for second-order p-Laplacian difference equations. Advances in Difference Equations, 2007 (2007).
- [5] Yu J.S. Yu, H.P. Shi and Z.M. Guo: Homoclinic orbits for nonlinear difference equations containing both advance and retardation. Journal of Mathematical Analysis and Applications, 352(2), 799-806 (2009).
- [6] Lin G.H. Lin and Z. Zhou: Periodic and subharmonic solutions for a 2nth-order difference equation containing both advance and retardation with ϕ -Laplacian. Advances in Difference Equations, 2014(1), 1-14 (2014).
- [7] Guo Z.M. Guo and J.S. Yu: Existence of periodic and subharmonic solutions for second-order superlinear difference equations. Science in China: Mathematics, 46(4): 506-515 (2003).
- [8] Shi H.P. Shi: Periodic and subharmonic solutions for second-order nonlinear difference equations. Journal of Applied Mathematics and Computing, 48, 157-171 (2014).
- [9] Xue Y.F. Xue and C.L Tang: Existence of a periodic solution for subquadratic second-order discrete Hamiltonian system. Nonlinear Analysis: Theory, Methods & Applications, 67(7), 2072-2080 (2007).
- [10] Deng J.S. Yu, X.Q. Deng and Z.M. Guo: Periodic solutions of a discrete Hamiltonian system with a change of sign in the potential. Journal of Mathematical Analysis and Applications, 324(2), 1140-1151 (2006).

- [11] Liu X. Liu, Y.B. Zhang, H.P. Shi and X.Q. Deng: Existence of Periodic Solutions for a 2nth-Order Difference Equation Involving p-Laplacian. Bulletin of the Malaysian Mathematical Sciences Society, 38, 1107-1125 (2015).
- [12] Cai X.H. Cai and J.S. Yu: Existence theorems for second-order discrete boundary value problems. Journal of Mathematical Analysis and Applications, 320(2), 649-661 (2006).
- [13] Rab P.H. Rabinowitz: Minimax Methods in Critical Point Theory with Applications to Differential Equations. American Mathematical Society Bookstore, 65 (1986).

LIANG DING

DEPARTMENT OF MATHEMATICS, SICHUAN UNIVERSITY, CHENGDU 610064, P.R.CHINA *E-mail address*: lovemathlovemath@126.com

JINLONG WEI (CORRESPONDING AUTHOR)

School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan 430073, Hubei, P.R.China

E-mail address: weijinlong.hust@gmail.com