
Electronic Journal of Mathematical Analysis and Applications

Vol. 5(1) Jan. 2017, pp. 187-195.

ISSN: 2090-729(online)

http://fcag-egypt.com/Journals/EJMAA/

————————————————————————————————

PERIODIC AND SUBHARMONIC SOLUTIONS FOR

SECOND-ORDER p−LAPLACIAN DIFFERENCE EQUATIONS

CONTAINING BOTH ADVANCE AND RETARDATION

LIANG DING, JINLONG WEI

Abstract. We obtain some new existence results on nontrivial periodic and
subharmonic solutions for second-order p-Laplacian difference equations con-

taining both advance and retardation. Without the nonnegativity restriction
on vector field F , we greatly improve the existing results (e.g. see [4-6]).

1. Introduction

Let R, N, Z, stand the set of all real numbers, natural numbers, and integers,
respectively. For a ≤ b ∈ Z, we define Z[a] = {a, a+1, . . .}, Z[a, b] = {a, a+1, . . . , b}.

Consider the following nonlinear discrete system

∆
(
φp(∆xn−1)

)
+ f(n, xn+1, xn, xn−1) = 0, ∀n ∈ Z, (1.1)

where ∆xn = xn+1 − xn, ∆2xn = ∆(∆xn), φp(s) = |s|p−2s (2 ≤ p < ∞), f :
Z× R3 → R, f(t, ·, ·, ·) ∈ C(R3). More precisely, f is given by{

f(t, u, v, w) = F ′
2(t− 1, v, w) + F ′

3(t, u, v)

F ′
2(t− 1, v, w) = ∂F (t−1, v, w)

∂v , F ′
3(t, u, v) =

∂F (t, u, v)
∂v ,

for some function F ∈ C1(R3).

Clearly, system (1.1) may be thinking as a discrete analogue of the functional
differential equation below

[φp(x
′)]′ + f

(
t, x(t+ 1), x(t), x(t− 1)

)
= 0, t ∈ R,

which is arising in the study of the existence of solitary waves of lattice differential
equations, see [1-3].

When dealing with (1.1), there are many excellent works (e.g. see [4-6]). [4] is
the first paper to deal with the existence of periodic and subharmonic solutions of
discrete system (1.1), and the results of [5-6] are based on [4].

In [4], by using the critical point theory, Chen and Fang consider the existence of
periodic and subharmonic solutions of discrete system (1.1) for the case of F ≥ 0.
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Employing the critical point theory, in [5], Yu, Shi, and Guo study a special
case of (1.1). Without any periodic assumptions, they gain some different exis-
tence results on nontrivial homoclinic orbit for nonlinear advance and retardation
difference equations.

In [6], Lin and Zhou argue some extensions of system (1.1). Then the critical
theory uses, they derive some sufficient conditions on the existence and multiplicity
of periodic and subharmonic solutions to a 2nth-order nonlinear advance and retar-
dation ϕ-Laplacian difference equation. Besides, if one fetches ϕ(x) = |x|p−2(1 <
p < ∞), rk = 1 and n = 1, Theorem 3.1 in [6] reduces to Theorem 3.1 in [4]. So
the existence results in [6] are extensions in [4].

For other related works on the existence of periodic solutions, for nonlinear
difference equations, we refer the authors to see [7-8], for second-order (or higher-
order) discrete Hamiltonian system, one can consult to [9-11], and for the boundary
value problems, to read [12] and the references cited up there.

It is remarked that, in (1.1), f depends on xn+1 and xn−1, the traditional ways
of establishing the functional in [3-5, 7-8, 10-12] are inapplicable. Besides, one
discovers that F (t, u, v) ∈ R. However, as far as we know, there are very few
research works on (1.1) without the nonnegativity restriction on vector field F . For
example, in [4-6], all the authors make the same assumption on F , i.e., F ≥ 0.

The main purpose of this paper is to consider the existence of nontrivial periodic
and subharmonic solutions of discrete system (1.1) for the case of F ≤ 0. In (1.1),
since F ≤ 0, the methods used in [4-6] are not available. More precisely, let p ≥ 2
and qm ≥ 5, with the help of the constructing triple (J(x), Y ⊕ Z, P) (given in
Section 2), we obtain the existence of nontrivial periodic and subharmonic solutions
of (1.1) for nonpositivity vector field F .

We assume that

(A1) 0 < q,m ∈ N, qm ≥ 5 and for every (t, x, y, z) ∈ Z × R × R × R, f(t +
m,x, y, z) = f(t, x, y, z);

(A2) F (t, u, v) ≤ 0 and satisfies

lim
ρ→0

F (t, u, v)

ρp
= 0 where ρ =

√
u2 + v2;

(A3) there exist constants a1 > 0, a2 > 0 and β ≥ p+ 1, such that

F (t, u, v) ≤ −a1

(√
u2 + v2

)β

+ a2 for ∀ (t, u, v) ∈ R3.

Our main result is given by

Theorem 1.1. For any given positive integers q and m, let qm ≥ 5 and p ∈ [2,∞),
suppose conditions (A1) − (A3) are satisfied. Then, system (1.1) has at least two
nontrivial qm-periodic solutions, here a solution {xn} of (1.1) is said to be periodic
with period qm if {xn} ∈ Eqm. Moreover, if {xn} ∈ Eqm and x1 =···= xqm = 0,
{xn} is called to be trivial.

Corollary 1.1. For p ∈ [2,∞), assume F (t, u, v) satisfies conditions (A1), (A2)
and
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(A4) there exist constants β ≥ p+ 1 and a1 > 0, such that

F (t, u, v) ≤ −a1

(√
u2 + v2

)β

.

Then, system (1.1) has at least two nontrivial qm-periodic solutions.

We give an representative example to make our results on the system (1.1) more
clear.

Example 1.1. Suppose that

f(t, u, v, w) = −2(p+ 1)v

[(
1 + cos2

πt

m

)
(u2 + v2)p

+

(
1 + cos2

π(t− 1)

m

)
(v2 + w2)p

]
.

Take

F (t, u, v) = −
(
1 + cos2

πt

m

)
(u2 + v2)p+1.

we have

F ′
2(t− 1, v, w) + F ′

3(t, u, v)

= −2(p+ 1)v

[(
1 + cos2

πt

m

)
(u2 + v2)p + (1 + cos2

π(t− 1)

m

)
(v2 + w2)p

]
.

Proof. It is clear that F ∈ C1(R3,R), and (A1), (A2) and (A3) are satisfied, so
system (1.1) has at least two nontrivial qm-periodic solutions.

2. Notations and useful lemmas

Before proving Theorem 1.1, we introduce some notions and notations initially.

• Let W be the set of sequences, i.e. W =
{
w = {wk}k, wk ∈ R, k ∈ N

}
and

when x, y ∈ W , a, b ∈ R, ax+ by is given by ax+ by = {axk + byk}+∞
k=−∞.

For any given positive integers q and m, Eqm ⊂ W , meeting that

Eqm =
{
w = {wk} ∈ W | wk+qm = wk, k ∈ Z

}
.

Then with the common Euclid inner product (∥x∥ = (
∑qm

k=1 x
2
k)

1
2 ), Eqm is

a qm-dimensional Hilbert space. Let ∥ · ∥α denote by

∥x∥α = (

qm∑
k=1

|xk|α)
1
α , α ∈ (1,∞),

then there exist positive constants C1 ≤ C2, C3 ≤ C4 and C5 ≤ C6 such
that

C1∥x∥p ≤ ∥x∥ ≤ C2∥x∥p , ∀ p ∈ [2,∞), ∀ x ∈ Eqm,

C3∥x∥β ≤ ∥x∥ ≤ C4∥x∥β , ∀ β ∈ [3,∞), ∀ x ∈ Eqm.

• Let H be a real Hilbert space, J ∈ C1(H) is said to satisfy PS condition if
any sequence {xk} ⊂ H for which {J(xk)} is bounded and J ′(xk) → 0, as
k → ∞, possesses a convergent subsequence in H.
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• Set Z = {(x1, x2, . . . , xn−1, xn, xn+1, . . . , xqm) ∈ Eqm |∆xn−1 = −∆xn =
c, ∆x1 = . . . = ∆xn−2 = ∆xn+1 = . . . = ∆xqm = 0, c ∈ R} and Y = Z⊥,
then Eqm = Y ⊕ Z.

Remark 2.1. The orthogonal direct sum decomposition related to ∆xj (j =

1, 2, . . . , qm), and {(u, u, . . . , u)⊤ ∈ Eqm | u ∈ R} ⊆ Y is very different from the
known research works, and when x ∈ Y , we can conclude that x ̸= (u, u, . . . , u)⊤.

We now give some useful lemmas, which will serve us well later.

Lemma 2.1.([3]) Let qm ≥ 3, S be a matrix

S =


2 −1 0 · · · 0 −1
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

...
. . .

...
...

...
−1 0 0 · · · −1 2


qm×qm

.

If 0 ̸= c ∈ R, then the eigenvector of S associated with the eigenvalue 0, is ξ =
(c, c, . . . , c)⊤. Let λ1, λ2, . . . , λqm−1 be the other eigenvalues of S, then λj > 0.
Moreover, for all j ∈ Z[1, qm− 1]

λmin = min
j

λj = 2(1− cos
2π

qm
), λmax = max

j
λj =

{
4, if qm is even,
2(1 + cos π

qm ), if qm is odd.

Lemma 2.2. Let P be a matrix and qm ≥ 5, such that for any (∆x1,··· ,∆xqm)⊤ ∈
Rqm,

(∆x1, · · · ,∆xqm)⊤P (∆x1, · · · ,∆xqm) =

qm∑
k=1

(∆xk)
2 + 2∆xn−1∆xn,

where

P =



1 0 · · · · · · · · · · · · · · · · · · · · · 0
0 1 0 · · · · · · · · · · · · · · · · · · 0
...

. . .
. . .

. . . · · · · · · · · · · · · · · ·
...

... · · ·
. . .

. . . 0 0 · · · · · · · · ·
...

... · · · · · · 0 1 1 0 · · · · · ·
...

... · · · · · · 0 1 1 0 · · · · · ·
...

... · · · · · ·
... 0 0

. . . 0 · · ·
...

... · · · · · ·
...

...
...

. . .
. . .

. . .
...

0 · · · · · · · · · · · · · · · · · · 0 1 0
0 · · · · · · · · · · · · · · · · · · · · · 0 1


qm×qm

.

Then the eigenvalues of P are 1, 1, . . . , 1︸ ︷︷ ︸
qm−2

, 0, 2. Moreover, matrix P has qm linearly

independent eigenvectors, and when x ∈ Y , the eigenvalues of P are positive.
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Proof. It is easy to compute that the eigenvalues of P are 1, 1, . . . , 1︸ ︷︷ ︸
qm−2

, 0, 2, and

matrix P has qm linearly independent eigenvectors. Since Z = {(x1, x2, . . . , xqm) ∈
Eqm |∆xn−1 = −∆xn = c, ∆x1 = . . . = ∆xn−2 = ∆xn+1 = . . . = ∆xqm = 0, c ∈
R} and Y = Z⊥, then when x ∈ Y , the eigenvalues of P are positive.

Let k ∈ Z[1, qm], and qm ≥ 5, we define our new functional J(x) on Eqm as
follows:

J(x) =

qm∑
k=1

2λ
p
2
max(

1
C1

)p

pλminγmin
[(∆xk)

2 + 2∆xn−1∆xn] +

qm∑
k=1

[−1

p
|△xk|p + F (k, xk+1, xk)],

(2.1)
where γmin is the smallest positive eigenvalue of P .

Clearly, for any x = {xk}k∈Z ∈ Eqm, according to x0 = xqm, x1 = xqm+1, one
computes that

∂J

∂xn
= ∆

(
φp(∆xn−1)

)
+ f(n, xn+1, xn, xn−1), ∀ n ∈ Z[1, qm], i = 1, 2.

Thus, the existence of critical points of Ji on Eqm may implies the existence of
periodic solutions of system (1.1).

Remark 2.2. We have the following identity:

∂

[
(∆x1, · · · ,∆xqm)⊤P (∆x1, · · · ,∆xqm)

]
∂xn

=

∂

[∑qm
k=1[(∆xk)

2 + 2∆xn−1∆xn]]

∂xn
= 0.

Lemma 2.3. Let (A3) be valid, then the functional J(x) is bounded from above
on Eqm.

Proof. It is clear that,
qm∑
k=1

(∆xk)
2 =

qm∑
k=1

(xk+1 − xk)
2 =

qm∑
k=1

(2x2
k − 2xkxk+1). (2.2)

Then, for all x ∈ Eqm, by (A3) and Lemma 2.1, we have

J(x) ≤
qm∑
k=1

[
4λ

p
2
max(

1
C1

)p

pλminγmin
(∆xk)

2

]
+

qm∑
k=1

[
− 1

p
|△xk|p + F (k, xk+1, xk)

]

≤
4λ

p
2
max(

1
C1

)p

pλminγmin

qm∑
k=1

(∆xk)
2 +

qm∑
k=1

F (k, xk+1, xk)

≤
4λ

p
2
max(

1
C1

)p

pλminγmin

qm∑
k=1

2(x2
k − xkxk+1)− a1

qm∑
k=1

(√
x2
k+1 + x2

k

)β

+ a2qm

≤
4λ

p
2
max(

1
C1

)p

pλminγmin
x⊤Sx− a1

qm∑
k=1

|xk|β + a2qm

≤
4λ

p
2+1
max (

1
C1

)p

pλminγmin
∥x∥2 − a1

( 1

C4

)β∥x∥β + a2qm. (2.3)

Since β ≥ p+1 > 2, from (2.3), there exists a constantM1 > 0, such that J(x) ≤ M1

for every x ∈ Eqm.
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Lemma 2.4. Let (A3) hold, then J(x) satisfies PS condition.

Proof. Let x(j) ∈ Eqm, for all j ∈ N, be such that {J(x(j))} is bounded. By
Lemma 2.3, there exists M2 > 0, such that

−M2 ≤ J(x(j)) ≤
4λ

p
2+1
max (

1
C1

)p

pλminγmin
∥x∥2 − a1

( 1

C4

)β∥x∥β + a2qm,

which implies

a1
( 1

C4

)β∥x∥β −
4λ

p
2+1
max (

1
C1

)p

pλminγmin
∥x∥2 ≤ M2 + a2qm.

For β > 2, there exsit a constant M3 > 0 such that for every k ∈ N, ∥x(k)∥ ≤ M3.

Therefore, {x(k)} is bounded in Eqm. Since Eqm is finite dimensional, then the
P-S condition is satisfied.

Lemma 2.5. (Linking Theorem) [13,Theorem5.3]. Let H be a real Hilbert space,
H = H1 ⊕ H2, where H1 is a finite-dimensional subspace of H. Assume that
J ∈ C1(H) satisfies the PS condition and

(D1) there exist constants σ > 0 and ρ > 0, such that J | ∂Bρ∩H2 ≥ σ;

(D2) there is an e ∈ ∂B1 ∩H2 and a constant R1 > ρ, such that J | ∂Q ≤ 0,

where Q = (BR1 ∩ H1) ⊕ {re| 0 < r < R1}, Bρ denotes the open ball in X with
radius ρ and centered at 0 and ∂Bρ represents its boundary. Then, J possesses a
critical value c ≥ σ, here

c = inf
h∈Γ

max
u∈Q

J(h(u)),Γ = {h ∈ C(Q,H) | h| ∂Q = id},

and id denotes the identity operator.

3. Proof of main result

It is time for us to give details for proving the Theorem 1.1.

Proof. For any x ∈ Y , let ∆x = (∆x1,∆x2, . . . ,∆xqm)⊤, from (2.1)-(2.2), we have

J(x) ≥
2λ

p
2
max(

1
C1

)p

pλminγmin

qm∑
k=1

[
(∆xk)

2 + 2∆xn−1∆xn

]
−1

p

( 1

C1

)p(
[

qm∑
k=1

|△xk|2]
1
2

)p

+

qm∑
k=1

F (k, xk+1, xk)

=
2λ

p
2
max(

1
C1

)p

pλminγmin
(∆x)⊤P (∆x)− 1

p

( 1

C1

)p
[

qm∑
k=1

(2x2
s − 2xkxk+1)]

p
2

+

qm∑
k=1

F (k, xk+1, xk)

=
2λ

p
2
max(

1
C1

)p

pλminγmin
(∆x)⊤P (∆x)− 1

p

( 1

C1

)p(
x⊤Sx

) p
2

+

qm∑
k=1

F (k, xk+1, xk). (3.1)

In view of condition (A2), we have

lim
ρ→0

F (t, u, v)

ρp
= 0, ρ =

√
u2 + v2.
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Now, if one chooses ε = 2−
p
2−2( 1p )λ

p
2
max(

1
C1

)p, there exists a sufficiently small

positive number δ, such that

|F (t, u, v)| ≤ 2−
p
2−2(

1

p
)λ

p
2
max

(√
u2 + v2

)p

, ∀ ρ < δ.

For ∥x∥ ≤ δ, with the help of Lemma 2.2, from (3.1), we have

J(x) ≥
2λ

p
2
max(

1
C1

)p

pλmin
∥∆x∥2 − 1

p

(
C1)

p

(
x⊤Sx

) p
2

−2−
p
2−2(

1

p
)λ

p
2
max

qm∑
k=1

[2
p
2 max{|xk+1|p, |xk|p}]

≥
2λ

p
2
max(

1
C1

)p

pλmin
∥∆x∥2 − 1

p

( 1

C1

)p(
x⊤Sx

) p
2

− 2−
p
2−2(

1

p
)λ

p
2
max2

p
2+1∥x∥pp

≥
2λ

p
2
max(

1
C1

)p

pλmin
∥∆x∥2 − 1

p

( 1

C1

)p(
x⊤Sx

) p
2

−2−
p
2−2(

1

p
)λ

p
2
max2

p
2+1(

1

C1
)p∥x∥p. (3.2)

By Lemma 2.1 and Remark 2.2, from (3.2), then

J(x) ≥
2λ

p
2
max(

1
C1

)p

pλmin
∥∆x∥2 − 1

p

( 1

C1

)p
λ

p
2
max∥x∥p −

1

2p
λ

p
2
max

( 1

C1

)p∥x∥p
=

2λ
p
2
max(

1
C1

)p

pλmin
x⊤Sx− 1

p

( 1

C1

)p
λ

p
2
max∥x∥p −

1

2p
λ

p
2
max

( 1

C1

)p∥x∥p
≥

2λ
p
2
max(

1
C1

)p

p
∥x∥2 − 3

2p
λ

p
2
max

( 1

C1

)p∥x∥p, (3.3)

where x = (x1, x2, . . . , xqm)⊤.

Observing that δ is sufficiently small and p ≥ 2, thus we get from (3.3)

J(x) ≥ 2

p
λ

p
2
max

( 1

C1

)p∥x∥2 − 3

2p
λ

p
2
max

( 1

C1

)p∥x∥p =
1

2p
λ

p
2
max

( 1

C1

)p∥x∥2.
If one takes σ = 1

2pλ
p
2
max

(
1
C1

)p
δ2, then

J(x) ≥ σ > 0, ∀x ∈ Y ∩ ∂Bδ.

So,

c1 = sup
x∈Eqm

J(x) ≥ σ > 0,

which hints that J satisfies the condition (D1) in Lemma 2.5.

Finally, we verify condition (D2) of the linking theorem. By Lemma 2.4, J(x)
meets P-S condition. Taking e ∈ ∂B1 ∩ Y , for any z ∈ Z, r ∈ R, let x = re + z,
from (2.6),

J(x) ≤
4λ

p
2+1
max (

1
C1

)p

pλminγmin
∥x∥2 − a1

( 1

C4

)β∥x∥β + a2qm.
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It is clear that, there exists a big enough constant R3 > 0, such that J(x) ≤ 0, for
all x ∈ ∂Q, where

Q = (BR3 ∩ Z)⊕ {re| 0 < r < R3}.

Employing linking theorem (Lemma 2.5), J exists a critical value c ≥ σ > 0, where

c = inf
h∈Γ

max
x∈Q

J(h(x)), Γ = {h ∈ C(Q, Eqm)|h| ∂Q = id}.

From Lemma 2.3, we get lim
∥x∥→∞

J(x) = −∞, so −J is coercive. Set c1 =

sup
x∈Eqm

J(x). By the continuity of J on Eqm, there exists x̄ ∈ Eqm, such that

J(x̄) = c1, and x̄ is a critical point of J . Obviously, when x1 = . . . = xqm, we have
∆x1 = . . . = ∆xqm = 0. Employing (2.4) and F (t, u, v) ≤ 0, we obtain

J(x) =

qm∑
k=1

F (k, xk+1, xk) ≤ 0,

Thus, J(x) does not acquire its maximum c1. Then, the critical point associated
with the critical value c1 of J is a nontrivial qm-periodic solutions of system (1.1).

By now, we obtain a nontrivial qm-periodic solution. The rest of the proof of
the other nontrivial qm-periodic solution is similar to that of [7, Theorem 1.1] or
[4, Theorem 3.1], we omit the details. Now, the proof of our Theorem 1.1 is now
complete, that means system (1.1) has at least two nontrivial qm-periodic solutions.

Remark 3.1 In the proof of Theorem 1.1, in order to obtain that J(x) satisfies
condition (D1) of the linking theorem, we let p ∈ [2,∞).
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