Electronic Journal of Mathematical Analysis and Applications Vol. 5(1) Jan. 2017, pp. 202-207. ISSN: 2090-729(online) http://fcag-egypt.com/Journals/EJMAA/

ON SOME IDENTITIES AND SYMMETRIC FUNCTIONS FOR LUCAS AND PELL NUMBERS

ALI BOUSSAYOUD, MERIAMA BOULYER AND MOHAMED KERADA

ABSTRACT. In this paper, we show how the action of the symmetrizing endomorphism operator $\delta_{e_1e_2}^k$ to the series $\sum_{n=0}^{\infty} a_n e_1^n z^n$ allows us to obtain an alternative approach for the determination of Fibonacci and Lucas-Pell numbers.

1. INTRODUCTION AND NOTATIONS

The second-order linear recurrence sequence $(U_n(a, b; p, q))_{n \ge 0}$, or briefly $(U_n)_{n \ge 0}$, is defined by

$$U_{n+2} = pU_{n+1} + qU_n, \ U_0 = a, \ U_1 = b.$$

Where a, b and p, q are arbitrary real numbers for n > 0. The Binet formula for the sequence $(U_n)_{n>0}$ is

$$U_n = \frac{c_1 x_1^n - c_2 x_2^n}{x_1 - x_2},$$

where $c_1 = b - ax_2$ and $c_2 = b - ax_1$ [5]. Certain sequence of numbers that appeared here are Fibonacci number $(F_n)_{n\geq 0}$, if we take p = q = b = 1, a = 2, Lucas number $(L_n)_{n\geq 0}$ for p = 2, q = b = 1, a = 0, Pell number $(P_n)_{n\geq 0}$ and Pell-Lucas number $(Q_n)_{n\geq 0}$, when one has p = b = a = 2, q = 1. In this paper, we show that the use of the action of the symmetric endomorphism operator $\delta_{e_1e_2}^k$ [4] to the series $\sum_{n=0}^{\infty} a_n (e_1 z)^n$, gives an alternative approach for determining the generating functions of some sequences of numbers cited above.

Let k and n be two positive integer and $\{x_1, x_2, ..., x_n\}$ are set of given variables, recall [8] that the k-th elementary symmetric function $e_k(x_1, x_2, ..., x_n)$ and the k-th complete homogeneous symmetric function $h_k(x_1, x_2, ..., x_n)$ are defined respectively by

$$e_k(x_1, x_2, ..., x_n) = \sum_{i_1+i_2+...+i_n=k} x_1^{i_1} x_2^{i_2} ... x_n^{i_n}, \ 0 \le k \le n,$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 05E05; Secondary 11B39.

Key words and phrases. Fibonacci numbers; Generating functions; Pell-Lucas numbers. Submitted Feb. 21, 2016.

EJMAA-2017/5(1)

with $i_1, i_2, ..., i_n = 0$ or 1.

$$h_k(x_1, x_2, \dots, x_n) = \sum_{i_1+i_2+\dots+i_n=k} x_1^{i_1} x_2^{i_2} \dots x_n^{i_n} , \ 0 \le k \le n,$$

with $i_1, i_2, ..., i_n \ge 0$.

First, we set $e_0(x_1, x_2, ..., x_n) = 1$ and $h_0(x_1, x_2, ..., x_n) = 1$ (by convention). For k > n or k < 0, we set $e_k(x_1, x_2, ..., x_n) = 0$ and $h_k(x_1, x_2, ..., x_n) = 0$.

Lemma 1 [10] The relations

1)
$$F_{-n} = (-1)^{n+1}F_n$$
,
2) $L_{-n} = (-1)^n L_n$,
3) $P_{-n} = (-1)^{n+1}P_n$,
4) $Q_{-n} = (-1)^n Q_n$

hold for all $n \geq 0$.

Definition 1 Let A and E be any two alphabets, then we give $S_n(A - E)$ by the following form:

$$\frac{\Pi_{e\epsilon E}(1-ez)}{\Pi_{a\epsilon A}(1-az)} = \sum_{n=0}^{\infty} S_n (A-E) z^n,$$
(1)

with the condition $S_n(A - E) = 0$ for n < 0 (see [1]).

Corollary 1 Taking A = 0 in (1.1), that gives

$$\Pi_{e\epsilon E}(1-ez) = \sum_{n=0}^{\infty} S_n(-E) z^n.$$
(2)

Definition 2 [7] Given a function g on \mathbb{R}^n , the divided difference operator is defined as follows:

$$\partial_{x_i x_{i+1}}(g) = \frac{g(x_1, \cdots, x_i, x_{i+1}, \cdots, x_n) - g(x_1, \cdots, x_{i-1}, x_{i+1}, x_i, x_{i+2}, \cdots, x_n)}{x_i - x_{i+1}}.$$

It should be noted that the divided difference operator $\partial_{x_i x_{i+1}}$ commutes with symmetric functions at x_i , x_{i+1} and is compatible with the function S_n [6].

Definition 3 [2] The symmetrizing operator $\delta_{e_1e_2}^k$ is defined by

$$\delta_{e_1e_2}^k(f) = \frac{e_1^k f(e_1) - e_2^k f(e_2)}{e_1 - e_2} \text{ for all } k \in \mathbb{N}.$$

Proposition 1 [3] Let $E = \{e_1, e_2\}$ an alphabet, we define the operator $\delta_{e_1e_2}^k$ as follows:

$$\delta_{e_1e_2}^k f(e_1) = S_{k-1}(e_1 + e_2) f(e_1) + e_2^k \partial_{e_1e_2} f(e_1), \text{ for all } k \in \mathbb{N}.$$

2. The Main Result

In our main result, we will combine all these results in a unified way such that all these obtained results can be treated as special case of the following Theorem. **Theorem 1** Given an alphabet $E = \{e_1, e_2\}$ and two sequences $\sum_{n=0}^{+\infty} a_n z^n$, $\sum_{n=0}^{+\infty} b_n z^n$ such that $\left(\sum_{n=0}^{+\infty} a_n z^n\right) \left(\sum_{n=0}^{+\infty} b_n z^n\right) = 1$, then

$$\sum_{n=0}^{\infty} a_n \, \delta_{e_1 e_2}^{k+n-1}(e_1) z^n = \frac{\sum_{n=0}^{k-1} b_n (e_1 e_2)^n \delta_{e_1 e_2}^{k-n}(e_1^{-1}) z^n - (e_1 e_2 z)^k \sum_{n=0}^{\infty} b_{n+k+1} \delta_{e_1 e_2}(e_1^n) z^{n+1}}{\left(\sum_{n=0}^{\infty} b_n e_1^n z^n\right) \left(\sum_{n=0}^{\infty} b_n e_2^n z^n\right)}$$
(2)

(3) **Proof.** Let $\sum_{n=0}^{\infty} a_n z^n$ and $\sum_{n=0}^{\infty} b_n z^n$ be two sequences as $\sum_{n=0}^{\infty} a_n z^n \times \sum_{n=0}^{\infty} b_n z^n = 1$. On one hand, since $f(e_1) = \sum_{n=0}^{\infty} a_n e_1^n z^n$, we have

$$\delta_{e_1e_2}^k f(e_1) = \delta_{e_1e_2}^k \left(\sum_{n=0}^{\infty} a_n e_1^n z^n \right) \\ = \sum_{n=0}^{\infty} a_n \, \delta_{e_1e_2}^{k+n-1}(e_1) z^n,$$

which is the left hand side of (3). On the other hand, since

$$f(e_1) = \frac{1}{\sum\limits_{n=0}^{\infty} b_n e_1^n z^n},$$

we have that

$$\begin{aligned} \partial_{e_1 e_2} f(e_1) &= \frac{1}{e_1 - e_2} \left(\frac{1}{\sum_{n=0}^{\infty} b_n e_1^n z^n} - \frac{1}{\sum_{n=0}^{\infty} b_n e_2^n z^n} \right) \\ &= \frac{1}{e_1 - e_2} \left(\frac{\sum_{n=0}^{\infty} b_n e_2^n z^n - \sum_{n=0}^{\infty} b_n e_1^n z^n}{\left(\sum_{n=0}^{\infty} b_n e_1^n z^n\right) \left(\sum_{n=0}^{\infty} b_n e_2^n z^n\right)} \right) \\ &= \frac{\sum_{n=0}^{\infty} b_n \frac{e_2^n - e_1^n}{e_1 - e_2} z^n}{\left(\sum_{n=0}^{\infty} b_n e_1^n z^n\right) \left(\sum_{n=0}^{\infty} b_n e_2^n z^n\right)} \\ &= -\frac{\sum_{n=0}^{\infty} b_n S_{n-1}(e_1 + e_2) z^n}{\left(\sum_{n=0}^{\infty} b_n e_1^n z^n\right) \left(\sum_{n=0}^{\infty} b_n e_2^n z^n\right)}. \end{aligned}$$

EJMAA-2017/5(1)

By Proposition 1, it follows that

$$\begin{split} \delta_{e_{1}e_{2}}^{k}f\left(e_{1}\right) &= S_{k-1}(e_{1}+e_{2})f\left(e_{1}\right)+e_{2}^{k}\partial_{e_{1}e_{2}}f\left(e_{1}\right) \\ &= \frac{S_{k-1}(e_{1}+e_{2})}{\sum\limits_{n=0}^{\infty}b_{n}e_{1}^{n}z^{n}}-e_{2}^{k}\frac{\sum\limits_{n=0}^{\infty}b_{n}S_{n-1}(e_{1}+e_{2})z^{n}}{\left(\sum\limits_{n=0}^{\infty}b_{n}e_{1}^{n}z^{n}\right)\left(\sum\limits_{n=0}^{\infty}b_{n}e_{2}^{n}z^{n}\right)} \\ &= \frac{\sum\limits_{n=0}^{\infty}b_{n}\left[e_{2}^{n}S_{k-1}(e_{1}+e_{2})-e_{2}^{k}S_{n-1}(e_{1}+e_{2})\right]z^{n}}{\left(\sum\limits_{n=0}^{\infty}b_{n}e_{1}^{n}z^{n}\right)\left(\sum\limits_{n=0}^{\infty}b_{n}e_{2}^{n}z^{n}\right)}. \end{split}$$

Hence, we have that

$$\begin{split} \delta_{e_{1}e_{2}}^{k}f\left(e_{1}\right) &= \frac{\sum\limits_{n=0}^{k-1} b_{n} \left[e_{2}^{n} S_{k-1}(e_{1}+e_{2})-e_{2}^{k} S_{n-1}(e_{1}+e_{2})\right] z^{n}}{\left(\sum\limits_{n=0}^{\infty} b_{n} e_{1}^{n} z^{n}\right) \left(\sum\limits_{n=0}^{\infty} b_{n} e_{2}^{n} z^{n}\right)} + \frac{\sum\limits_{n=k+1}^{\infty} b_{n} \left[e_{2}^{n} S_{k-1}(e_{1}+e_{2})-e_{2}^{k} S_{n-1}(e_{1}+e_{2})\right] z^{n}}{\left(\sum\limits_{n=0}^{\infty} b_{n} e_{1}^{n} z^{n}\right) \left(\sum\limits_{n=0}^{\infty} b_{n} e_{2}^{n} z^{n}\right)} \\ &= \frac{\sum\limits_{n=0}^{k-1} b_{n} (e_{1}e_{2})^{n} \delta_{e_{1}e_{2}}^{k-n}(e_{1}^{-1}) z^{n} - (e_{1}e_{2}z)^{k} \sum\limits_{n=0}^{\infty} b_{n+k+1} \delta_{e_{1}e_{2}}(e_{1}^{-1}) z^{n+1}}{\left(\sum\limits_{n=0}^{\infty} b_{n} e_{1}^{n} z^{n}\right) \left(\sum\limits_{n=0}^{\infty} b_{n} e_{2}^{n} z^{n}\right)}. \end{split}$$

This completes the proof.

3. On the Symmetric Functions of Some numbers

In this part, we derive the new generating functions of some known numbers. Indeed, we consider Theorem 1 in order to get Fibonacci numbers, Lucas numbers and Pell-Lucas numbers with k = 1 and k = 2, for the case $\frac{1}{1+z} = \sum_{n=0}^{\infty} (-1)^n z^n$. **Lemma 2** Given an aphabet $E = \{e_1, e_2\}$, we have

$$\sum_{n=0}^{\infty} (-1)^n h_n(e_1, e_2) z^n = \frac{1}{(1+e_1 z) (1+e_2 z)}, \text{ with } h_n(e_1, e_2) = S_n(e_1+e_2).$$
(4)

Lemma 3 Given an aphabet $E = \{e_1, e_2\}$, we have

$$\sum_{n=0}^{\infty} (-1)^n h_{n+1}(e_1, e_2) z^n = \frac{e_1 + e_2 + e_1 e_2 z}{(1 + e_1 z) (1 + e_2 z)}, \text{ with } h_{n+1}(e_1, e_2) = S_{n+1}(e_1 + e_2).$$
(5)

By replacing e_2 by $(-e_2)$ in (4) and (5), we obtain

$$\sum_{n=0}^{\infty} (-1)^n S_n(e_1 + [-e_2]) z^n = \frac{1}{1 + (e_1 - e_2)z - e_1 e_2 z^2},$$
(6)

$$\sum_{n=0}^{\infty} (-1)^n S_{n+1}(e_1 + [-e_2]) z^n = \frac{e_1 - e_2 - e_1 e_2 z}{1 + (e_1 - e_2) z - e_1 e_2 z^2},$$
(7)

205

Choosing e_1 and e_2 such that $\begin{cases} e_1e_2 = 1 \\ e_1 - e_2 = 1 \end{cases}$ and substituting in (6) and (7) we get

$$\sum_{n=0}^{\infty} F_{-n} z^n = \frac{1}{z^2 - z - 1},\tag{8}$$

which represent a generating function for Fibonacci numbers such that $F_{-n} = (-1)^{n+1} S_n (e_1 + [-e_2]).$

$$\sum_{n=0}^{\infty} (-1)^n S_{n+1}(e_1 + [-e_2]) z^n = \frac{1-z}{1+z-z^2},$$
(9)

which is given by Boussayoud et al [3].

Corollary 2 For $n \in \mathbb{N}$, we have

$$S_{n+2}(e_1 + [-e_2]) = S_{n+1}(e_1 + [-e_2]) + S_n(e_1 + [-e_2]).$$

Choosing e_1 and e_2 such that $\begin{cases} e_1e_2 = 1 \\ e_1 - e_2 = 2 \end{cases}$ and substituting in (6) and (7). where we have

$$\sum_{n=0}^{\infty} (-1)^n S_n(e_1 + [-e_2]) z^n = \frac{1}{1 + 2z - z^2},$$
(10)

which yields also new generating functions.

$$\sum_{n=0}^{\infty} (-1)^n S_{n+1}(e_1 + [-e_2]) z^n = \frac{2-z}{1+2z-z^2},$$
(11)

Multiplying the equation (8) by 3 and subtract it from (9) we get

$$\sum_{n=0}^{\infty} L_{-n} z^n = \frac{2+z}{1+z-z^2},$$

which represents a new generating function for Lucas Numbers.

Corollary 3 For all $n \in \mathbb{N}$, we have

$$L_{-n} = (-1)^n \left[3S_n(e_1 + [-e_2]) - S_{n+1}(e_1 + [-e_2]) \right].$$

Multiplying the equation (10) by (-2) and added to (11) we obtain

$$\sum_{n=0}^{\infty} P_{-n} z^n = \frac{z}{1+2z-z^2}$$

which represents a new generating function for Pell Numbers.

Corollary 4 For all $n \in \mathbb{N}$, we have

$$P_{-n} = (-1)^{n+1} \left[S_{n+1}(e_1 + [-e_2]) - 2S_n(e_1 + [-e_2]) \right].$$

Multiplying the equation (10) by 6 and added to (11) by (-2), we have

$$\sum_{n=0}^{\infty} Q_{-n} z^n = \frac{2+2z}{1+2z-z^2}$$

which represents a new generating function for Pell-Lucas Numbers.

Corollary 5 For all $n \in \mathbb{N}$, we have

$$P_{-n} = (-1)^n \left[6S_n(e_1 + [-e_2]) - 2S_{n+1}(e_1 + [-e_2]) \right].$$

Acknowledgments

The authors would like to thank the anonymous referees for their valuable comments and suggestions.

References

- A. Abderrezzak, Généralisation de la transformation d'Euler d'une série formelle, Adv. Math. 103, 180-195, 1994.
- [2] A. Boussayoud, A. Abderrezzak, M. Kerada, Some applications of symmetric functions, *Integers.* 15A#48, 1-7, 2015.
- [3] A. Boussayoud, M. Kerada, R. Sahali, Symmetrizing Operations on Some Orthogonal Polynomials, Int. Electron. J. Pure Appl. Math. 9, 191-199, 2015.
- [4] A. Boussayoud, M. Kerada, A. Abderrezzak, A Generalization of some orthogonal polynomials. Springer Proc Math Stat.41, 229-235, 2013.
- [5] A.F Horadam, Basic properties of a certain generalized sequence of numbers, The Fibonacci Quarterly 3, 161–176, 1965.
- [6] A. Lascoux, A.M. Fua, Partition analysis and symmetrizing operators. J Comb Theory A. 109, 339-343, 2005.
- [7] I.G. Macdonald, Symmetric functions and Hall polynomias, Oxford University Press, 1979.
- [8] M.Merca . A Generalization of the symmetry between complete and elementary symmetric functions, Indian J. Pure Appl. Math. 45, 75–89, 2014.
- [9] T.Mansour. A formula for the generating functions of powers of Horadam's sequence, Australas. J. Comb. 30, 207–212, 2004.
- [10] T.Koshy, Pell and Pell-Lucas Numbers with Applications, Springer, 2014.

ALI BOUSSAYOUD, LMAM LABORATORY AND DEPARTMENT OF MATHEMATICS, MOHAMED SEDDIK BEN YAHIA UNIVERSITY, JIJEL, ALGERIA

E-mail address: aboussayoud@yahoo.fr

MERIAMA BOULYER, DEPARTMENT OF MATHEMATICS, MOHAMED SEDDIK BEN YAHIA UNIVERSITY, JIJEL, ALGERIA

E-mail address: meriama882014@outlook.fr

Mohamed Kerada, LMAM Laboratory and Department of Mathematics, Mohamed Seddik Ben Yahia University, Jijel, Algeria

E-mail address: mkerada@yahoo.fr, mkerad9@gmail.com