ON SOME IDENTITIES AND SYMMETRIC FUNCTIONS FOR LUCAS AND PELL NUMBERS

ALI BOUSSAYOUD, MERIAMA BOULYER AND MOHAMED KERADA

Abstract

In this paper, we show how the action of the symmetrizing endomorphism operator $\delta_{e_{1} e_{2}}^{k}$ to the series $\sum_{n=0}^{\infty} a_{n} e_{1}^{n} z^{n}$ allows us to obtain an alternative approach for the determination of Fibonacci and Lucas-Pell numbers.

1. Introduction and Notations

The second-order linear recurrence sequence $\left(U_{n}(a, b ; p, q)\right)_{n \geq 0}$, or briefly $\left(U_{n}\right)_{n \geq 0}$, is defined by

$$
U_{n+2}=p U_{n+1}+q U_{n}, U_{0}=a, U_{1}=b
$$

Where a, b and p, q are arbitrary real numbers for $n>0$. The Binet formula for the sequence $\left(U_{n}\right)_{n \geq 0}$ is

$$
U_{n}=\frac{c_{1} x_{1}^{n}-c_{2} x_{2}^{n}}{x_{1}-x_{2}}
$$

where $c_{1}=b-a x_{2}$ and $c_{2}=b-a x_{1}$ [5]. Certain sequence of numbers that appeared here are Fibonacci number $\left(F_{n}\right)_{n \geq 0}$, if we take $p=q=b=1, a=2$, Lucas number $\left(L_{n}\right)_{n \geq 0}$ for $p=2, q=b=1, a=0$, Pell number $\left(P_{n}\right)_{n \geq 0}$ and Pell-Lucas number $\left(Q_{n}\right)_{n \geq 0}$, when one has $p=b=a=2, q=1$. In this paper, we show that the use of the action of the symmetric endomorphism operator $\delta_{e_{1} e_{2}}^{k}$ [4] to the series $\sum_{n=0}^{\infty} a_{n}\left(e_{1} z\right)^{n}$, gives an alternative approach for determining the generating functions of some sequences of numbers cited above.

Let k and n be two positive integer and $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ are set of given variables, recall [8] that the k-th elementary symmetric function $e_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and the k-th complete homogeneous symmetric function $h_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ are defined respectively by

$$
e_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i_{1}+i_{2}+\ldots+i_{n}=k} x_{1}^{i_{1}} x_{2}^{i_{2}} \ldots x_{n}^{i_{n}}, 0 \leq k \leq n,
$$

[^0]with $i_{1}, i_{2}, \ldots, i_{n}=0$ or 1.
$$
h_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i_{1}+i_{2}+\ldots+i_{n}=k} x_{1}^{i_{1}} x_{2}^{i_{2}} \ldots x_{n}^{i_{n}}, 0 \leq k \leq n
$$
with $i_{1}, i_{2}, \ldots, i_{n} \geq 0$.
First, we set $e_{0}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=1$ and $h_{0}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=1$ (by convention). For $k>n$ or $k<0$, we set $e_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$ and $h_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$.

Lemma 1 10] The relations

1) $F_{-n}=(-1)^{n+1} F_{n}$,
2) $L_{-n}=(-1)^{n} L_{n}$,
3) $P_{-n}=(-1)^{n+1} P_{n}$,
4) $Q_{-n}=(-1)^{n} Q_{n}$
hold for all $n \geq 0$.
Definition 1 Let A and E be any two alphabets, then we give $S_{n}(A-E)$ by the following form:

$$
\begin{equation*}
\frac{\Pi_{e \epsilon E}(1-e z)}{\Pi_{a \epsilon A}(1-a z)}=\sum_{n=0}^{\infty} S_{n}(A-E) z^{n} \tag{1}
\end{equation*}
$$

with the condition $S_{n}(A-E)=0$ for $n<0$ (see [1]).

Corollary 1 Taking $A=0$ in (1.1), that gives

$$
\begin{equation*}
\Pi_{e \epsilon E}(1-e z)=\sum_{n=0}^{\infty} S_{n}(-E) z^{n} \tag{2}
\end{equation*}
$$

Definition 2 [7] Given a function g on \mathbb{R}^{n}, the divided difference operator is defined as follows:

$$
\partial_{x_{i} x_{i+1}}(g)=\frac{g\left(x_{1}, \cdots, x_{i}, x_{i+1}, \cdots x_{n}\right)-g\left(x_{1}, \cdots x_{i-1}, x_{i+1}, x_{i}, x_{i+2} \cdots x_{n}\right)}{x_{i}-x_{i+1}}
$$

It should be noted that the divided difference operator $\partial_{x_{i} x_{i+1}}$ commutes with symmetric functions at x_{i}, x_{i+1} and is compatible with the function S_{n} [6].

Definition 3 [2] The symmetrizing operator $\delta_{e_{1} e_{2}}^{k}$ is defined by

$$
\delta_{e_{1} e_{2}}^{k}(f)=\frac{e_{1}^{k} f\left(e_{1}\right)-e_{2}^{k} f\left(e_{2}\right)}{e_{1}-e_{2}} \text { for all } k \in \mathbb{N} .
$$

Proposition 1 [3] Let $E=\left\{e_{1}, e_{2}\right\}$ an alphabet, we define the operator $\delta_{e_{1} e_{2}}^{k}$ as follows:

$$
\delta_{e_{1} e_{2}}^{k} f\left(e_{1}\right)=S_{k-1}\left(e_{1}+e_{2}\right) f\left(e_{1}\right)+e_{2}^{k} \partial_{e_{1} e_{2}} f\left(e_{1}\right), \text { for all } k \in \mathbb{N}
$$

2. The Main Result

In our main result, we will combine all these results in a unified way such that all these obtained results can be treated as special case of the following Theorem.

Theorem 1 Given an alphabet $E=\left\{e_{1}, e_{2}\right\}$ and two sequences $\sum_{n=0}^{+\infty} a_{n} z^{n}$, $\sum_{n=0}^{+\infty} b_{n} z^{n}$ such that $\left(\sum_{n=0}^{+\infty} a_{n} z^{n}\right)\left(\sum_{n=0}^{+\infty} b_{n} z^{n}\right)=1$, then

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n} \delta_{e_{1} e_{2}}^{k+n-1}\left(e_{1}\right) z^{n}=\frac{\sum_{n=0}^{k-1} b_{n}\left(e_{1} e_{2}\right)^{n} \delta_{e_{1} e_{2}}^{k-n}\left(e_{1}^{-1}\right) z^{n}-\left(e_{1} e_{2} z\right)^{k} \sum_{n=0}^{\infty} b_{n+k+1} \delta_{e_{1} e_{2}}\left(e_{1}^{n}\right) z^{n+1}}{\left(\sum_{n=0}^{\infty} b_{n} e_{1}^{n} z^{n}\right)\left(\sum_{n=0}^{\infty} b_{n} e_{2}^{n} z^{n}\right)} \tag{3}
\end{equation*}
$$

Proof. Let $\sum_{n=0}^{\infty} a_{n} z^{n}$ and $\sum_{n=0}^{\infty} b_{n} z^{n}$ be two sequences as $\sum_{n=0}^{\infty} a_{n} z^{n} \times \sum_{n=0}^{\infty} b_{n} z^{n}=1$.
On one hand, since $f\left(e_{1}\right)=\sum_{n=0}^{\infty} a_{n} e_{1}^{n} z^{n}$, we have

$$
\begin{aligned}
\delta_{e_{1} e_{2}}^{k} f\left(e_{1}\right) & =\delta_{e_{1} e_{2}}^{k}\left(\sum_{n=0}^{\infty} a_{n} e_{1}^{n} z^{n}\right) \\
& =\sum_{n=0}^{\infty} a_{n} \delta_{e_{1} e_{2}}^{k+n-1}\left(e_{1}\right) z^{n}
\end{aligned}
$$

which is the left hand side of (3). On the other hand, since

$$
f\left(e_{1}\right)=\frac{1}{\sum_{n=0}^{\infty} b_{n} e_{1}^{n} z^{n}}
$$

we have that

$$
\begin{aligned}
\partial_{e_{1} e_{2}} f\left(e_{1}\right) & =\frac{1}{e_{1}-e_{2}}\left(\frac{1}{\sum_{n=0}^{\infty} b_{n} e_{1}^{n} z^{n}}-\frac{1}{\sum_{n=0}^{\infty} b_{n} e_{2}^{n} z^{n}}\right) \\
& =\frac{1}{e_{1}-e_{2}}\left(\frac{\sum_{n=0}^{\infty} b_{n} e_{2}^{n} z^{n}-\sum_{n=0}^{\infty} b_{n} e_{1}^{n} z^{n}}{\left(\sum_{n=0}^{\infty} b_{n} e_{1}^{n} z^{n}\right)\left(\sum_{n=0}^{\infty} b_{n} e_{2}^{n} z^{n}\right)}\right) \\
& =\frac{\sum_{n=0}^{\infty} b_{n} \frac{e_{2}^{n}-e_{1}^{n}}{e_{1}-e_{2}} z^{n}}{\left(\sum_{n=0}^{\infty} b_{n} e_{1}^{n} z^{n}\right)\left(\sum_{n=0}^{\infty} b_{n} e_{2}^{n} z^{n}\right)} \\
& =-\frac{\sum_{n=0}^{\infty} b_{n} S_{n-1}\left(e_{1}+e_{2}\right) z^{n}}{\left(\sum_{n=0}^{\infty} b_{n} e_{1}^{n} z^{n}\right)\left(\sum_{n=0}^{\infty} b_{n} e_{2}^{n} z^{n}\right)}
\end{aligned}
$$

By Proposition 1, it follows that

$$
\begin{aligned}
\delta_{e_{1} e_{2}}^{k} f\left(e_{1}\right) & =S_{k-1}\left(e_{1}+e_{2}\right) f\left(e_{1}\right)+e_{2}^{k} \partial_{e_{1} e_{2}} f\left(e_{1}\right) \\
& =\frac{S_{k-1}\left(e_{1}+e_{2}\right)}{\sum_{n=0}^{\infty} b_{n} e_{1}^{n} z^{n}}-e_{2}^{k} \frac{\sum_{n=0}^{\infty} b_{n} S_{n-1}\left(e_{1}+e_{2}\right) z^{n}}{\left(\sum_{n=0}^{\infty} b_{n} e_{1}^{n} z^{n}\right)\left(\sum_{n=0}^{\infty} b_{n} e_{2}^{n} z^{n}\right)} \\
& =\frac{\sum_{n=0}^{\infty} b_{n}\left[e_{2}^{n} S_{k-1}\left(e_{1}+e_{2}\right)-e_{2}^{k} S_{n-1}\left(e_{1}+e_{2}\right)\right] z^{n}}{\left(\sum_{n=0}^{\infty} b_{n} e_{1}^{n} z^{n}\right)\left(\sum_{n=0}^{\infty} b_{n} e_{2}^{n} z^{n}\right)}
\end{aligned}
$$

Hence, we have that

$$
\begin{aligned}
\delta_{e_{1} e_{2}}^{k} f\left(e_{1}\right)= & \frac{\sum_{n=0}^{k-1} b_{n}\left[e_{2}^{n} S_{k-1}\left(e_{1}+e_{2}\right)-e_{2}^{k} S_{n-1}\left(e_{1}+e_{2}\right)\right] z^{n}}{\left(\sum_{n=0}^{\infty} b_{n} e_{1}^{n} z^{n}\right)\left(\sum_{n=0}^{\infty} b_{n} e_{2}^{n} z^{n}\right)}+\frac{\sum_{n=k+1}^{\infty} b_{n}\left[e_{2}^{n} S_{k-1}\left(e_{1}+e_{2}\right)-e_{2}^{k} S_{n-1}\left(e_{1}+e_{2}\right)\right] z^{n}}{\left(\sum_{n=0}^{\infty} b_{n} e_{1}^{n} z^{n}\right)\left(\sum_{n=0}^{\infty} b_{n} e_{2}^{n} z^{n}\right)} \\
= & \frac{\sum_{n=0}^{k-1} b_{n}\left(e_{1} e_{2}\right)^{n} \delta_{e_{1} e_{2}}^{k-n}\left(e_{1}^{-1}\right) z^{n}-\left(e_{1} e_{2} z\right)^{k} \sum_{n=0}^{\infty} b_{n+k+1} \delta_{e_{1} e_{2}}\left(e_{1}^{n}\right) z^{n+1}}{\left(\sum_{n=0}^{\infty} b_{n} e_{1}^{n} z^{n}\right)\left(\sum_{n=0}^{\infty} b_{n} e_{2}^{n} z^{n}\right)}
\end{aligned}
$$

This completes the proof.

3. On the Symmetric Functions of Some numbers

In this part, we derive the new generating functions of some known numbers. Indeed, we consider Theorem 1 in order to get Fibonacci numbers, Lucas numbers and Pell-Lucas numbers with $k=1$ and $k=2$, for the case $\frac{1}{1+z}=\sum_{n=0}^{\infty}(-1)^{n} z^{n}$.

Lemma 2 Given an aphabet $E=\left\{e_{1}, e_{2}\right\}$, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty}(-1)^{n} h_{n}\left(e_{1}, e_{2}\right) z^{n}=\frac{1}{\left(1+e_{1} z\right)\left(1+e_{2} z\right)}, \text { with } h_{n}\left(e_{1}, e_{2}\right)=S_{n}\left(e_{1}+e_{2}\right) \tag{4}
\end{equation*}
$$

Lemma 3 Given an aphabet $E=\left\{e_{1}, e_{2}\right\}$, we have
$\sum_{n=0}^{\infty}(-1)^{n} h_{n+1}\left(e_{1}, e_{2}\right) z^{n}=\frac{e_{1}+e_{2}+e_{1} e_{2} z}{\left(1+e_{1} z\right)\left(1+e_{2} z\right)}$, with $h_{n+1}\left(e_{1}, e_{2}\right)=S_{n+1}\left(e_{1}+e_{2}\right)$.
By replacing e_{2} by $\left(-e_{2}\right)$ in (4) and (5), we obtain

$$
\begin{align*}
& \sum_{n=0}^{\infty}(-1)^{n} S_{n}\left(e_{1}+\left[-e_{2}\right]\right) z^{n}=\frac{1}{1+\left(e_{1}-e_{2}\right) z-e_{1} e_{2} z^{2}} \tag{6}\\
& \sum_{n=0}^{\infty}(-1)^{n} S_{n+1}\left(e_{1}+\left[-e_{2}\right]\right) z^{n}=\frac{e_{1}-e_{2}-e_{1} e_{2} z}{1+\left(e_{1}-e_{2}\right) z-e_{1} e_{2} z^{2}} \tag{7}
\end{align*}
$$

Choosing e_{1} and e_{2} such that $\left\{\begin{array}{c}e_{1} e_{2}=1 \\ e_{1}-e_{2}=1\end{array}\right.$ and substituting in 6) and 7 , we get

$$
\begin{equation*}
\sum_{n=0}^{\infty} F_{-n} z^{n}=\frac{1}{z^{2}-z-1} \tag{8}
\end{equation*}
$$

which represent a generating function for Fibonacci numbers such that $F_{-n}=$ $(-1)^{n+1} S_{n}\left(e_{1}+\left[-e_{2}\right]\right)$.

$$
\begin{equation*}
\sum_{n=0}^{\infty}(-1)^{n} S_{n+1}\left(e_{1}+\left[-e_{2}\right]\right) z^{n}=\frac{1-z}{1+z-z^{2}} \tag{9}
\end{equation*}
$$

which is given by Boussayoud et al 3.
Corollary 2 For $n \in \mathbb{N}$, we have

$$
S_{n+2}\left(e_{1}+\left[-e_{2}\right]\right)=S_{n+1}\left(e_{1}+\left[-e_{2}\right]\right)+S_{n}\left(e_{1}+\left[-e_{2}\right]\right)
$$

Choosing e_{1} and e_{2} such that $\left\{\begin{array}{c}e_{1} e_{2}=1 \\ e_{1}-e_{2}=2\end{array}\right.$ and substituting in 6 , and 8 .
where we have

$$
\begin{equation*}
\sum_{n=0}^{\infty}(-1)^{n} S_{n}\left(e_{1}+\left[-e_{2}\right]\right) z^{n}=\frac{1}{1+2 z-z^{2}} \tag{10}
\end{equation*}
$$

which yields also new generating functions.

$$
\begin{equation*}
\sum_{n=0}^{\infty}(-1)^{n} S_{n+1}\left(e_{1}+\left[-e_{2}\right]\right) z^{n}=\frac{2-z}{1+2 z-z^{2}} \tag{11}
\end{equation*}
$$

Multiplying the equation (8) by 3 and subtract it from (9) we get

$$
\sum_{n=0}^{\infty} L_{-n} z^{n}=\frac{2+z}{1+z-z^{2}}
$$

which represents a new generating function for Lucas Numbers.
Corollary 3 For all $n \in \mathbb{N}$, we have

$$
L_{-n}=(-1)^{n}\left[3 S_{n}\left(e_{1}+\left[-e_{2}\right]\right)-S_{n+1}\left(e_{1}+\left[-e_{2}\right]\right)\right] .
$$

Multiplying the equation 10 by (-2) and added to 11 we obtain

$$
\sum_{n=0}^{\infty} P_{-n} z^{n}=\frac{z}{1+2 z-z^{2}}
$$

which represents a new generating function for Pell Numbers.
Corollary 4 For all $n \in \mathbb{N}$, we have

$$
P_{-n}=(-1)^{n+1}\left[S_{n+1}\left(e_{1}+\left[-e_{2}\right]\right)-2 S_{n}\left(e_{1}+\left[-e_{2}\right]\right)\right] .
$$

Multiplying the equation by 6 and added to 11 by (-2), we have

$$
\sum_{n=0}^{\infty} Q_{-n} z^{n}=\frac{2+2 z}{1+2 z-z^{2}}
$$

which represents a new generating function for Pell-Lucas Numbers.
Corollary 5 For all $n \in \mathbb{N}$, we have

$$
P_{-n}=(-1)^{n}\left[6 S_{n}\left(e_{1}+\left[-e_{2}\right]\right)-2 S_{n+1}\left(e_{1}+\left[-e_{2}\right]\right)\right] .
$$

Acknowledgments

The authors would like to thank the anonymous referees for their valuable comments and suggestions.

References

[1] A. Abderrezzak, Généralisation de la transformation d'Euler d'une série formelle, Adv. Math. 103, 180-195, 1994.
[2] A. Boussayoud, A. Abderrezzak, M. Kerada, Some applications of symmetric functions, Integers. 15A\#48, 1-7, 2015.
[3] A. Boussayoud, M. Kerada, R. Sahali, Symmetrizing Operations on Some Orthogonal Polynomials, Int. Electron. J. Pure Appl. Math. 9, 191-199, 2015.
[4] A. Boussayoud, M. Kerada, A. Abderrezzak, A Generalization of some orthogonal polynomials. Springer Proc Math Stat.41, 229-235, 2013.
[5] A.F Horadam, Basic properties of a certain generalized sequence of numbers, The Fibonacci Quarterly 3, 161-176, 1965.
[6] A. Lascoux, A.M. Fua, Partition analysis and symmetrizing operators. J Comb Theory A. 109, 339-343, 2005.
[7] I.G. Macdonald, Symmetric functions and Hall polynomias, Oxford University Press, 1979.
[8] M.Merca . A Generalization of the symmetry between complete and elementary symmetric functions, Indian J. Pure Appl. Math. 45, 75-89, 2014.
[9] T.Mansour. A formula for the generating functions of powers of Horadam's sequence, Australas. J. Comb. 30, 207-212, 2004.
[10] T.Koshy, Pell and Pell-Lucas Numbers with Applications, Springer, 2014.
Ali Boussayoud, LMAM Laboratory and Department of Mathematics, Mohamed Seddik Ben Yahia University, Jijel, Algeria

E-mail address: aboussayoud@yahoo.fr
Meriama Boulyer, Department of Mathematics, Mohamed Seddik Ben Yahia UniverSity, Jijel, Algeria

E-mail address: meriama882014@outlook.fr
Mohamed Kerada, Lmam Laboratory and Department of Mathematics, Mohamed Seddik Ben Yahia University, Jijel, Algeria

E-mail address: mkerada@yahoo.fr, mkerad9@gmail.com

[^0]: 2000 Mathematics Subject Classification. Primary 05E05; Secondary 11B39.
 Key words and phrases. Fibonacci numbers; Generating functions; Pell-Lucas numbers.
 Submitted Feb. 21, 2016.

