
Electronic Journal of Mathematical Analysis and Applications
Vol. 5(1) Jan. 2017, pp. 202-207.
ISSN: 2090-729(online)
http://fcag-egypt.com/Journals/EJMAA/
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

ON SOME IDENTITIES AND SYMMETRIC FUNCTIONS FOR
LUCAS AND PELL NUMBERS

ALI BOUSSAYOUD, MERIAMA BOULYER AND MOHAMED KERADA

Abstract. In this paper, we show how the action of the symmetrizing en-

domorphism operator �ke1e2 to the series
1P
n=0

anen1 z
n allows us to obtain an

alternative approach for the determination of Fibonacci and Lucas-Pell num-
bers.

1. Introduction and Notations

The second-order linear recurrence sequence (Un(a; b; p; q))n�0, or brie�y (Un)n�0,
is de�ned by

Un+2 = pUn+1 + qUn; U0 = a; U1 = b:

Where a; b and p; q are arbitrary real numbers for n > 0. The Binet formula
for the sequence (Un)n�0 is

Un =
c1x

n
1 � c2xn2
x1 � x2

;

where c1 = b�ax2 and c2 = b�ax1 [5]. Certain sequence of numbers that appeared
here are Fibonacci number (Fn)n�0, if we take p = q = b = 1; a = 2; Lucas number
(Ln)n�0 for p = 2; q = b = 1; a = 0; Pell number (Pn)n�0 and Pell-Lucas number
(Qn)n�0; when one has p = b = a = 2; q = 1: In this paper, we show that the
use of the action of the symmetric endomorphism operator �ke1e2 [4] to the series
1P
n=0

an(e1z)
n, gives an alternative approach for determining the generating functions

of some sequences of numbers cited above.
Let k and n be two positive integer and fx1; x2; :::; xng are set of given vari-

ables, recall [8] that the k-th elementary symmetric function ek(x1; x2; :::; xn) and
the k-th complete homogeneous symmetric function hk(x1; x2; :::; xn) are de�ned
respectively by

ek(x1; x2; :::; xn) =
P

i1+i2+:::+in=k

xi11 x
i2
2 :::x

in
n ; 0 � k � n;
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with i1; i2; :::; in = 0 or 1:

hk(x1; x2; :::; xn) =
P

i1+i2+:::+in=k

xi11 x
i2
2 :::x

in
n ; 0 � k � n;

with i1; i2; :::; in � 0:
First, we set e0(x1; x2; :::; xn) = 1 and h0(x1; x2; :::; xn) = 1 (by convention). For

k > n or k < 0, we set ek(x1; x2; :::; xn) = 0 and hk(x1; x2; :::; xn) = 0:
Lemma 1 [10] The relations

1) F�n = (�1)n+1Fn;
2) L�n = (�1)nLn;
3) P�n = (�1)n+1Pn;
4) Q�n = (�1)nQn

hold for all n � 0:
De�nition 1 Let A and E be any two alphabets, then we give Sn(A � E) by

the following form:

�e�E(1� ez)
�a�A(1� az)

=

1X
n=0

Sn(A� E)zn; (1)

with the condition Sn(A� E) = 0 for n < 0 (see [1]):

Corollary 1 Taking A = 0 in (1:1); that gives

�e�E(1� ez) =
1X
n=0

Sn(�E)zn. (2)

De�nition 2 [7] Given a function g on Rn, the divided di¤erence operator is
de�ned as follows:

@xixi+1(g) =
g(x1; � � � ; xi; xi+1; � � �xn)� g(x1; � � �xi�1; xi+1;xi; xi+2 � � �xn)

xi � xi+1
:

It should be noted that the divided di¤erence operator @xixi+1 commutes with
symmetric functions at xi; xi+1 and is compatible with the function Sn [6].
De�nition 3 [2] The symmetrizing operator �ke1e2 is de�ned by

�ke1e2(f) =
ek1f(e1)� ek2f(e2)

e1 � e2
for all k 2 N:

Proposition 1 [3] Let E = fe1; e2g an alphabet, we de�ne the operator �ke1e2 as
follows:

�ke1e2f (e1) = Sk�1(e1 + e2)f (e1) + e
k
2@e1e2f (e1); for all k 2 N:

2. The Main Result

In our main result, we will combine all these results in a uni�ed way such that
all these obtained results can be treated as special case of the following Theorem.
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Theorem 1 Given an alphabet E = fe1; e2g and two sequences
X+1

n=0
anz

n;X+1

n=0
bnz

n such that
�X+1

n=0
anz

n
��X+1

n=0
bnz

n
�
= 1; then

1X
n=0

an �
k+n�1
e1e2 (e1)z

n =

k�1P
n=0

bn(e1e2)
n�k�ne1e2 (e

�1
1 )zn � (e1e2z)k

1P
n=0

bn+k+1�e1e2(e
n
1 )z

n+1� 1P
n=0

bnen1 z
n

�� 1P
n=0

bnen2 z
n

� :

(3)

Proof. Let
1P
n=0

anz
n and

1P
n=0

bnz
n be two sequences as

1P
n=0

anz
n�

1P
n=0

bnz
n = 1:

On one hand, since f(e1) =
1P
n=0

ane
n
1 z

n; we have

�ke1e2f (e1) = �ke1e2

 1X
n=0

ane
n
1 z

n

!

=
1X
n=0

an �
k+n�1
e1e2 (e1)z

n;

which is the left hand side of (3). On the other hand, since

f(e1) =
1

1P
n=0

bnen1 z
n

;

we have that

@e1e2f(e1) =
1

e1 � e2

0BB@ 1
1P
n=0

bnen1 z
n

� 1
1P
n=0

bnen2 z
n

1CCA

=
1

e1 � e2

0BB@
1P
n=0

bne
n
2 z

n �
1P
n=0

bne
n
1 z

n� 1P
n=0

bnen1 z
n

�� 1P
n=0

bnen2 z
n

�
1CCA

=

1P
n=0

bn
en2�e

n
1

e1�e2 z
n� 1P

n=0
bnen1 z

n

�� 1P
n=0

bnen2 z
n

�

= �

1P
n=0

bnSn�1(e1 + e2)z
n� 1P

n=0
bnen1 z

n

�� 1P
n=0

bnen2 z
n

� :
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By Proposition 1, it follows that

�ke1e2f (e1) = Sk�1(e1 + e2)f (e1) + e
k
2@e1e2f (e1)

=
Sk�1(e1 + e2)
1P
n=0

bnen1 z
n

� ek2

1P
n=0

bnSn�1(e1 + e2)z
n� 1P

n=0
bnen1 z

n

�� 1P
n=0

bnen2 z
n

�

=

1P
n=0

bn
�
en2Sk�1(e1 + e2)� ek2Sn�1(e1 + e2)

�
zn� 1P

n=0
bnen1 z

n

�� 1P
n=0

bnen2 z
n

� :

Hence, we have that

�ke1e2f (e1) =

k�1P
n=0

bn
�
en2Sk�1(e1 + e2)� ek2Sn�1(e1 + e2)

�
zn� 1P

n=0
bnen1 z

n

�� 1P
n=0

bnen2 z
n

� +

1X
n=k+1

bn
�
en2Sk�1(e1 + e2)� ek2Sn�1(e1 + e2)

�
zn� 1P

n=0
bnen1 z

n

�� 1P
n=0

bnen2 z
n

�

=

k�1X
n=0

bn(e1e2)
n�k�ne1e2 (e

�1
1 )zn � (e1e2z)k

1P
n=0

bn+k+1�e1e2(e
n
1 )z

n+1

� 1P
n=0

bnen1 z
n

�� 1P
n=0

bnen2 z
n

� :

This completes the proof.

3. On the Symmetric Functions of Some numbers

In this part, we derive the new generating functions of some known numbers.
Indeed, we consider Theorem 1 in order to get Fibonacci numbers, Lucas numbers

and Pell-Lucas numbers with k = 1 and k = 2, for the case
1

1 + z
=

1P
n=0

(�1)nzn:

Lemma 2 Given an aphabet E = fe1; e2g, we have
1X
n=0

(�1)nhn(e1; e2)zn =
1

(1 + e1z) (1 + e2z)
, with hn(e1; e2) = Sn(e1 + e2). (4)

Lemma 3 Given an aphabet E = fe1; e2g, we have

1X
n=0

(�1)nhn+1(e1; e2)zn =
e1 + e2 + e1e2z

(1 + e1z) (1 + e2z)
, with hn+1(e1; e2) = Sn+1(e1 + e2).

(5)
By replacing e2 by (�e2) in (4) and (5); we obtain

1P
n=0

(�1)nSn(e1 + [�e2])zn =
1

1 + (e1 � e2)z � e1e2z2
; (6)

1P
n=0

(�1)nSn+1(e1 + [�e2])zn =
e1 � e2 � e1e2z

1 + (e1 � e2)z � e1e2z2
; (7)
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Choosing e1 and e2 such that
�

e1e2 = 1
e1 � e2 = 1

and substituting in (6) and (7) we

get
1P
n=0

F�nz
n =

1

z2 � z � 1 ; (8)

which represent a generating function for Fibonacci numbers such that F�n =
(�1)n+1Sn(e1 + [�e2]):

1X
n=0

(�1)nSn+1(e1 + [�e2])zn =
1� z

1 + z � z2 ; (9)

which is given by Boussayoud et al [3].
Corollary 2 For n 2 N, we have

Sn+2(e1 + [�e2]) = Sn+1(e1 + [�e2]) + Sn(e1 + [�e2]):

Choosing e1 and e2 such that
�

e1e2 = 1
e1 � e2 = 2

and substituting in (6) and (7).

where we have
1X
n=0

(�1)nSn(e1 + [�e2])zn =
1

1 + 2z � z2 ; (10)

which yields also new generating functions.

1P
n=0

(�1)nSn+1(e1 + [�e2])zn =
2� z

1 + 2z � z2 ; (11)

Multiplying the equation (8) by 3 and subtract it from (9) we get
1P
n=0

L�nz
n =

2 + z

1 + z � z2 ;

which represents a new generating function for Lucas Numbers.
Corollary 3 For all n 2 N; we have

L�n = (�1)n [3Sn(e1 + [�e2])� Sn+1(e1 + [�e2])] :
Multiplying the equation (10) by (�2) and added to (11) we obtain

1P
n=0

P�nz
n =

z

1 + 2z � z2 ;

which represents a new generating function for Pell Numbers.
Corollary 4 For all n 2 N; we have

P�n = (�1)n+1 [Sn+1(e1 + [�e2])� 2Sn(e1 + [�e2])] :
Multiplying the equation (10) by 6 and added to (11) by (�2), we have

1P
n=0

Q�nz
n =

2 + 2z

1 + 2z � z2 ;

which represents a new generating function for Pell-Lucas Numbers.
Corollary 5 For all n 2 N; we have

P�n = (�1)n [6Sn(e1 + [�e2])� 2Sn+1(e1 + [�e2])] :
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