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COUPLED AND TRIPLED FIXED POINT THEOREMS FOR
WEAK CONTRACTIONS IN WEAK PARTIAL METRIC SPACES

M. IMDAD, M.A. BARAKAT AND A.M. ZIDAN

ABSTRACT. In the present paper, we prove coupled and tripled fixed point
theorems for (¢, ¢) contractions on complete weak partial metric spaces which
generalize certain corresponding results of Aydi et al. besides some other ones.

1. INTRODUCTION

The notion of partial metric space was introduced by Matthews [19] as a part
of his study of denotational semantics of data flow network. By now, it remains
an established fact that partial metric spaces play an important role in developing
models in the theory of computations. In partial metric spaces, the distance of
a point from itself need not be zero. Besides initiating the definition of a partial
metric space, Matthews [19] also proved a partial metric space version of Banach
contraction principle. In recent years, Valero [23], Oltra and Valero [22], Altun et
al [4], Altun and Sola [3] and some others proved some generalizations of partial
metric space version of Banach contraction principle proved in Matthews [19]. For
the work of this kind, one can be eferred to [6, 7, 8, 9, 16, 19].

On the other hand, the idea of coupled fixed point was initiated by Guo and
Lakshmikantham [13] which was also utilized by Bhaskar and Lakshmikantham [14]
wherein authors introduced the notion of mixed monotone property for a weakly
linear contractive mapping F : X x X — X, (wherein X is a partially ordered metric
space) and utilized the same to prove some theorems on existence and uniqueness of
coupled fixed points, which can be viewed as coupled formulation of certain results
of Nieto and Lopez [20]. Recently, many authors obtained important coupled fixed
point theorems and their generalizations (e.g.[2, 17, 21]). Also, Berinde and Borcut
[12] introduced the concept of tripled fixed point. For further details, we refer the
readers to [1, 10].

In this paper, we prove coupled as well as tripled fixed point theorems for weak
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contractions on weak partial metric spaces which generalize the corresponding re-
sults of Aydi et al. [11] besides some other ones.

Definition 1 [14]. Let (X, <) be a partially ordered set and F' : X x X — X
a mappig. The mapping F' is said to have the mixed monotone property if F' is
monotone non-decreasing in its first argument and monotone non-increasing in its
second argument i.e., for any x,y € X,

1,29 € X, 21 R 20 = F(x1,y) < F(22,y)

and
Y192 € X,y 292 = F(z,y1) = F(x,y2).

Definition 2 [14]. Let X be a nonempty set. An element (z,y) € X x X is called
a coupled fixed point of the mapping F : X xX — X ifz = F(z,y) and y = F(y, ).

Example 1 Let X = [0,00) and F' : X x X — X be defined by F(z,y) =z +y
for all z,y € X. Clearly, F' has a unique coupled fixed point namely: (0,0).

Definition 3 [12]. Let (X, <) be a partially ordered set and F' : X x X x X — X.
The mapping F' is said to have the mixed monotone property if F' is monotone
non-decreasing in its first and third argument and monotone non-increasing in its
second argument i.e., for any x,y € X,

x1,x2 € X, 21 229 = F(21,y,2) X F(22,y, 2),

y1,92 € X,y1 2o = F(x,91,2) = F(x,y2, 2),
and
21,22 S Xazl j 2o = F(x7yazl) j F(xayaZQ)'

Definition 4 [12]. Let X be a nonempty set. An element (z,y,2) € X x X x X is
called a tripled fixed point of the mapping F : X x X x X — X if x = F(x,y, 2),
y=F(y,z,z) and z = F(z,y,x).

Definition 5 [19]. A partial metric on a nonempty set X is a function p : X x X —
[0, 00) such that for all z,y,z € X:

p') w=y = plr,z) =pla,y) =py,y),

p*) pla,z) <plz,y),

p*) plx,y) =ply,z),

p') pzy) < ple,2) +p(z,y) = pz, 2).

A partial metric space (abbreviated as PMS) is a pair (X,p) such that X is a
nonempty set and p a partial metric on X.

(
(
(
(

Definition 6 [15]. A weak partial metric space (abbreviated as WPMS) on a
nonempty set X is a function p* : X x X — [0, 00) such that for all z,y,z € X:
y) z =y < p¥(z,x) =p*(x,y) = p“(y,y) (To-separation axiom),

(%) p*(2,y) = p*(y, ) (symmetry),
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P¥) p*(x,y) < p¥(x,2) + p*(z,y) — p“(z, 2z) (modified triangular inequality).
Recall that Heckmann [15] has shown that, if p* is a weak partial metric on X,

then for all z,y € X, we have the following weak small self-distance property:

w p¥(z,2) + p*(y,9)
> .
p (ﬂfay) = 9

Weak small self-distance property reflects that WPMS are not far from small self-
distance axiom. Clearly, every PMS is a WPMS, but not conversely.

Remark 1 [5]. If p is partial metric on X, then the functions d,,d,, : X x X —
[0, 00) given by

dp(x,y) = 2p(x,y) — p(z,2) — p(y, ) (1)
and
dw(z,y) = max{p(z,y) —p(z,z),p(z,y) — p(y,y)}
= p(z,y) —min{p(x,z),p(y,y)} (2)

are ordinary metrics on X.

Proposition 1 [5]. If a,b, ¢ € R+, then we have
min{a, ¢} + min{b, ¢} < min{a, b} + c.

Proposition 2 [5]. If (X, p¥) is a WPMS, then d,, : X x X — [0, 00), defined by

(2) is an ordinary metric on X.

In a WPMS, the convergence of a sequence, Cauchy sequence, completeness
and continuity of a function are defined in the same manner as in PMS. To give
some fixed point results on a WPMS, we need the following lemma:

Lemma 1 [5]. Let (X, p") be WPMS. Then

(a) {zn} is a Cauchy sequence in (X, p*) if and only if it is a Cauchy sequence in
the metric space (X, dy),

(b) (X,p™) is complete if and only if (X, d,,) is complete.

Definition 7 [5]. Let (X, p™) be a WPMS. A sequence {x,,} is called a p* conver-
gent to x € X if lm p“(z,,zm) = p¥(x,z). Such a point € X is called the

n,m—00
limit of the sequence {z,} and is denoted by z,, — z.

Thus if z, — x in a WPMS (X, p"), then for any € > 0, there exists n. € N
such that
[p* (Xn, Tm) — p¥ (z, )| < €, for all n,m > n..

Definition 8 [18]. Let ¥ be the set of all functions 1 : [0, +00) — [0, +00) which
satisfy
(i) ¢ is continuous and non-decreasing,
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(ii) ¥ (t) = 0 if and only if ¢t = 0,

(iil) Y(t+s) < P(t) +¥(s), Vt,s € [0,400).

Again, let @ be the set all functions ¢ : [0, +00) — [0, +00) which satisfy 7}im o(t) >
—r

0 for all » > 0 and lim ¢(t) = 0.
t—0t+

Remark 2 Let ¥ be the set of all functions ¢ : [0, +00) — [0, +00) which satisfy
(iii). Then for any ¢ € [0, +00), we have

Hassen Aydi et al. [11] proved the following coupled fixed point theorem employ-
ing a relatively more general contraction condition which generalizes some relevant
results due to Luong and Thuan[18].

Theorem 1 Let (X, <) be partially ordered set equipped with a partial metric
p on X such that (X,p) is a complete PMS. Let F : X x X — X be a mapping
enjoying the mixed monotone property on X. Assume that there exist ) € ¥ and
@ € ® such that

Y(p(F(z,y), F(u,v))) < (W) . <W>

for all ,y,u,v € X with z > v and y < v. Suppose either I is continuous or X
has the following properties:-
(i) if a non-decreasing sequence z, — x, then z, < x for all n,
(ii) if a non-increasing sequence z,, — x, then x,, > x for all n.
If there exist xg,yo € X such that zo < F(xo,y0) and yo > F(yo, o), then there
exist ¢,y € X such that x = F(z,y) and y = F(y,z) i.e., F has a coupled fixed
point.

In this paper, we employ a relatively new weak contraction condition to prove
some coupled and tripled fixed point theorems in weak partial metric spaces.

2. RESULTS ON COUPLED FIXED POINTS

Now, we are equipped to prove our main result as follows.

Theorem 2 Let (X, <) be partially ordered set equipped wih a a weak partial
metric p* on X such that (X,p") is a complete WPMS. Let F': X x X — X be
a mapping enjoying the mixed monotone property on X. Assume that there exist
¥ € ¥ and ¢ € ® such that
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where
Mru) = max(p®(z,w), p" (a, F(z,9), 9 (0, F(u,v),
S (P 9) + 5 (o, Fl )]},
M(y,v) = max{p“(y,v),p"(y, F(y,2)),p" (v, F(v,u)),
S (0, Py, 2) + " (o, F(w, )]},

for all z,y,u,v € X with £ > u and y < v. Suppose either F' is continuous or X
has the following properties:-

(i) if a non-decreasing sequence z, — x, then z, < x for all n,

(ii) if a non-increasing sequence z,, — x, then x,, > x for all n.

If there exist zg < F(xo,y0) and yo > F(yo, o), then there exist z,y € X such
that z = F(x,y) and y = F(y,x) i.e., F has a coupled fixed point. Furthermore,
p¥(z,z) =p“(y,y) = 0.

Proof. Since zy < F(x0,y0) = x1 (say) and yo > F(yo,z0) = y1 (say), writing
x9 = F(x1,y1) and yo = F(y1,21), we can have

F?(0,y0) = F(F(z0,%0), F(yo,%0)) = F(x1,y1) = 2
F2(ZJ075€0) = F(F(yo0,0), F(w0,y0)) = F(y1,71) = 2.

Owing to the mixed monotone property of F', we have,

o = F(x1,y1) > F(xo0,9) = 21, y2 = F(y1,21) < F(yo,%0) = y1 and hence in
general (forn=1,2,3,...)

Tn+1 = FnJrl(anyO) = F(Fn(xoay0)7Fn(y0ax0))7
Ynt+1 = F" M (yo, 20) = F(F™(yo, o), F" (70, Y0))-

One can easily verify that

2o < F(zo,y0) = 21 < F(z1,y) = 22 < ... < F" N20,50) = Tny1,
Yo > F(yr, 1) =y1 > F(y1,21) = y2 > ... > F" (yo,20) = Ynt1-

As x,, > xp—1 and y,, < yp—1, using (3), we have

w(p“](xnvxn-i-l)) = p x" 1 Yn— 1) F(xTL’yn)))
< ’(/}( .’L‘n 1,Ln +M(yn layn)>
(M Tn—1,Tn +M(yn 17yn)>
I 2
< 1/) <(M Tn—1,Tn +M(yn 1ayn)> )
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Similarly, as y,—1 > y, and x,, < z,41, using (3), we have

VO (Y, Yn+1)) = VO (FWYn—1,Tn-1) F(Yn,Tn)))
M(yn—h yn) + M(xn—h xn)
N )

Myn 1,Yn +M(xn laxn)>

IN

v 2

o
(M Yn—1,Yn) (M(xnlawn))

Observe that
M(xn—laxn) = max{pw(xn—lvxn)va(xn—lvF(xn—lvyn—l))apw(xnvF(xnayn))7

S a1, F () + 2" Fn1, 00 1)])

= max{p“’ (l'n—l, xn)7pw (xn—la xn)va(xny xn—&-l),
1

§[pw(93n—1a Tpy1) + Y (Tn, T0)]}

max{p* (Tn—1,n), P (Tn, Tnt1)}. (4)

IN

Similarly,

M(yn—1,9yn) < max{p”Yn—1,Yn)sP" Un:Yn+1)}- (5)

Now, we distinguish the following cases:-

Case 1. If M(xnfl,xn) = pw(xnaanrl) and M(ynfl,yn) = pw(yn,ynJrl)a then
using (4), (5) and non-decreasing property of ¢, we have

P (s s1) < (pw(ﬂcmwnﬂ) ;rp“’(yn,ynﬂ)) ’ ©)
and
P (Yns Ynt1) < (pw(y"’y"+1) ;pw(z"’xnﬂ)) ) (7)
Since
i (" (2, 01,0 (o)) < Lt P s )
< max{p“(@n, Tns1),P" Wn,Yns1)} (8)

using (6), (7), and (8), we have

pw (znﬂ xn-‘rl) = pw (yn, yn+1)'
Making use of the condition (3), we get:

PPV (n, Tng1)) < W (M(xnl,xn) —2’— M(ynhyn)>

<M(5En17 xn) + M(ynflv yn))
— 5
< 1/)(pw(17n,13n+1)) - tp(pw(l‘n,arn+1)),
which is a contradiction to the fact that tlim e(t) > 0,¥r > 0.
—r
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Case 2. If M(xp—1,2n) = p“(Tpn-1,2n) and M (Yn—1,Yn) = p*(Yn—1,Yn), then
using (4), (5) and non-decreasing property of 1), we have

2

P (s Enin) < (pw(rn—l,wn) +p“’(yn—1,yn)), ©)

and

pw(ynhyn)+pw($n17$n)> . (10)

pw(ynayn+1) < < B)

On adding (9) and (10), we have

pw (xn; xn—&-l) + pw (yna yn+1) < pw(xn—la mn) + pw (yn—la yn)

Write ¢, = p* (Tnt1, Tn) + P (Yn, Ynt1). Then the sequence t,, is non-increasing
and bounded below, therefore there is some ¢ > 0 such that
lim ¢, = lim [pw($n7$n+1) +pw(yn7yn+1)] =t. (11)
n—oo

n—oo

Now, we show that ¢t = 0, Assume that ¢ > 0. By putting M; = p*“ (2, Tnt1), and
Ms = p” (Yn, Yn+1), we have

s <M+M> < (maz{M, M)

! = maz{y(M), $(Ms)}
< v (Ml;MQ) T (W) '

On taking the limit as n — oo besides using (11), the fact li_I)n (y) > 0 (for all
y—r

r > 0) and continuity of ¢, we have
() = me(5)
()7
= ola) e ()

which is a contradiction to tlim () > 0,¥r > 0 so that ¢ = 0 and henceforth

—r
T}Lngopw(xn,xnﬂ) = 0,
lim p*(yn,Ynt1) = O.
n—oo

Case 3. If M(xp—1,2n) = p*(Tn—1,%n) and M (yn—1,Yn) = D" (Yn,Yn+1), then
using the non-decreasing property of function % along with equations (4) and (5),
we have

w w Tn—1,Tn + v ny In
P (@, Tns1) < (P ( 1 )2 P (Yn, v +1)>’ (12)
and
wW pw xn— 5'rn +pw ynayn
p (yn,yn—i-l) < ( ( ! ) D) ( +1)> . (13)
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On using (12) and (13), we have

P Yns Ynt1) < <pw(yn,yn+1)+pw(xmxnl))
ny In <

w(pw(xn7xn+l)) S w (M(ynhyn) ; M(xnhxn))
< w <pw(yn+layn) +pw(xnlaxn))

2
< (pw(xn—laxn) +pw($n—1,$n)>

- 2

()
< 9 (pw(xn—lv xn)) .

Following the steps involved in proving ¢ = 0 in Case 2, let us put t,, = p* (@, Tny1)-
Then the sequence t,, is non-increasing and bounded below, therefore there is some
t > 0, such that

nh—>ngo tn = nh—>Holo[p (xnvx’ﬂ'f‘l)] =0.

Similarly, 0 < p*(Yn, Yn+1)] < p*(n-1,2,). By taking the limit as n — oo, we

have

0 < lim [p*(Yn,Yn+1)] < lim [p*(2n-1,2,)] =0, so that lim [p™(Yn, Yn+1)] = 0.
n—oo n—00

n— oo

Case 4: If M(zn—1,%5) = p*(Tn+1,75) and M(Yn—1,Yn) = p*(Yn—1,Yn), then
the proof is similar to the proof of Case 3.
Using (11) and the fact lim ¢(y) > 0 for all » > 0 along with continuity of ¢, we
yg)"‘

o(3) = mo(3)

o () ()
t . tn—l

= o(3)-m e ()

which is a contradiction to the fact }im ©(t) > 0,Vr > 0 so that t = 0. Thus, we
—r

have

IN

conclude that

nlLII;opw(l'n,InJ,_l) = 0,
Jim p*(yn, ynta) = O (14)

As
P (Tn, Tn) + Y (Tng1, Tng1) < 29" (Tn, Tnyr),

using (14), we have
lim pw(fcn@n) =0 and lim pw(yTL?y") = 0.
n—oo n—oo

Therefore, in view of the definition of d,,, we have

P (@n, 2m) = du(Tn, T ) +0I0{p® (2, 20 ), p* (L, Tm) }-
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so that lim dy (2, x,) = 0. Thus, using (14), we have

n,m— oo

pY(z,x) = lim p¥(z,,2) = lim p¥(z,,2m) =0,

n—oo n—o0
p“(y,y) = lim p“(yn,y) = lim p“(yn,ym) = 0.
n— o0 n—o0

Since (X, p") is complete, therefore (X, d,,) is also complete so that there exist
x € X such that
lim dy(zn,x) =0.

n—oo

Now, we show that x = F(z,y) and y = F(y, ). To accomplish this, assume that
X satisfies conditions (i) and (ii) (of Theorem 2). Since z, is a non-decreasing
sequence with z,, — x and as ¥, is a non-increasing sequence with ¥, — y, we have
2, < and y, >y for all n while making use of the condition (p*), we have

p(z, F(x,y) < p"(2,2ng1) + 0" (@nt1, F(2,y))
pw(xv$n+1) +pw(F(xn;yn)vF(I7y))'

Therefore,
PP F,y) < (o)) + 60" (F xmm F(x.9)))
< Y(P“(z,2n11)) +1/J( (Zn, (mil/))
(Zny ) + M (Y, y)
S0( ! >
< (e, i) (P“’ Tn, @ (yn,w)

—¥

(p (@n, @) + (ymy)> _

2

Taking the limit as n — oo and using

: w _ : w _
Jim p®(ap, ) = lim p®(yn,y) =0,
together with the properties of ¢ and ¢, we get ¥ (p*(z, F(z,y))) = 0 so that
p*(z,F(z,y)) =0 or x = F(x,y). Similarly, one can also show that y = F(y,z) .
Thus we have shown that F' has a coupled fixed point. This concludes the proof.

Using $1(t) < 9(%) in Theorem 2.1, we obtain the following:

Corollary 1 Let (X, <) be partially ordered set and there is a weak partial metric
p™ on X such that (X, p") is a complete WPMS. Let F': X x X — X be a mapping
having the mixed monotone property on X. Assume that there exist ¢ € ¥ and
@ € &, such that

YU (P y), Fw0) < Se(M(z,w) + M(y,v)

iy (M(z,u) + M(y,v)> |

2
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where
M(x,u) = max{p“’(;v,u),pw(x,F(x7y)),pw(u,F(u,v))7
S (s F(e,) + 9", F(u, )]},
M(y,v) = max{p“(y,v),p" (y, F(y,x)),p" (v, F(v,u)),

S (0, Fy,2)) + 5" (3, F (o, 0))]).
for all z,y,u,v € X with z > u and y < v. Suppose either F' is continuous or X
has the following properties:-

(i) if a non-decreasing x,, — z, then z, < z Vn.

(ii) if a non-increasing x,, — z, then z,, > = Vn.

if there exist z¢o < F(xo,y0) and yo > F(yo, o), then there exist z,y € X such
that ¢ = F(x,y) and y = F(y,x) i.e., F has a coupled fixed point. Furthermore,

p"(x, ) = p“(y,y) = 0.

Choosing ¢(t) = 35%¢ in Corollary 1, we deduce the following:

Corollary 2 Let (X, <) be a partially ordered set and suppose there is a weak
partial metric p* on X such that (X,p") is a complete metric space. Let F :
X x X — X be a mapping having the mixed monotone property on X. Assume
that there exists a real number k € [0,1) such that,

o

pw(F(:E,y),F(U,U)) < g(M(JC,’UJ) —|—M(y,v)),

for all z,y,u,v € X with x > u and y < v. Suppose either F' is continuous or X
has the following properties:

(i) if a non-decreasing sequence x,, — z ,then z, <z, Vn,

(ii) if a non-increasing sequence z,, — = ,then z < x,,, Vn.

If there exist g, yo € X such that zqg < F(x,y0) and F(yo,zo) < yo, then there
exist x,y € X such that z = F(x,y) and y = F(y,x) i.e., f has a coupled fixed
point . Also p*(z,z) = p*(y,y) = 0.

Theorem 3 If in addition to the hypotheses of Theorem 2, zy and yq are compa-
rable, then z = F(z,y) = F(y,z) =y i.e., (x,y) a coupled fixed point.

Proof. In view of Theorem 2, F has a coupled fixed point (z,y). We are merely
required to show that x = y. Since ¢ and yy are comparable, we may assume that
xo > yo. Using the mathematical induction, one can show that z,, > y, for any
n € N. Notice that (by (p¥))

p(z,y) < pU(z,2ng1) + 0V (Tng1, Yngr) + 0V (Yng1,9)
F

= p"(z,2p41) + 2" Wni1,y) + 2V (F(@n; Yn)s F(Yn, Tn)).
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Therefore, using conditions (p¥), (p}) and a property of ¥, we have

w(pw(mvy)) < ¢(pw(m7$n+1) +pw(yn+17y)) + w<pw(F(xnayn)vF(yn7$n)))
< Y@ Tns1) + 0V (Ynt1,9) + V@ (@0, yn))
=" (Tnsyn)), (15)

which together with lim p“(z,,x) = 0 gives rise
n—oo

lim p*(z,,yn) = p*(z,y).

n—0o0

Assume that p*(z,y) # 0. Letting n — oo in (15), we get

Dz y) < P0)+ 0 (z,y))) = lim o(p® (@, yn))

Y(p“(z,y))) — lim 0" (zn,yn)),
pw(xnayn)*)p(z’y)

i.e.,

lim o (xn,yn)) <0,
pv (xn’yn)*)pw (x,y)

a contradiction. Thus p(x,y) = 0, so that x = y.

Setting ¢ (t) = 15%¢ in Corollary 1, we deduce the following:

Corollary 3  Let (X, <) be a partially ordered set and suppose there is a weak
partial metric p* on X such that (X, p") is a complete WPMS. Let F: X x X — X
be a mapping having the mixed monotone property on X. Assume that there exist
1 € ¥ and ¢ € ® such that

M(z,u) —I—M(y,v))
2 b

VO (F) Fl) < 5o+ M) ¢ (

for all z,y,u,v € X with ¢ > u and y < v. Suppose either F' is continuous or X
has the following properties:

(i) if a non-decreasing sequence x,, — z ,then z, <z, Vn,

(ii) if a non-increasing sequence z,, — = ,then z < x,,, Vn.

If there exist xg,yo € X such that zo < F(zg,yo) and

F(yo,20) < yo then there exist ,y € X such that x = F(z,y) and y = F(y, ) i.e.,
F has a coupled fixed point. Also p¥(x,z) = p“(y,y) = 0.

Now, we furnish an example to illustrate Theorem 2.

Example 2 Let X = [0,00) and p*(z,y) = %, then d,,(x,y) = % |z — y| and in

view of Lemma 1 (X, p*) is a complete WPMS. Define F' : X x X — X

22—y . x> 3y,

F(‘r>y):{ 2 7

0 ;o x < 3y.
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Firstly, we show that the condition (3) of Theorem 2 is satisfied with ¥(t) =

and ¢(t) = %. To accomplish this, we distinguish the following cases.
Case 1. If z > 3y, then F(x,y) = 2x;y and F(y,z) =0.
Now, we have

YU (F (), Fy2)) = 150" (F(e,), Fly,2)
_ VY
Also,
1
Mey) = max{= o550 S+ )
— oY
47
and
1
Miga) = max{T2 Y% oY by
_ Y
47
therefore
9
" (F@,y), Fly.2) = 50— 3)
9 Y 3 Y
< pl-D-5l-3)
_ 6 Y
= 1wl )

Thus, equation (3) is satisfied.
Case 2. If x < 3y, then we have two subcases:

(a) If < 3y < 9z then, F(z,y) = F(y,z) = 0.

Hence,
w(pw(F(.T,y)7F(y7J}))) =0
Also,
Tty
M(z,y) = M(y,z) = ——,
therefore
Y(p® (F(z,y), Fy,x))) = 0
< g(x—k )
= Y

Thus, equation (3) is satisfied.

25

9

10

3

t



254 M. IMDAD, M.A. BARAKAT AND A.M. ZIDAN EJMAA-2017/5(1)

(b) If 3y > 9z, then

F(x,y) =0, and F(y,x) 2y2_x.

w 9 w
b (Fz,y), Fly,2) = 550" (F(2,y), Fy,2)))
9 T
= 2*0(21—5)
Also,
_ ty _zzl .z
M(xay) - max{ 2 ay 47272(y+ 4)}
- o,z
Yy 1
and similarly,
T
M(yvm):yfz,
therefore
w 9 T
V(" (F(z,y), F(y,2)) = 2*0(31—5)
9 T 3 T
< = _Z) = _Z
= 10(y 4) 10(y 4)
6 T
= w7

Thus, equation (3) is verified.
By a routine calculation, one can verify other conditions of Theorem 2. Observe
that F has a coupled fixed point (1,0) € X x X.

3. A TRIPLED FIXED POINT RESULT IN WPMS.

Lastly, we prove the following tripled fixed point theorem in WPMS.

Theorem 4 Let (X, <) be partially ordered set and there is a weak partial metric
p* on X such that (X,p%) is a complete WPMS. Let F : X x X x X — X be
a mapping enjoying the mixed monotone property on X. Assume that there exist
1 € U and ¢ € @ such that,

B® (F(y,2), Flu,v,w) < (W)

7@ (M1 +M2+M3)

u (17)
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where
My = max{p® (), p (@ Py, 2), 0" (P, v, ),
S, Py, 2)) 0 (o, Fu v, )]}
My = max{p“(y,v),p"(y, Fy,x,2)),p" (v, F(v,u, w)),
S (0, F(y,2,2) + 9y, Flo,u,w))]),
My = max{p® (z,w), p° 2 Flz,2,9),0" (0, Fluw,w,0)),

S (0, F(z,2,9) + 5 (2, Faw,w,0)]).

for all z,y,z,u,v,w € X with x > u, y < v and z < w. Suppose either F is
continuous or X has the following properties:-

(i) if a non-decreasing x,, — z, then z, <z Vn.

(ii) if a non-increasing x,, — z, then z,, > = Vn.

If there exist o < F(zo,Y0,20), Yo > F(yo,x0,20) and zg > F(zo, o, Y0), then
there exist x,y,z € X such that x = F(z,y,2), y = F(y,z,2) and z = F(z,z,y)
i.e., F has a Tripled fixed point. Furthermore, p*(z,z) = p*(y,y) = p*(z,2) = 0.

Proof. As 9 < F(xo,90,20) = 1 (say), yo > F(yo,20,20) = y1 (say) and
20 > F(z0,%0,%0) = 21, puitting x2 = F(x1,y1,21), ¥2 = F(y1,21,21) and 2z =
F(Zl7$1ay1)a we have

F2($07y0,20) = F(F(ffo»yoaZo)»F(yo,xo,Zo)aF(Zoaffo,yo)) :F(ffl,yhzﬂ = I2,
F2(yo,0,20) = F(F(yo,0,20), F(0,Y0: 20): F(20, 70, Y0)) = F(y1, 21, 21) = y2,
F2(ZO;$07:UO> = F(F<Z07x07y0)7F(x07y0;ZO)7F(yOax07ZO)) = F(zhxlayl) = 22.

Then in general, T, > X1, Yn < Yn—1 and z, < z,_1. From (17), we have

w(pw('rnvxn-i-l)) = w(pw(F(xn—layn—lvzn—l)vF($n7yn72n)))
My + My + M3 My + My + M3
R ) R e
< (W) . (18)

Since, My} = M (xp-1,%n), Mas = M(yn—1,yn) and M5 = M(2z,_1, zy), from (17),
we have

w(pw(ynayn—i-l)) = ’(/)(pw(F(yn—hxn—laZn—l)aF(ynaxn7Zn)))
S ,(/} (M(yn—lvyn) + M(xnglvxn) + M(Zn—lvzn)) ] (19)
Also,
¢(pw(zn,zn+1)) = ¢(PW(F(Zn717ffnfl’ynfl),F(memyn)))

IN

y <M(Zn_1,2n) + M(xngl,l‘n) + M(yn—hyn)) ) (20)
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Observe that
Mo gyn) = max{p”(rn1,20). 9" @t P 1,901 701)),
P (s F s s 20)), 5 0" nr, F sy 20)) +
P (20, F(Tn-1,Yn-1, 2n-1)]}

= maX{pw(xn_l,J,‘n),pw(xn_l,xn),pw(xn7xn+1)7

1 w w
7[p (x’rL—laxn-&-l)_"p (xna-rn)}}

2

S max{pw(x’nflv‘rn)apw(xn7xn+l)7
1. . w
5[}7 (xn—l’l‘n)+p (xnwrn-i-l)]}

< max {p“(Tn-1,2n), 0" (Tn, Trny1)}-

Similarly, we can show that

M (Yn—1,yn) < max {p" (Yn—1,¥n), 0" (Yn: Yn+1)}
and

M (zp—1,2) < max {p"(zn-1,2n),P" (2n; 2n+1)} -
Now, we distinguish the following cases:-

Case 1: If M(an—1,an) = p“(an,an+1),V an € {Tn,Yn, 2n}, then using (18), (19)
and (20), we obtain

D (s 1) < (pw(a:n,an) +Pw(3/n3»yn+1) +Pw(zmzn+1)) ’ (21)
2% (s s (pw YnsYnt1) +p° (wn?;wn+1)+pw(zmzn+1)>7 (22)
and
P (20> Znt1) (pw Zns Zn+1) pw(xnéxn+l) +pw(yn7yn+1>> . (23)
Write r = p* (zn, Tnt1), S = ¥ (Yn, Ynt+1) and w = p*(2zy, 2n+1), then
min{r,s,w} < %
< max{r,s, w}. (24)

From (21), (22), (23) and (24), we have

P (T, Tng1) = DY (Yn, Ynt1) = P (2ns Zn41)-

On using the condition (17) along with non-decreasing property of v, we have:

V(P (Tn, Tny1)) < 1/1<M(mn1’x”)+M(yn317yn)+M(Znlazn)>

M(xnflv I'n) + M(ynfl, yn) + M(anla Zn)
y ( : >
< (@ (@n, Tns1)) — (P (Tn, Tni1)),

which is a contradiction to ¢(t) > 0.
Case 2: If M(an—1,an) =p“(an_1,0n),Y an € {Tn,Yn, 2n}, then using (18), (19)
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and (20) along with non-decreasing property of 1, we have

pw(xnflvmn) +Pw(yn717yn) +pw(znlﬂzn)> (25)

pw(xnaanrl) < ( 3

(26)

P (s Y1) < (pw(ynl,yn) + pY (2 1, Tp) +pw(zn1,zn)> |

3

pw(zn’zn_i_l) < (p (Zn—lvzn) +p (xn?—)lvxn) +p (yn—lvyn)>. (27)

By adding (25), (26) and (27), we have

pw(xn’xn+1) +pw(yn7yn+1) +Pw(zn, Zn+1) < pw(xnfl,wn)
+pw(yn—1ayn) +pw(zn—17 Zn)
If we pUt t, = pw (xnv anrl) +pw (yna ynJrl) +pw (va zn+1)7 then the sequence ty is

non-increasing and bounded below, Therefore there is some ¢ > 0 such that,

im t, = Hm (@, @n1) + 2" Wns Yui1) + 9" (s Z)] = £ (28)

n— oo

Now, we show that ¢ = 0, Assume that ¢ > 0. As 1 is non-decreasing, therefore
for positive numbers a, b and ¢, we have ¥(max{a,b,c}) > y(22te). Using (18)
and (19), we have

" <pw($m xn-ﬁ-l) + pw(ym yn+1) + pw(zm Zn+1) )
3
< Y(max{p" (Tn, Tnt1): " Yn, Yn+1) + 0 (2n, 2n41)})
max{y(p* (n, Tni1)), V(P Uns Ynt1)) V(P (2ns Znt1))}

< 9 <pw($n—17xn) +pw((yn—17yn) +pw(zn—17'zn))
3
<pw (xn—lv xn) + pw((yn—h yn) + pw((zn—h Zn))
—p 5 )
Then, taking the limit asn — oo besides using (28) and keeping in mind lim ¢(y) >

y—r
0 for all » > 0 along with continuity of ¢, we have

1"(3) = nliﬂgo%f’(?)
: tn—l tn—l
< [o(550) o (5]

_ t

which is a contradiction to
lim (t) > 0,¥r >0

t—r

so that ¢t = 0, and

lim p“(pn,Tnt1) = O,
n— oo

lim p*(Yn,Ynt1) = O,

n— oo

lim p*(zn,2n41) = 0. (29)

n—oo
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Case 3: If M(an—1,a,) = p“(an—1,an), and M(b,—_1,b,) = p*(bn,bn+1), where
an € {Tn,Yn,znt and b, € {Tn,Yn,2n} \ {an}, then owing to (18), (19) and (20)
along with non-decreasing property of v , we have

pw(wnfhxn) +pw(yn7yn+1) +pw(zn7zn+1)> (30)

pw<xn7xn+1) S ( 3

P gnt) < (p (Tp—1,Tn) + D YnsYn+1) + P (Zn7zn+1)), 31)

3

and

PV (Tp, Tni1) < <p (Zn—1,2n) + 2" (Yn: Yni1) + P (Z”’Zml)). (32)

3
From (30), (31) and (32), we have

(pw(yn7 yn+1) + pw(znv Zn-‘rl) + pw (xna xn—l))
3

pw (y’ru yn-i-l) <
S pw(mnamn—l)'
Similarly p¥(zn, 2n+1) < p¥(Zn, Tn—1). Now, from condition (17), we have

w <M(£L’n1,$n) + M(ynflvyn) + M(an,Zn))
3

< 9 <p (Tp—1,2n) +p (yng-l;yn) +p (Zn—&-l,zn))

?/J(pw(xm l’n+1))

IN

IN

(4

< "/J (pw(xnflamn)) .

Following the steps of proving ¢ = 0 in Case 2, put t,, = p*(zn, Tnt1). Then the
sequence t,, is non-increasing and bounded below, therefore there is some ¢ > 0, we
have

(pw (xn—h xn) + pw(xn—la xn) + pw(l‘n—l, xn))
3

Jim tn, = lim [pY(zn, 2ni1)] = 0,
Jim £, = lim [p*(yn, Yns1)] = 0, (33)
nl;n;o t, = nan;o[pw(zn,z,L+1)] =0. (34)
On the other hand,
du(Tnt1,2n) = PY(Tn41,2n) — min{p"(2n, Tn), p* (Tnt1, Tnt1)}

< pw(xn+1y xn)-

Taking the limit of both the sides of the preceding inequality as n — co and making
use of (29), we have lim dy(zn41,2,) = 0.
n—oo
Similarly, lim dy(yn+1,yn) =0, and lim dy(2p41, 2n) = 0.
n—oo n—oo

Therefore, for k = 1,2, ..., we have

dw (:EnJrka xn) < dw (:EnJrka xn+k71) + dw (:Cn+k71, mn+k72) + ..+ dw (anrlv xn)
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By taking the limit of both of sides of the above inequality as n — oo and using
(29), we have

nh—>néo dy ($n+k7 xn) = 0,
nh—>ngo d’w (yn-‘rka Zln) = 07
nh~>nc}o dw(zn—i-ka Zn) = 0.

This shows that {z,} is a Cauchy sequence in the metric space (X,d,,). Since
(X,p") is complete, therefore the sequence {x,} converges in the metric space
(X, dy), ie., limy, 500 dyy (2, &) = 0 for some z in X. Again, we have

p¥(2,2) = lim p“(zn,2) = lm_  p®(zn,2m), (35)
Also,

p(y,y) = lim p“yn,y) = Lm_ p*(yn, ym), (36)
and

p*(z,2) = lm p®(zn,2) = lim p*(zn, zm). (37)

Moreover, as {z,} is a Cauchy sequence in the metric space (X,d,), we have
lim  dy(2p,m) = 0. On the other hand
n,m— 00

P (T, xn) + PV (Tnt1, Tng1) < 207 (Tn, Tng1),

which together with (29) gives rise

lim pw(mnvxn) = 0,
n—oo
lim p*(yn,yn) = 0,
n— oo
lim p*(zp,2,) = 0.
n—oo

Therefore, in view of the definition of d,,. we have
pw(-r’ru xm) = dw(xna xm) + min{pw(xn7 mn)apw(l‘my xm)}

and so lim dy(zy, Tm) = 0. Thus from (35), we have
n,m—00

p¥(z,z) = lim p*(z,,z) = lim p“(zn,zm) =0,

n— oo n—oo
Also,
p*(y,y) = lm p®(yn,y) = lim p*(yn, ym) =0,
and

p¥(z,2) = lim p“(zy,2) = lim p“(zn,2m) = 0.
n—roo n—oo
Since (X, p") is complete, so is (X, d, ) and hence there exists z € X such that

lim d(zn,x) =0.

n—oo
Now, we proceed to show that © = F(z,y,2), y = F(y,z,2) and z = F(z,z,y).
As X satisfies the conditions (i) and (ii), therefore, x,, is a non-decreasing sequence
with z,, — = then z,, < z for all n. Also, y,, 2, are a non-increasing sequence with
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Yn — y and 2, — z and hence we have y,, > y and z,, > z for all n.
Now, we have

pw(.’L‘,F(I,y,Z» S pw(m7xn+l) +pw(xn+17F(l’7y7z))
pw(xvxn+1) +pw(F(xnayn>Zn)7F(xayvz))'

Therefore,
Y (@, F(2,y,2) < @ (@ 2ns1)) + L@ (F(@n, Yn, 20), F (2,9, 2)))
< 0" )+ o (ML)
M(zp, ) + M(Yn,y)
G

< PV (x 2nga)) + 9

i
(p“’(xn,m) ;rp“’(ymy))

P (wn, ) +p‘”(ymy))
2

Taking the limit of the preceding inequality as n — oo, and using

lim pY(xn,z) = lIm p*(yn,y) = lim p“(z,,2) =0,
n— oo n— o0 n— oo

and the properties of ¥ and ¢ , we get
Y(p*(x, F(z,y,2))) =0, thus p“(z,F(z,y,2)) = 0.

Hence 2« = F(x,y,z). Similarly, we can show that y = F(y,z,z) and z =
F(z,,y).
This completes the proof.
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