Electronic Journal of Mathematical Analysis and Applications Vol. 5(1) Jan. 2017, pp. 287-293. ISSN: 2090-729(online) http://fcag-egypt.com/Journals/EJMAA/

VOLTERRA-STIELTJES INTEGRAL EQUATION IN REFLEXIVE BANACH SPACES

A. M. A. EL-SAYED, W. G. EL-SAYED AND A. A. H. ABD EL-MOWLA

ABSTRACT. Volterra-Stieltjes integral equations have been studied in the space of continuous functions in many papers for example, (see [3]-[7]). Our aim here is to studing the existence of weak solutions to a nonlinear integral equation of Volterra-Stieltjes type in a reflexive Banach space. A special case will be considered.

1. INTRODUCTION AND PRELIMINARIES

Let *E* be a reflexive Banach space with norm $\| \cdot \|$ and dual E^* . Denote by C[I, E] the Banach space of strongly continuous functions $x : I \to E$ with sup-norm.

Consider the nonlinear Riemann-Stieltjes integral equation

$$x(t) = p(t) + \int_0^t f(s, x(s)) \ d_s g(t, s), \ t \in I = [0, T],$$
(1)

This type of equations have been studied by Banas' (see [1]-[6]) and also by some other authors, for example (see [7], [9] and [15]-[17]).

Here, we study the existence of a weak solution $x \in C[I, E]$ in the reflexive Banach space E for the nonlinear Volterra-Stieltjes integral equation (1) where f is assumed to be weakly-weakly continuous.

For the properties of the Stieltjes integral (see Banaś [1]).

Now, we shall present some auxiliary results that will be need in this work. Let E be a Banach space (need not be reflexive) and let $x : [a, b] \to E$, then

- (1-) x(.) is said to be weakly continuous (measurable) at $t_0 \in [a, b]$ if for every $\phi \in E^*$, $\phi(x(.))$ is continuous (measurable) at t_0 .
- (2-) A function $h: E \to E$ is said to be weakly sequentially continuous if h maps weakly convergent sequences in E to weakly convergent sequences in E.

If x is weakly continuous on I, then x is strongly measurable and hence weakly measurable (see [14] and [11]). It is evident that in reflexive Banach spaces, if x is

²⁰¹⁰ Mathematics Subject Classification. 26A42, 35D30, 47H30.

Key words and phrases. Weak solution, weakly Riemann-Stieltjes integral, function of bounded variation, relatively weakly compact set.

Submitted Aug. 21, 2016.

weakly continuous function on [a, b], then x is weakly Riemann integrable (see [14]). Since the space of all weakly Riemann-Stieltjes integrable functions is not complete, we will restrict our attention to the existence of weak solutions of equation (1) in the space C[I, E].

Definition 1.

Let $f : I \times E \to E$. Then f(t, u) is said to be weakly-weakly continuous at (t_0, u_0) if given $\epsilon > 0$, $\phi \in E^*$ there exists $\delta > 0$ and a weakly open set U containing u_0 such that

$$|\phi(f(t,u) - f(t_0,u_0))| < \epsilon$$

whenever

 $|t-t_0| < \delta$ and $u \in U$.

Now, we have the following fixed point theorem, due to O'Regan, in the reflexive Banach space (see [18]) and some propositions which will be used in the sequel (see [12]).

Theorem 1. Let E be a Banach space and let Q be a nonempty, bounded, closed and convex subset of C[I, E] and let $F : Q \to Q$ be a weakly sequentially continuous and assume that FQ(t) is relatively weakly compact in E for each $t \in I$. Then, F has a fixed point in the set Q.

Proposition 1. A convex subset of a normed space E is closed if and only if it is weakly closed.

Proposition 2. A subset of a reflexive Banach space is weakly compact if and only if it is closed in the weak topology and bounded in the norm topology.

Proposition 3. Let E be a normed space with $y \in E$ and $y \neq 0$. Then there exists $a \phi \in E^*$ with $|| \phi || = 1$ and $|| y || = \phi(y)$.

2. Solvability of Volterra-Stieltjes operator

In this section we discuss the existence of weak solutions of the equation (1) in the reflexive Banach space E.

Let $f: I \times E \to E, g: I \times I \to R$ be functions such that:

- (i) $p \in C[I, E]$.
- (ii) $f: I \times E \to E$ is weakly-weakly continuous function.
- (iii) There exists a constant M such that $|| f(t, x) || \le M$.
- (iv) The functions $t \to g(t, t)$ and $t \to g(t, 0)$ are continuous on I.
- (v) For all $t_1, t_2 \in I$ such that $t_1 < t_2$ the function $s \to g(t_2, s) g(t_1, s)$ is nondecreasing on I.
- (vi) g(0,s) = 0 for any $s \in I$.

Remark 1. Observe that Assumptions (v) and (vi) imply that the function $s \rightarrow g(t,s)$ is nondecreasing on the interval I, for any fixed $t \in I$ (Remark 1 in [6]). Indeed, putting $t_2 = t$, $t_1 = 0$ in (v) and keeping in mind (vi), we obtain the desired conclusion. From this observation, it follows immediately that, for every $t \in I$, the function $s \rightarrow g(t,s)$ is of bounded variation on I.

Definition 2. By a weak solution to (1) we mean a function $x \in C[I, E]$ which satisfies the integral equation (1). This is equivalent to finding $x \in C[I, E]$ with

$$\phi(x(t)) = \phi(p(t) + \int_0^t f(s, x(s)) \ d_s g(t, s)), \ t \in I \ \forall \ \phi \in E^*.$$

EJMAA-2017/5(1)

Now we can prove the following theorem.

Theorem 2. Under the assumptions (i)-(vi), the Volterra-Stieltjes integral equation (1) has at least one weak solution $x \in C[I, E]$.

Proof. Define the nonlinear Volterra-Stieltjes integral operator A by

$$Ax(t) = p(t) + \int_0^t f(s, x(s)) \ d_s g(t, s), \ t \in I.$$

For every $x \in C[I, E]$, f(., x(.)) is weakly continuous ([19]). To see this we equip E and $I \times E$ with weak topology and note that $t \mapsto (t, x(t))$ is continuous as a mapping from I into $I \times E$, then f(., x(.)) is a composition of this mapping with f and thus for each weakly continuous $x : I \to E$, $f(., x(.)) : I \to E$ is weakly continuous, means that $\phi(f(., x(.)))$ is continuous, for every $\phi \in E^*$, g is of bounded variation. Hence f(., x(.)) is weakly Riemann-Stieltjes integrable on I with respect to $s \to g(t, s)$. Thus A makes sense. Now, define the set Q by

$$Q = \{x \in C[I, E] : \parallel x \parallel_0 \le M_0, \parallel x(t_2) - x(t_1) \parallel \le \parallel p(t_2) - p(t_1) \parallel + M[\mid g(t_2, t_2) - g(t_1, t_1) \mid x(t_2) - x(t_1) \parallel x(t_2) - x(t_2) \parallel x(t_2) + x(t_2) +$$

+
$$|g(t_2,0) - g(t_1,0)|$$
, for all $t_1, t_2 \in I$.

For notational purposes $||x||_0 = \sup_{t \in I} ||x(t)||$. The remainder of the proof will be given in four steps. **Step 1 :** The operator A maps C[I, E] into C[I, E]. Let $t_1, t_2 \in I, t_2 > t_1$, without loss of generality, assume $Ax(t_2) - Ax(t_1) \neq 0$

$$\begin{split} \| Ax(t_2) - Ax(t_1) \| &\leq |\phi(p(t_2) - p(t_1))| \\ &+ |\int_0^{t_2} \phi(f(s, x(s))) \ d_s g(t_2, s) - \int_0^{t_1} \phi(f(s, x(s))) \ d_s g(t_1, s) | \\ &\leq \| p(t_2) - p(t_1) \| + |\int_0^{t_1} \phi(f(s, x(s))) \ d_s g(t_2, s) \\ &+ \int_{t_1}^{t_2} \phi(f(s, x(s))) \ d_s g(t_2, s) - \int_0^{t_1} \phi(f(s, x(s))) \ d_s g(t_1, s) | \\ &\leq \| p(t_2) - p(t_1) \| + |\int_0^{t_1} \phi(f(s, x(s))) \ d_s [g(t_2, s) - g(t_1, s)] | \\ &+ |\int_{t_1}^{t_2} \phi(f(s, x(s))) \ d_s g(t_2, s) | \\ &\leq \| p(t_2) - p(t_1) \| + \int_0^{t_1} |\phi(f(s, x(s)))| \ d_s [\bigvee_{z=0}^s (g(t_2, z) - g(t_1, z))] \\ &+ \int_{t_1}^{t_2} |\phi(f(s, x(s)))| \ d_s [\bigvee_{z=0}^s g(t_2, z)] \\ &\leq \| p(t_2) - p(t_1) \| + \int_0^{t_1} |\phi(f(s, x(s)))| \ d_s [g(t_2, s) - g(t_1, s)] \end{split}$$

290

$$+ \int_{t_1}^{t_2} |\phi(f(s, x(s)))| d_s g(t_2, s)$$

$$\leq \| p(t_2) - p(t_1) \| + M \int_0^{t_1} d_s [g(t_2, s) - g(t_1, s)] + M \int_{t_1}^{t_2} d_s g(t_2, s)$$

$$\leq \| p(t_2) - p(t_1) \| + M \{ \int_0^{t_1} d_s [g(t_2, s) - g(t_1, s)] + \int_{t_1}^{t_2} d_s g(t_2, s) \}$$

$$\leq \| p(t_2) - p(t_1) \| +$$

$$+ M \{ [g(t_2, t_1) - g(t_1, t_1)] - [g(t_2, 0) - g(t_1, 0)] + [g(t_2, t_2) - g(t_2, t_1)] \}$$

$$\leq \| p(t_2) - p(t_1) \| +$$

$$+ M \{ g(t_2, t_1) - g(t_1, t_1) - g(t_2, 0) + g(t_1, 0) + g(t_2, t_2) - g(t_2, t_1)] \}$$

$$\leq \| p(t_2) - p(t_1) \| + M \{ [g(t_2, t_2) - g(t_1, t_1)] - [g(t_2, 0) - g(t_1, 0)] \}$$

$$\leq \| p(t_2) - p(t_1) \| + M \{ [g(t_2, t_2) - g(t_1, t_1)] - [g(t_2, 0) - g(t_1, 0)] \}$$

Hence

$$\|Ax(t_2) - Ax(t_1)\| \le \|p(t_2) - p(t_1)\| + M\{\|g(t_2, t_2) - g(t_1, t_1)\| + \|g(t_2, 0) - g(t_1, 0)\|\},$$
(2)

and so $Ax \in C[I, E]$.

Step 2 : The operator A maps Q into Q.

Take $x \in Q$, note that the inequality (2) shows that AQ is norm continuous. Then by using Proposition 3 we get

$$\| Ax(t) \| = \phi(Ax(t)) \le |\phi(p(t))| + |\phi(\int_{0}^{t} f(s, x(s)) d_{s}g(t, s))|$$

$$\le \| p \|_{0} + \int_{0}^{t} |\phi(f(s, x(s)))| d_{s}(\bigvee_{z=0}^{s} g(t, z))$$

$$\le \| p \|_{0} + M \int_{0}^{t} d_{s}(\bigvee_{z=0}^{s} g(t, z))$$

$$\le \| p \|_{0} + M \int_{0}^{t} d_{s}g(t, s)$$

$$\le \| p \|_{0} + M[g(t, t) - g(t, 0)]$$

$$\le \| p \|_{0} + M[|g(t, t)| + |g(t, 0)|]$$

$$\le \| p \|_{0} + M[\sup_{t \in I} |g(t, t)| + \sup_{t \in I} |g(t, 0)|]$$

$$\le \| p \|_{0} + M[k_{1} + k_{2}] = M_{0},$$

where $k_1 = \sup_{t \in I} |g(t,t)|; k_2 = \sup_{t \in I} |g(t,0)|.$ Then

$$\parallel Ax \parallel_0 = \sup_{t \in I} \parallel Ax(t) \parallel \le M_0.$$

Hence, $Ax \in Q$ and $AQ \subset Q$ which prove that $A : Q \to Q$, and AQ is bounded in C[I, E].

Step 3 : AQ(t) is relatively weakly compact in E.

Note that Q is nonempty, closed, convex and uniformly bounded subset of C[I, E] and AQ is bounded in norm. According to propositions 1 and 2, AQ is relatively weakly compact in C[I, E] implies AQ(t) is relatively weakly compact in E, for each $t \in I$.

EJMAA-2017/5(1)

Step 4: The operator A is weakly sequentially continuous.

Let $\{x_n(t)\}$ be sequence in Q weakly convergent to x(t) in E, since Q is closed we have $x \in Q$. Fix $t \in I$, since f satisfies (ii), then we have $f(t, x_n(t))$ converges weakly to f(t, x(t)). By the Lebesgue dominated convergence theorem (see assumption (iii)) for Pettis integral ([13]), we have for each $\phi \in E^*$. $s \in I$

$$\phi(\int_0^t f(s, x_n(s)) \ d_s h(t, s)) = \int_0^t \phi(f(s, x_n(s))) \ d_s g(t, s)$$
$$\to \int_0^t \phi(f(s, x(s))) \ d_s g(t, s), \ \forall \phi \in E^*, \ t \in I.$$

i.e. $\phi(Ax_n(t)) \to \phi(Ax(t)), \forall t \in I, Ax_n(t)$ converging weakly to Ax(t) in E. Thus, A is weakly sequentially continuous on Q.

Since all conditions of Theorem 1 are satisfied, then the operator A has at least one fixed point $x \in Q$ and the nonlinear Stieltjes integral equation (1) has at least one weak solution.

Corollary 1. Under the assumptions of Theorem 2 (with g(t,s) = g(s)), the Volterra-Stieltjes integral equation

$$x(t) = p(t) + \int_0^t f(s, x(s)) \, dg(s),$$

has a weak solution $x \in C[I, E]$.

Now, let r > 0 be given and define the set

$$B_r = \{ x \in C[I, E], \ x(t) \in E : \| x \|_0 \le r \}.$$

Lemma 1.

Let $f: I \times B_r \to E$ be weakly-weakly continuous, then

- For each $t \in I$, f(t, .) is weakly continuous, hence weakly sequentially continuous (see [8]),
- For each weakly continuous $x : I \to B_r$, f(., x(.)) is weakly continuous on I (see [21]),
- f is norm bounded, i.e., there exists an M_r such that $|| f(t,x) || \le M_r$ for all $(t,x) \in I \times B_r$ (see [20]).

Now we have the following Theorem.

Theorem 3. Under the assumptions (i) and (iv)-(vi), if $f: I \times B_r \to E$ is weakly weakly continuous and $M_r < r$, where M_r is defined as in Lemma 1, then the Volterra-Stieltjes integral equation (1) has at least one weak solution $x \in C[I, E]$.

Proof. Define the nonlinear Volterra-Stieltjes integral operator A by

$$Ax(t) = p(t) + \int_0^t f(s, x(s)) \ d_s g(t, s), \ t \in I.$$

For any $x \in C[I, E]$, we have f(., x(.)) is weakly continuous on I (Lemma 1), then $\phi(f(., x(.)))$ is continuous on I for every $\phi \in E^*$ and hence $\phi(f(., x(.)))$ is Riemann-Stieltjes integrable on I with respect to $s \to g(t, s)$. Thus A makes sense. Now, define the set Q by

$$Q = \{x \in B_r, \| x(t_2) - x(t_1) \| \le \| p(t_2) - p(t_1) \| +$$

$$+M_r\{|g(t_2,t_2) - g(t_1,t_1)| + |g(t_2,0) - g(t_1,0)|\}, \text{ for all } t_1,t_2 \in I\}.$$

For notational purposes $||x||_0 = \sup_{t \in I} ||x(t)||$. The rest of proof runs as in proof of Theorem2.

References

- J. Banaś, Some properties of Urysohn-Stieltjes integral operators, Intern. J. Math. and Math. Sci. 21(1998) 78-88.
- [2] J. Banaś, J.R. Rodriguez and K. Sadarangani, On a class of Urysohn-Stieltjes quadratic integral equations and their applications, J. Comput. Appl. Math. I13(2000) 35-50.
- [3] J. Banaś and J. Dronka, Integral operators of Volterra-Stieltjes type, their properties and applications, *Math. Comput. Modelling.* 32(2000) (11-13)1321-1331.
- [4] J. Banaś and K. Sadarangani, Solvability of Volterra-Stieltjes operator-integral equations and their applications, *Comput Math. Appl.* 41(12)(2001) 1535-1544.
- [5] J. Banaś, J.C. Mena, Some Properties of Nonlinear Volterra-Stieltjes Integral Operators, Comput Math. Appl. 49(2005) 1565-1573.
- [6] J. Banaś, D. O'Regan, Volterra-Stieltjes integral operators, Math. Comput. Modelling. 41(2005) 335-344.
- [7] C.W. Bitzer, Stieltjes-Volterra integral equations, Illinois J. Math. 14(1970) 434-451.
- [8] J.M. Ball, Weak continuity properties of mappings and semigroups, Proc. Royal. Soc. Edinbourgh Sect. A 72(1973-1974), 275-280. MR 53#1354.
- [9] S. Chen, Q. Huang and L.H. Erbe, Bounded and zero-convergent solutions of a class of Stieltjes integro-differential equations, Proc. Amer. Math. Soc. 113(1991) 999-1008.
- [10] J. Diestel, J.J. Uhl Jr., Vector Measures, in: Math. Surveys, vol. 15, Amer. Math. Soc, Providence, RI, (1977).
- [11] N. Dunford, J. T. Schwartz, Linear operators, Interscience, Wiley, New York. (1958).
- [12] A.M.A. EL-Sayed, H.H.G. Hashem, Weak maximal and minimal solutions for Hammerstein and Urysohn integral equations in reflexive Banach spaces, *Differential Equation and Control Processes.* 4(2008) 50-62.
- [13] R.F. Geitz, Pettis integration, Proc. Amer. Math. Soc. 82(1981) 81-86.
- [14] E.Hille and R. S. Phillips, Functional Analysis and Semi-groups, Amer. Math. Soc. Colloq. Publ. Providence, R. I. (1957).
- [15] J.S. Macnerney, Integral equations and semigroups, Illinois J. Math. 7(1963) 148-173.
- [16] A.B. Mingarelli, Volterra-Stieltjes integral equations and generalized ordinary differential expressions, *Lecture Notes in Math.*, 989, Springer (1983).
- [17] I.P. Natanson, Theory of Functions of a Real Variable, Ungar, New York. (1960).
- [18] D. O'Regan, Fixed point theory for weakly sequentially continuous mapping, Math. Comput. Modeling. 27(1998) 1-14.
- [19] H.A.H. Salem, Quadratic integral equations in reflexive Banach spaces, Discuss. Math. Differ. Incl. Control Optim. 30(2010) 61-69.
- [20] A. Szep, Existence theorem for weak solutions of ordinary differential equations in reflexive Banach spaces, *Studia Sci. Math. Hungar.* 6(1971) 197-203.
- [21] S. Szufla, Kneser's theorem for weak solutions of ordinary differential equation in reflexive Banach spaces, Bull. Polish Acad. Sci. Math. 26(1978) 407-413.

Ahmed M. A. El-Sayed

FACULTY OF SCIENCE, ALEXANDRIA UNIVERSITY, ALEXANDRIA, EGYPT E-mail address: amasayed5@yahoo.com, amasayed@hotmail.com

W. G. EL-SAYED

FACULTY OF SCIENCE, ALEXANDRIA UNIVERSITY, ALEXANDRIA, EGYPT E-mail address: wagdygoma@alexu.edu.eg EJMAA-2017/5(1)

A. A. H. Abd El-Mowla

FACULTY OF SCIENCE, OMAR AL-MUKHTAR UNIVERSITY, DERNA, LIBYA *E-mail address:* aziza.abdelmwla@yahoo.com