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VOLTERRA-STIELTJES INTEGRAL EQUATION

IN REFLEXIVE BANACH SPACES

A. M. A. EL-SAYED, W. G. EL-SAYED AND A. A. H. ABD EL-MOWLA

Abstract. Volterra-Stieltjes integral equations have been studied in the space
of continuous functions in many papers for example, (see [3]-[7]). Our aim here

is to studing the existence of weak solutions to a nonlinear integral equation

of Volterra-Stieltjes type in a reflexive Banach space. A special case will be
considered.

1. Introduction and Preliminaries

Let E be a reflexive Banach space with norm ‖ . ‖ and dual E∗. Denote
by C[I, E] the Banach space of strongly continuous functions x : I → E with
sup-norm.
Consider the nonlinear Riemann-Stieltjes integral equation

x(t) = p(t) +

∫ t

0

f(s, x(s)) dsg(t, s), t ∈ I = [0, T ], (1)

This type of equations have been studied by Banaś (see [1]-[6]) and also by some
other authors, for example (see [7], [9] and [15]-[17]).
Here, we study the existence of a weak solution x ∈ C[I, E] in the reflexive Banach
space E for the nonlinear Volterra-Stieltjes integral equation (1) where f is assumed
to be weakly-weakly continuous.
For the properties of the Stieltjes integral (see Banaś [1]).
Now, we shall present some auxiliary results that will be need in this work. Let E be
a Banach space (need not be reflexive) and let x : [a, b]→ E, then

(1-) x(.) is said to be weakly continuous (measurable) at t0 ∈ [a, b] if for ev-
ery φ ∈ E∗, φ(x(.)) is continuous (measurable) at t0.

(2-) A function h : E → E is said to be weakly sequentially continuous if h
maps weakly convergent sequences in E to weakly convergent sequences
in E.

If x is weakly continuous on I, then x is strongly measurable and hence weakly
measurable (see [14] and [11]). It is evident that in reflexive Banach spaces, if x is
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weakly continuous function on [a, b], then x is weakly Riemann integrable (see [14]).
Since the space of all weakly Riemann-Stieltjes integrable functions is not complete,
we will restrict our attention to the existence of weak solutions of equation (1) in
the space C[I, E].

Definition 1.

Let f : I × E → E. Then f(t, u) is said to be weakly-weakly continuous
at (t0, u0) if given ε > 0, φ ∈ E∗ there exists δ > 0 and a weakly open set U con-
taining u0 such that

| φ(f(t, u)− f(t0, u0)) |< ε

whenever
| t− t0 |< δ and u ∈ U.

Now, we have the following fixed point theorem, due to O’Regan, in the reflexive
Banach space (see [18]) and some propositions which will be used in the sequel (see
[12]).

Theorem 1. Let E be a Banach space and let Q be a nonempty, bounded, closed and
convex subset of C[I, E] and let F : Q→ Q be a weakly sequentially continuous and
assume that FQ(t) is relatively weakly compact in E for each t ∈ I. Then, F has
a fixed point in the set Q.

Proposition 1. A convex subset of a normed space E is closed if and only if it is
weakly closed.

Proposition 2. A subset of a reflexive Banach space is weakly compact if and only
if it is closed in the weak topology and bounded in the norm topology.

Proposition 3. Let E be a normed space with y ∈ E and y 6= 0. Then there exists
a φ ∈ E∗ with ‖ φ ‖= 1 and ‖ y ‖= φ(y).

2. Solvability of Volterra-Stieltjes operator

In this section we discuss the existence of weak solutions of the equation (1) in
the reflexive Banach space E.
Let f : I × E → E, g : I × I → R be functions such that:

(i) p ∈ C[I, E].
(ii) f : I × E → E is weakly-weakly continuous function.
(iii) There exists a constant M such that ‖ f(t, x) ‖≤M .
(iv) The functions t→ g(t, t) and t→ g(t, 0) are continuous on I.
(v) For all t1, t2 ∈ I such that t1 < t2 the function s → g(t2, s) − g(t1, s) is

nondecreasing on I.
(vi) g(0, s) = 0 for any s ∈ I.

Remark 1. Observe that Assumptions (v) and (vi) imply that the function s →
g(t, s) is nondecreasing on the interval I, for any fixed t ∈ I (Remark 1 in [6]).
Indeed, putting t2 = t, t1 = 0 in (v) and keeping in mind (vi), we obtain the desired
conclusion. From this observation, it follows immediately that, for every t ∈ I, the
function s→ g(t, s) is of bounded variation on I.

Definition 2. By a weak solution to (1) we mean a function x ∈ C[I, E] which
satisfies the integral equation (1). This is equivalent to finding x ∈ C[I, E] with

φ(x(t)) = φ(p(t) +

∫ t

0

f(s, x(s)) dsg(t, s)), t ∈ I ∀ φ ∈ E∗.
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Now we can prove the following theorem.

Theorem 2. Under the assumptions (i)-(vi), the Volterra-Stieltjes integral equa-
tion (1) has at least one weak solution x ∈ C[I, E].

Proof. Define the nonlinear Volterra-Stieltjes integral operator A by

Ax(t) = p(t) +

∫ t

0

f(s, x(s)) dsg(t, s), t ∈ I.

For every x ∈ C[I, E], f(., x(.)) is weakly continuous ([19]). To see this we equip E and
I × E with weak topology and note that t 7→ (t, x(t)) is continuous as a mapping
from I into I × E, then f(., x(.)) is a composition of this mapping with f and
thus for each weakly continuous x : I → E, f(., x(.)) : I → E is weakly contin-
uous, means that φ(f(., x(.))) is continuous, for every φ ∈ E∗, g is of bounded
variation. Hence f(., x(.)) is weakly Riemann-Stieltjes integrable on I with respect
to s→ g(t, s). Thus A makes sense.
Now, define the set Q by

Q = {x ∈ C[I, E] :‖ x ‖0≤M0, ‖ x(t2)−x(t1) ‖≤‖ p(t2)−p(t1) ‖ +M [| g(t2, t2)−g(t1, t1) |

+ | g(t2, 0)− g(t1, 0) |], for all t1, t2 ∈ I}.

For notational purposes ‖ x ‖0= sup
t∈I
‖ x(t) ‖.

The remainder of the proof will be given in four steps.
Step 1 : The operator A maps C[I, E] into C[I, E].
Let t1, t2 ∈ I, t2 > t1, without loss of generality, assume Ax(t2)−Ax(t1) 6= 0

‖ Ax(t2)−Ax(t1) ‖ ≤ | φ(p(t2)− p(t1)) |

+ |
∫ t2

0

φ(f(s, x(s))) dsg(t2, s)−
∫ t1

0

φ(f(s, x(s))) dsg(t1, s) |

≤ ‖ p(t2)− p(t1) ‖ + |
∫ t1

0

φ(f(s, x(s))) dsg(t2, s)

+

∫ t2

t1

φ(f(s, x(s))) dsg(t2, s)−
∫ t1

0

φ(f(s, x(s))) dsg(t1, s) |

≤ ‖ p(t2)− p(t1) ‖ + |
∫ t1

0

φ(f(s, x(s))) ds[g(t2, s)− g(t1, s)] |

+ |
∫ t2

t1

φ(f(s, x(s))) dsg(t2, s) |

≤ ‖ p(t2)− p(t1) ‖ +

∫ t1

0

| φ(f(s, x(s))) | ds[
s∨

z=0

(g(t2, z)− g(t1, z))]

+

∫ t2

t1

| φ(f(s, x(s))) | ds[
s∨

z=0

g(t2, z)]

≤ ‖ p(t2)− p(t1) ‖ +

∫ t1

0

| φ(f(s, x(s))) | ds[g(t2, s)− g(t1, s)]
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+

∫ t2

t1

| φ(f(s, x(s))) | dsg(t2, s)

≤ ‖ p(t2)− p(t1) ‖ +M

∫ t1

0

ds[g(t2, s)− g(t1, s)] +M

∫ t2

t1

dsg(t2, s)

≤ ‖ p(t2)− p(t1) ‖ +M{
∫ t1

0

ds[g(t2, s)− g(t1, s)] +

∫ t2

t1

dsg(t2, s)}

≤ ‖ p(t2)− p(t1) ‖ +

+ M{[g(t2, t1)− g(t1, t1)]− [g(t2, 0)− g(t1, 0)] + [g(t2, t2)− g(t2, t1)]}
≤ ‖ p(t2)− p(t1) ‖ +

+ M{g(t2, t1)− g(t1, t1)− g(t2, 0) + g(t1, 0) + g(t2, t2)− g(t2, t1)}
≤ ‖ p(t2)− p(t1) ‖ +M{[g(t2, t2)− g(t1, t1)]− [g(t2, 0)− g(t1, 0)]}
≤ ‖ p(t2)− p(t1) ‖ +M{| g(t2, t2)− g(t1, t1) | + | g(t2, 0)− g(t1, 0) |}.

Hence

‖ Ax(t2)−Ax(t1) ‖≤‖ p(t2)−p(t1) ‖ +M{| g(t2, t2)−g(t1, t1) | + | g(t2, 0)−g(t1, 0) |},
(2)

and so Ax ∈ C[I, E].
Step 2 : The operator A maps Q into Q.
Take x ∈ Q, note that the inequality (2) shows that AQ is norm continuous. Then
by using Proposition 3 we get

‖ Ax(t) ‖ = φ(Ax(t)) ≤| φ(p(t)) | + | φ(

∫ t

0

f(s, x(s)) dsg(t, s)) |

≤ ‖ p ‖0 +

∫ t

0

| φ(f(s, x(s))) | ds(
s∨

z=0

g(t, z))

≤ ‖ p ‖0 +M

∫ t

0

ds(

s∨
z=0

g(t, z))

≤ ‖ p ‖0 +M

∫ t

0

dsg(t, s)

≤ ‖ p ‖0 +M [ g(t, t)− g(t, 0) ]

≤ ‖ p ‖0 +M [ | g(t, t) | + | g(t, 0) | ]

≤ ‖ p ‖0 +M [ sup
t∈I
| g(t, t) | + sup

t∈I
| g(t, 0) | ]

≤ ‖ p ‖0 +M [ k1 + k2 ] = M0,

where k1 = sup
t∈I
| g(t, t) |; k2 = sup

t∈I
| g(t, 0) |.

Then

‖ Ax ‖0= sup
t∈I
‖ Ax(t) ‖≤M0.

Hence, Ax ∈ Q and AQ ⊂ Q which prove that A : Q → Q, and AQ is bounded
in C[I, E].
Step 3 : AQ(t) is relatively weakly compact in E.
Note thatQ is nonempty, closed, convex and uniformly bounded subset of C[I, E] andAQ is
bounded in norm. According to propositions 1 and 2, AQ is relatively weakly com-
pact in C[I, E] implies AQ(t) is relatively weakly compact in E, for each t ∈ I.
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Step 4 : The operator A is weakly sequentially continuous.
Let {xn(t)} be sequence in Q weakly convergent to x(t) in E, since Q is closed
we have x ∈ Q. Fix t ∈ I, since f satisfies (ii), then we have f(t, xn(t)) con-
verges weakly to f(t, x(t)). By the Lebesgue dominated convergence theorem (see
assumption (iii)) for Pettis integral ([13]), we have for each φ ∈ E∗. s ∈ I

φ(

∫ t

0

f(s, xn(s)) dsh(t, s)) =

∫ t

0

φ(f(s, xn(s))) dsg(t, s)

→
∫ t

0

φ(f(s, x(s))) dsg(t, s), ∀φ ∈ E∗, t ∈ I.

i.e. φ(Axn(t))→ φ(Ax(t)), ∀ t ∈ I, Axn(t) converging weakly to Ax(t) in E.
Thus, A is weakly sequentially continuous on Q.

Since all conditions of Theorem 1 are satisfied, then the operator A has at least one
fixed point x ∈ Q and the nonlinear Stieltjes integral equation (1) has at least one
weak solution.

Corollary 1. Under the assumptions of Theorem 2 (with g(t, s) = g(s)), the
Volterra-Stieltjes integral equation

x(t) = p(t) +

∫ t

0

f(s, x(s)) dg(s),

has a weak solution x ∈ C[I, E].

Now, let r > 0 be given and define the set

Br = {x ∈ C[I, E], x(t) ∈ E : ‖ x ‖0≤ r}.

Lemma 1.

Let f : I ×Br → E be weakly-weakly continuous, then
• For each t ∈ I, f(t, .) is weakly continuous, hence weakly sequentially

continuous (see [8]),
• For each weakly continuous x : I → Br, f(., x(.)) is weakly continuous

on I (see [21]),
• f is norm bounded, i.e.,there exists an Mr such that ‖ f(t, x) ‖≤ Mr for

all (t, x) ∈ I ×Br (see [20]).

Now we have the following Theorem.

Theorem 3. Under the assumptions (i) and (iv)-(vi), if f : I×Br → E is weakly-
weakly continuous and Mr < r, where Mr is defined as in Lemma 1, then the
Volterra-Stieltjes integral equation (1) has at least one weak solution x ∈ C[I, E].

Proof. Define the nonlinear Volterra-Stieltjes integral operator A by

Ax(t) = p(t) +

∫ t

0

f(s, x(s)) dsg(t, s), t ∈ I.

For any x ∈ C[I, E], we have f(., x(.)) is weakly continuous on I (Lemma 1),
then φ(f(., x(.))) is continuous on I for every φ ∈ E∗ and hence φ(f(., x(.))) is
Riemann-Stieltjes integrable on I with respect to s→ g(t, s). Thus A makes sense.
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Now, define the set Q by

Q = {x ∈ Br, ‖ x(t2)− x(t1) ‖≤‖ p(t2)− p(t1) ‖ +

+Mr{| g(t2, t2)− g(t1, t1) | + | g(t2, 0)− g(t1, 0) |}, for all t1, t2 ∈ I}.
For notational purposes ‖ x ‖0= supt∈I ‖ x(t) ‖.
The rest of proof runs as in proof of Theorem2.
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