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ON A CLASS OF N-NORMED DOUBLE SEQUENCES RELATED

TO p-SUMMABLE DOUBLE SEQUENCE SPACE l
(2)
p

CENAP DUYAR, BIRSEN SAĞIR, OĞUZ OĞUR

Abstract. In this work we introduce the m2 (ϕ)- class of n-normed double
sequences related to p-absolute convergence double sequence space. We study
some properties like solidity, simetricity, convergence-free of m2 (ϕ) and obtain

some inclusion relations involved m2 (ϕ).

1. Introduction

Throughout this work, N and R denote the set of positive integers and real
numbers, respectively. Let n ∈ N andX be a R-linear space. A n-norm is a function
satisfying following four properties on Xn(see, [5],[7],[10]): For all z1, ..., zn ∈ X

1. ∥(z1, ..., zn)∥n = 0 if and only if z1, ..., zn are linear depended,
2. ∥(z1, ..., zn)∥n is constant under permutation,
3. ∥(z1, ..., αzn)∥n = |α| ∥(z1, ..., zn)∥n for any α ∈ R,
4. ∥(z1, ..., zn−1, x+ y)∥n ≤ ∥(z1, ..., zn−1, x)∥n+∥(z1, ..., zn−1, y)∥n.
In this case a double (X, ∥.∥n) is called a n-normed space. If every Cauchy se-

quence is convergent, then this space is called a n-Banach space. A double sequence
on a normed linear space X is a function x from N×N into X and briefly denoted
by {xk,l}. Throughout this work, w and w2 denote the spaces of single sequences
and double sequences, respectively. If, for all ε > 0, there is a nε ∈ N such that
∥xk,l − a∥X < ε whenever k > nε and l > nε, then a double sequence {xk,l} is
said to be converge (in Pringsheim’s sense) to a a ∈ X. If, for all ε > 0, there
is a nε ∈ N such that ∥xk,l − xp,q∥X < ε whenever k, l, p, q > nε, then a double
sequence {xk,l} is said to be a double Cauchy sequence in X. A double series is
infinity sum

∑∞
k,l=1 xk,l and its convergence implies the convergence by ∥.∥X of

partial sums sequence {Sn,m}, where Sn,m =
∑n
k=1

∑m
l=1 xk,l(see [2],[8],[9]).

Throughout this work, we will use the convergence in Pringsheim’s sense of the
double sequences.

If each double Cauchy sequence in X converge an element of X according to
n-norm, then X is said to be a double complete space according to n-norm. A
double complete n-normed space is said to be a double n- Banach space.
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A n-normed double sequence space E is said to be solid if {αk,lxk,l} ∈ E when-
ever {xk,l} ∈ E for all double sequences {αk,l} of scalars with |αk,l| ≤ 1 for all
k, l ∈ N(see [3],[4]).

Let x = {xk,l} be a double sequence. A set S (x) is defined by

S (x) =
{{
xπ1(k),π2(k)

}
: π1 and π2 are permutations of N

}
.

If S (x) ⊆ E for all x ∈ E, then E is said to be symmetric.
If {xk,l} ∈ E, whenever {yk,l} ∈ E and yk,l = 0 implies xk,l = 0, then a double

sequence space E is said to be convergence-free.
Throughout this work {ϕk,l} is taken as a non-decreasing double sequence of the

positive real numbers such that

kϕk+1,l ≤ (k + 1)ϕk,l and lϕk,l+1 ≤ (l + 1)ϕk,l

for all (k, l) ∈ N× N.
Now let ℘s be a family of subsets σ having most elements s in N. The space

m (ϕ), introduced by Sargent in [11], is in the form

m (ϕ) =

{
x = {xk} : ∥x∥m(ϕ) = sup

s≥1, σ∈℘s

1

ϕs

∑
k∈σ

|xk| <∞

}
.

Tripathy and Borgshain in [12] expanded to n-normed spaces it. They introduced
this new space as follows:

(m (ϕ) , ∥.∥n) =

{
x = {xk} : ∥x∥n,m(ϕ) = sup

s≥1, σ∈℘s

1

ϕs

∑
k∈σ

∥(z1, ..., zn−1, xk)∥n <∞

}
.

for all z1, ..., zn−1 ∈ X. The spaces in this form for single sequences was studied by
many authors(see, [1],[12],[13]).

Let ℘s,t be the class of subsets σ = σ1 × σ2 in N×N such that element numbers
of σ1 and σ2 are most s and t respectively.

The aim of this work is to introduce the space m2 (ϕ) and investigate various
properties of it. This space is defined by(

m2 (ϕ) , ∥.∥n
)
=

{
x = {xk,l} : ∥x∥n,m2(ϕ) =

sup
(s, t) ≥ (1, 1)
σ1 × σ2 ∈ ℘s,t

1
ϕs,t

∑
k∈σ1

∑
l∈σ2

∥(z1, ..., zn−1, xk,l)∥n <∞


for all z1, ..., zn−1 ∈ X.

2. MAIN RESULTS

Definition 1. A double sequence space E is said to be monotone if x = (xklukl) ∈ E

for all x = (xkl) and u = (ukl) ∈ {0, 1}N×N
(see [14]).

The following lemma is an easy result of the definitions:

Lemma 1. If a double sequence space E is solid, then E is monotone.

Proposition 1. Let X be a n-Banach space. Then
(
m2 (ϕ) , ∥.∥n

)
is also a n-

Banach space with the norm ∥.∥n,m2(ϕ).
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Proof. Let
{
x(i)

}
be a double Cauchy sequence in

(
m2 (ϕ) , ∥.∥n

)
such that x(i) ={

x
(i)
k,l

}∞

k,l=1
for all i ∈ N . Then for arbitrary ε > 0 there is a nε ∈ N such that

∥∥∥x(i) − x(j)
∥∥∥
n,m2(ϕ)

<
ε

ϕ1,1

for each i, j ≥ nε. Then the inequality∥∥∥(z1, ..., zn−1,
(
x
(i)
k,l − x

(j)
k,l

))∥∥∥
n
< ε

holds for all i, j ≥ nε and (k, l) ∈ N × N, since (ϕk,l) is a non-decreasing double

sequence of the positive real numbers. So
{
x
(i)
k,l

}
is a double Cauchy sequence in

X. Since X is a n-Banach space,
{
x
(i)
k,l

}
is convergent in X. We say

lim
i→∞

x
(i)
k,l = xk,l

for each (k, l) ∈ N× N. Now, for this double sequence x = {xk,l} we have to show

that lim
i→∞

x(i) = x and x ∈
(
m2 (ϕ) , ∥.∥n

)
. Since

{
x(i)

}
is a double Cauchy sequence

in
(
m2 (ϕ) , ∥.∥n

)
, there is a number nεϵN such that

sup
(s, t) ≥ (1, 1)
σ1 × σ2 ∈ ℘s,t

1

ϕs,t

∑
k∈σ1

∑
l∈σ2

∥∥∥(z1, ..., zn−1,
(
x
(i)
k,l − x

(j)
k,l

))∥∥∥
n
< ε

where i, j ≥ nε.
Taking limit as j → ∞, we have

sup
(s, t) ≥ (1, 1)
σ1 × σ2 ∈ ℘s,t

1

ϕs,t

∑
k∈σ1

∑
l∈σ2

∥∥∥(z1, ..., zn−1,
(
x
(i)
k,l − xk,l

))∥∥∥
n
< ε

for all i ≥ nε. This implies that∥∥∥x(i) − x
∥∥∥
n,m2(ϕ)

< ε

for all i ≥ nε and so lim
i→∞

x(i) = x. We also have that

∥x∥n,m2(ϕ) ≤
∥∥∥x(i) − x

∥∥∥
n,m2(ϕ)

+
∥∥∥x(i)∥∥∥

n,m2(ϕ)
< ε+

∥∥∥x(i)∥∥∥
n,m2(ϕ)

<∞

for a fixed i ≥ nε, and hence x ∈
(
m2 (ϕ) , ∥.∥n

)
. Thus

(
m2 (ϕ) , ∥.∥n

)
is a n-Banach

space with the norm ∥.∥n,m2(ϕ). �

Proposition 2. The class
(
m2 (ϕ) , ∥.∥n

)
of double sequences is solid.
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Proof. Let {xk,l} ∈
(
m2 (ϕ) , ∥.∥n

)
and let {αk,l} ∈ w2 be any double sequence of

scalars with |αk,l| ≤ 1. Then we can write

sup
(s, t) ≥ (1, 1)
σ1 × σ2 ∈ ℘s,t

1

ϕs,t

∑
k∈σ1

∑
l∈σ2

∥(z1, ..., zn−1, αk,lxk,l)∥n

= sup
(s, t) ≥ (1, 1)
σ1 × σ2 ∈ ℘s,t

1

ϕs,t

∑
k∈σ1

∑
l∈σ2

|αk,l| ∥(z1, ..., zn−1, xk,l)∥n

≤ sup
(s, t) ≥ (1, 1)
σ1 × σ2 ∈ ℘s,t

1

ϕs,t

∑
k∈σ1

∑
l∈σ2

∥(z1, ..., zn−1, xk,l)∥n .

Thus we obtain
∥{αk,lxk,l}∥n,m2(ϕ) ≤ ∥{xk,l}∥n,m2(ϕ) .

This implies that {αk,lxk,l} ∈
(
m2 (ϕ) , ∥.∥n

)
, and hence the class

(
m2 (ϕ) , ∥.∥n

)
is

solid.

Corollary 1. The space
(
m2 (ϕ) , ∥.∥n

)
is monotone.

�
Proposition 3. The class

(
m2 (ϕ) , ∥.∥n

)
of double sequences is symmetric.

Proof. Let {xk,l} ∈
(
m2 (ϕ) , ∥.∥n

)
and let {yk,l} ∈ w2 be any permutation of it.

Then there exists a (pk, qk) ∈ N × N such that yk,l = xpk,ql for all (k, l) ∈ N × N.
Hence we have

∥{xk,l}∥n,m2(ϕ) = sup
(s, t) ≥ (1, 1)
σ1 × σ2 ∈ ℘s,t

1

ϕs,t

∑
k∈σ1

∑
l∈σ2

∥(z1, ..., zn−1, xk,l)∥n

= sup
(s, t) ≥ (1, 1)
σ1 × σ2 ∈ ℘s,t

1

ϕs,t

∑
pk∈σ1

∑
ql∈σ2

∥(z1, ..., zn−1, xpk,ql)∥n

=
∥∥{xpk,mql

}∥∥
n,m2(ϕ)

= ∥{yk,l}∥n,m2(ϕ) .

�
Example 1. Let n = 2 and a double sequence ϕ be given by ϕ (s, t) = s.t. Also we
take a double sequence {xk,l} such that xk,l =

1
k + 1

l and define 2-norm on R × R
such that

∥(z, xk,l)∥2 = z.xk,l.

Then we obtain

∥x∥n,m2(ϕ) = sup
(s, t) ≥ (1, 1)
σ1 × σ2 ∈ ℘s,t

1

s.t

∑
k∈σ1

∑
l∈σ2

z.

(
1

k
+

1

l

)

≤ sup

{
1

s.t

s∑
k=1

t∑
l=1

z.

(
1

k
+

1

l

)
: (s, t) ≥ (1, 1)

}
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≤ sup

{
2
1

s.t
z.s.t : (s, t) ≥ (1, 1)

}
= 2z <∞

for all z ∈ R.

Remark 1. The class
(
m2 (ϕ) , ∥.∥n

)
of double sequences have not to convergence-

free. This can be immediately observed from the example above.

Theorem 1. Let ψ be an other double sequence like ϕ. Then
(
m2 (ϕ) , ∥.∥n

)
⊆(

m2 (ψ) , ∥.∥n
)
if and only if sup

(s,t)≥(1,1)

(
ϕs,t

ψs,t

)
<∞.

Proof. Let K = sup
(s,t)≥(1,1)

(
ϕs,t

ψs,t

)
<∞. Then, ϕs,t ≤ K.ψs,t for all (s, t) ≥ (1, 1). If

{xk,l} ∈
(
m2 (ϕ) , ∥.∥n

)
, then

sup
(s, t) ≥ (1, 1)
σ1 × σ2 ∈ ℘s,t

1

ϕs,t

∑
k∈σ1

∑
l∈σ2

∥(z1, ..., zn−1, xk,l)∥n <∞.

Thus

sup
(s, t) ≥ (1, 1)
σ1 × σ2 ∈ ℘s,t

1

Kψs,t

∑
k∈σ1

∑
l∈σ2

∥(z1, ..., zn−1, xk,l)∥n <∞

and hence ∥{xk,l}∥n,m2(ψ) <∞. This shows that
(
m2 (ϕ) , ∥.∥n

)
⊆

(
m2 (ψ) , ∥.∥n

)
.

Conversely, let
(
m2 (ϕ) , ∥.∥n

)
⊆

(
m2 (ψ) , ∥.∥n

)
and αs,t =

ϕs,t

ψs,t
for all (s, t) ≥

(1, 1). Suppose that sup
(s,t)≥(1,1)

αs,t = ∞. Then there exists a subsequence {αsi,ti} of

{αs,t} such that lim
i→∞

αsi,ti = ∞. Let us take a non-zero arbitrary sequence {xk,l}
in

(
m2 (ϕ) , ∥.∥n

)
. Using the hypothesis, we have

sup
(s, t) ≥ (1, 1)
σ1 × σ2 ∈ ℘s,t

1

ψs,t

∑
k∈σ1

∑
l∈σ2

∥(z1, ..., zn−1, xk,l)∥n

= sup
(s, t) ≥ (1, 1)
σ1 × σ2 ∈ ℘s,t

αs,t
ϕs,t

∑
k∈σ1

∑
l∈σ2

∥(z1, ..., zn−1, xk,l)∥n

≥ sup
i ≥ 1

σ1 × σ2 ∈ ℘si,ti

αsi,ti
1

ϕsi,ti

∑
k∈σ1

∑
l∈σ2

∥(z1, ..., zn−1, xk,l)∥n = ∞.

This is a contradiction as {xk,l} /∈
(
m2 (ψ) , ∥.∥n

)
. The proof is completed.

Corollary 2.
(
m2 (ϕ) , ∥.∥n

)
=

(
m2 (ψ) , ∥.∥n

)
if and only if sup

(s,t)≥(1,1)

αs,t <∞ and

sup
(s,t)≥(1,1)

α−1
s,t <∞, where αs,t =

ϕs,t

ψs,t
for all (s, t) ≥ (1, 1).

�

Theorem 2. (a)
(
l
(2)
1 , ∥.∥n

)
⊆

(
m2 (ϕ) , ∥.∥n

)
⊆

(
l
(2)
∞ , ∥.∥n

)
.
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(b)
(
m2 (ϕ) , ∥.∥n

)
=

(
l
(2)
1 , ∥.∥n

)
if and only if sup

(s,t)≥(1,1)

ϕs,t = ϕ <∞.

(c)
(
m2 (ϕ) , ∥.∥n

)
=

(
l
(2)
∞ , ∥.∥n

)
if and only if sup

(s,t)≥(1,1)

ϕs,t

s.t = ϕ < ∞ and

sup
(s,t)≥(1,1)

s.t
ϕs,t

= ϕ <∞.

Proof. Firstly we write clearly this topic spaces:(
l
(2)
1 , ∥.∥n

)
=

x = {xk,l} :
∞∑

k,l=1

∥(z1, ..., zn−1, xk,l)∥n <∞

 ,

(
m2 (ϕ) , ∥.∥n

)
= {x = {xk,l} : ∥x∥n,m2(ϕ) =

sup
(s, t) ≥ (1, 1)
σ1 × σ2 ∈ ℘s,t

1

ϕs,t

∑
k∈σ1

∑
l∈σ2

∥(z1, ..., zn−1, xk,l)∥n <∞


and (

l(2)∞ , ∥.∥n
)
=

{
x = {xk,l} : sup

(k,l)∈N×N
∥(z1, ..., zn−1, xk,l)∥n <∞

}
for all z1, ..., zn−1 ∈ X.

(a) Take x = {xk,l} ∈ l
(2)
1 and let a set A be defined as follows:

A =

{
1

ϕs,t

∑
k∈σ1

∑
l∈σ2

∥(z1, ..., zn−1, xk,l)∥n : (s, t) ≥ (1, 1) , σ1 × σ2 ∈ ℘s,t

}
for all z1, ..., zn−1 ∈ X. Then we can write ∥x∥n,m2(ϕ) = supA. Since {ϕs,t} is a

non-decreasing double sequence,
{

1
ϕs,t

}
is a non-increasing double sequence. So we

obtain
1

ϕ1,1

∞∑
k,l=1

∥(z1, ..., zn−1, xk,l)∥n ≥ a

for all a ∈ A and hence

∥x∥
l
(2)
1

=
∞∑

k,l=1

∥(z1, ..., zn−1, xk,l)∥n ≥ ϕ1,1. supA = ϕ1,1. ∥x∥n,m2(ϕ) .

Therefore x ∈
(
m2 (ϕ) , ∥.∥n

)
. Thus we have

(
l
(2)
1 , ∥.∥n

)
⊆

(
m2 (ϕ) , ∥.∥n

)
.

It is clear that

supA ≥ 1

ϕ1,1
∥(z1, ..., zn−1, xk,l)∥n

for all (k, l) ∈ N ×N , and hence

∥x∥n,m2(ϕ) ≥
1

ϕ1,1
sup

(k,l)∈N×N
∥(z1, ..., zn−1, xk,l)∥n =

1

ϕ1,1
∥x∥

n,l
(2)
∞

.

This shows that if {xk,l} ∈
(
m2 (ϕ) , ∥.∥n

)
, then {xk,l} ∈

(
l2∞, ∥.∥n

)
. Thus we have(

m2 (ϕ) , ∥.∥n
)
⊆

(
l
(2)
∞ , ∥.∥n

)
.
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(b) Let sup
(s,t)≥(1,1)

ϕs,t < ∞. It is clear that
(
m2 (ψ) , ∥.∥n

)
=

(
l
(2)
1 , ∥.∥n

)
if

ψs,t = 1 for all (s, t) ≥ (1, 1). Then we can write sup
(s,t)≥(1,1)

ϕs,t = sup
(s,t)≥(1,1)

ϕs,t

ψs,t
<∞.

By Theorem 1, we have
(
m2 (ϕ) , ∥.∥n

)
⊂

(
m2 (ψ) , ∥.∥n

)
, and(

m2 (ϕ) , ∥.∥n
)
=

(
l
(2)
1 , ∥.∥n

)
according to (a). We can see just the opposite of this from Theorem 1 again.

(c) Firstly we show that
(
l
(2)
∞ , ∥.∥n

)
=

(
m2 (ψ) , ∥.∥n

)
if ψ (s, t) = s.t for all

(s, t) ∈ N× N. Let {xk,l} ∈
(
l
(2)
∞ , ∥.∥n

)
. Then we have

1

st

∑
k∈σ1

∑
l∈σ2

∥(z1, ..., zn−1, xk,l)∥n ≤ 1

st
st sup

(k,l)∈N×N
∥(z1, ..., zn−1, xk,l)∥n <∞.

This gives the inclusion
(
l
(2)
∞ , ∥.∥n

)
⊂

(
m2 (ψ) , ∥.∥n

)
. The reverse inclusion is

a result of the alternative (a). Thus we have
(
m2 (ψ) , ∥.∥n

)
=

(
l
(2)
∞ , ∥.∥n

)
. By

Theorem 1, the proof is completed.
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