ON GENERALIZED SEMIDERIVATIONS OF Γ-RINGS

K. H. KIM AND Y. H. LEE

Abstract

In this paper, we introduce the notion of a generalized semiderivation on Γ-ring, and we try to generalize some known results of derivations, semiderivations and generalized derivations to generalized semiderivations on a prime Γ-ring. We also prove that there exist no nontrivial generalized semiderivations which act as a homomorphism or as an antihomomorphism on a prime Γ-ring.

1. Introduction

J. C. Chang [6] studied on semiderivations of prime rings. He obtained some results of derivations of prime rings into semiderivations. H. E. Bell and W. S. Martindale III [1] investigated the commutativity property of a prime ring by means of semiderivations. C. L. Chuang [7] studied on the structure of semiderivations in prime rings. He obtained some remarkable results in connection with semiderivations. J. Bergen and P. Grzesczuk [3] obtained the commutatity properties of semiprime rings with the help of skew(semi)-derivations. A. Firat [8] generalized some results of prime rings with derivations to the prime rings with semiderivations. In this paper, we introduce the notion of a generalized semiderivation on Γ-ring, and we try to extend some known results of derivations, semiderivations and generalized derivations to generalized semiderivations on a prime Γ-ring. We also prove that there exist no nontrivial generalized semiderivations which act as a homomorphism or as an antihomomorphism on a prime Γ-ring.

2. Preliminaries

Let M and Γ be additive abelian groups. Then M is called a Γ-ring if the following conditions are satisfied:
(M1) $x \beta y \in M$,
(M2) $(x+y) \alpha z=x \alpha z+y \alpha z, x(\alpha+\beta) y=x \alpha y+x \beta y, x \alpha(y+z)=x \alpha y+x \alpha z$,
(M3) $(x \alpha y) \beta z=x \alpha(y \beta z)$, for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$.

[^0]Let M be a Γ-ring with center $Z(M)$. For any $x, y \in M$, the notation $[x, y]_{\alpha}$ denotes the commutator $x \alpha y-y \alpha x$ while the symbol (x, y) denotes $x+y-x-$ y, respectively. We know that $[x \beta y, z]_{\alpha}=x \beta[y, z]_{\alpha}+[x, z]_{\alpha} \beta y+x[\beta, \alpha]_{z} y$ and $[x, y \beta z]_{\alpha}=y \beta[x, z]_{\alpha}+[x, y]_{\alpha} \beta z+y[\beta, \alpha]_{x} z$, for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. We take an assumption $\left(^{*}\right) x \alpha y \beta z=x \beta y \alpha z$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. Using the assumption $\left(^{*}\right)$, identities $[x \beta y, z]_{\alpha}=x \beta[y, z]_{\alpha}+[x, z]_{\alpha} \beta y$ and $[x, y \beta z]_{\alpha}=$ $y \beta[x, z]_{\alpha}+[x, y]_{\alpha} \beta z$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$ are used extensively in our results.

Let M be a Γ-ring. A right (resp. left) ideal of a Γ-ring M is an additive subgroup I of M such that $I \Gamma M \subset I$ (resp. $M \Gamma I \subset I$). If I is both a right and a left ideal, we say that I is an ideal of M.

Definition 2.1. Let M be a Γ-ring. Then
(1) M is said to be prime if $x \Gamma M \Gamma y=0$ implies $x=0$, or $y=0$, for all $x, y \in M$.
(2) M is said to be semiprime if $x \Gamma M \Gamma x=0$ implies $x=0$, for all $x \in M$.
(3) M is said to be 2-torsion free if $2 x=0$ implies $x=0$, for all $x \in M$.

Definition 2.2. Let M be a Γ-ring. An additive mapping $d: M \rightarrow M$ is called a derivation if

$$
d(x \alpha y)=d(x) \alpha y+x \alpha d(y)
$$

for all $x, y \in M$ and $\alpha \in \Gamma$.
Definition 2.3. Let M be a Γ-ring. An additive mapping $d: M \rightarrow M$ is called a semiderivation associated with a map $g: M \rightarrow M$ if, for all $x, y \in M$ and $\alpha \in \Gamma$,
(1) $d(x \alpha y)=d(x) \alpha g(y)+x \alpha d(y)=d(x) \alpha y+g(x) \alpha d(y)$,
(2) $d(g(x))=g(d(x))$.

Example 2.4. Let M_{1} be a Γ_{1}-ring and M_{2} be a Γ_{2}-ring. Consider $M=M_{1} \times M_{2}$ and $\Gamma=\Gamma_{1} \times \Gamma_{2}$. Define addition and multiplication on M and Γ by

$$
\begin{gathered}
\left(m_{1}, m_{2}\right)+\left(m_{3}, m_{4}\right)=\left(m_{1}+m_{3}, m_{2}+m_{4}\right) \\
\left(\alpha_{1}, \alpha_{2}\right)+\left(\alpha_{3}, \alpha_{4}\right)=\left(\alpha_{1}+\alpha_{3}, \alpha_{2}+\alpha_{4}\right) \\
\left(m_{1}, m_{2}\right)\left(\alpha_{1}, \alpha_{2}\right)\left(m_{3}, m_{4}\right)=\left(m_{1} \alpha_{1} m_{3}, m_{2} \alpha_{2} m_{4}\right)
\end{gathered}
$$

for every $\left(m_{1}, m_{2}\right),\left(m_{3}, m_{4}\right) \in M$ and $\left(\alpha_{1}, \alpha_{2}\right),\left(\alpha_{3}, \alpha_{4}\right) \in \Gamma$. Under these addition and multiplication, M is a Γ-ring. Let $\delta: M_{1} \rightarrow M_{1}$ be an additive map and τ : $M_{2} \rightarrow M_{2}$ be a left and right M_{2}^{Γ}-module which is not a derivation. Define $d: M \rightarrow$ M such that $d\left(\left(m_{1}, m_{2}\right)\right)=\left(0, \tau\left(m_{2}\right)\right)$ and $g: M \rightarrow M$ such that $g\left(\left(m_{1}, m_{2}\right)\right)=$ $\left(\delta\left(m_{1}\right), 0\right), m_{1} \in M_{1}, m_{2} \in M_{2}$. Then it is clear that d is a semiderivation of M associated with g, which is not a derivation on M. .

Lemma 2.5. [9] Let M be a prime Γ-ring and I be a nonzero ideal of M such that $I \subseteq Z(M)$. Then I is commutative.

Let M be a Γ-ring and F be a semiderivation of M. If $F(x \alpha y)=F(x) \alpha F(y)$ and $F(x \alpha y)=F(y) \alpha F(x)$, for all $x, y \in M$ and $\alpha \in \Gamma$, then F is said to act as a homomorphism or antihomomorphism on M, respectively.

3. Generalized Semiderivations of Γ-Rings

Definition 3.1. Let M be a Γ-ring. An additive mapping $F: M \rightarrow M$ is called a generalized semiderivation of M if there exists a semiderivation $d: M \rightarrow M$ associated with a map $g: M \rightarrow M$ if
(1) $F(x \alpha y)=F(x) \alpha y+g(x) \alpha d(y)=d(x) \alpha g(y)+x \alpha F(y)$,
(2) $F(g(x))=g(F(x))$, for all $x, y \in M$ and $\alpha \in \Gamma$.

If $g=I$, i.e., an identity mapping of M, then all semiderivations associated with g are merely ordinary derivations. If g is any endomorphism, then semiderivations are of the form $f(x)=x-g(x)$.

Example 3.2. Let R be a commutative ring, $\Gamma=\left\{\left(\begin{array}{ll}0 & 0 \\ 0 & b\end{array}\right): b \in Z_{2}\right\}$ and $M=\left\{\left(\begin{array}{ll}a & 0 \\ b & c\end{array}\right): a, b, c \in R\right\}$. Then M is a Γ-ring. Define a map $F: M \rightarrow M$ by $F\left(\left(\begin{array}{cc}a & 0 \\ b & c\end{array}\right)\right)=\left(\begin{array}{cc}0 & 0 \\ 0 & c\end{array}\right)$ and $g: M \rightarrow M$ by $g\left(\left(\begin{array}{cc}a & 0 \\ b & c\end{array}\right)\right)=\left(\begin{array}{cc}0 & 0 \\ b & -c\end{array}\right)$. Then F is a generalized semiderivation associated with nonzero semiderivation $d: M \rightarrow M$ defined by $d\left(\left(\begin{array}{ll}a & 0 \\ b & c\end{array}\right)\right)=\left(\begin{array}{ll}a & 0 \\ b & 0\end{array}\right)$, which is not a generalized derivation on M.

Lemma 3.3. Let M be a 2-torsion free prime Γ-ring. If d is a non-zero semiderivation of M associated with an onto map g which is onto, then $d^{2} \neq 0$.

Proof. Suppose that $d^{2}(M)=0$. Then, for all $x, y \in M$ and $\alpha \in \Gamma$, we have

$$
\begin{aligned}
0 & =d^{2}(x \alpha y) \\
& =d(d(x \alpha y)) \\
& =d(d(x) \alpha y+g(x) \alpha d(y)) \\
& =d^{2}(x) \alpha y+d(x) \alpha d(y)+d(g(x)) \alpha d(y)+g(x) \alpha d^{2}(y) \\
& =d(x) \alpha d(y)+d(g(x)) \alpha d(y) .
\end{aligned}
$$

Note that $g(d(x))=d(g(x))$ and g is onto, we get

$$
2 d(x) \alpha d(y)=0 \text { for all } x, y \in M \text { and } \alpha \in \Gamma
$$

Since M is 2-torsion free, we get

$$
d(x) \alpha d(y)=0 \text { for all } x, y \in M \text { and } \alpha \in \Gamma .
$$

Replacing y by $r \beta y$ in the above relation, we get

$$
\begin{aligned}
0 & =d(x) \alpha d(r \beta y) \\
& =d(x) \alpha(d(r) \beta y+g(r) \beta d(y)) \\
& =d(x) \alpha d(r) \beta y+d(x) \alpha g(r) \beta d(y)
\end{aligned}
$$

for all $x, y, r \in S$ and $\alpha, \beta \in \Gamma$. This implies that

$$
d(x) \alpha g(r) \beta d(y)=0 \text { for all } x, y, r \in M \text { and } \alpha, \beta \in \Gamma
$$

Since g is onto, we have

$$
d(x) \alpha r \beta d(y)=0 \text { for all } x, y, r \in M \text { and } \alpha \in \Gamma .
$$

Hence

$$
d(M) \Gamma M \Gamma d(M)=\{0\}
$$

Thus we obtain $d=0$, a contradiction.
Lemma 3.4. Let M be a prime Γ-ring and let d be a nonzero semiderivation associated with an onto map $g: M \rightarrow M$. If $d(M) \subseteq Z(M)$, then M is commutative.

Proof. By hypothesis, we have $d(x \alpha y) \in Z(M)$ for all $x, y \in M$. That is, $d(x) \alpha g(y)+$ $x \alpha d(y) \in Z(M)$ for all $x, y \in M$ and $\alpha \in \Gamma$. Commuting this term with x, we obtain

$$
\begin{aligned}
0 & =[d(x) \alpha g(y)+x \alpha d(y), x]_{\gamma} \\
& =[d(x) \alpha g(y), x]_{\gamma}+[x \alpha d(y), x]_{\gamma} \\
& =d(x) \alpha[g(y), x]_{\gamma}+[d(x), x]_{\gamma} \alpha g(y)+x \alpha[d(y), x]_{\gamma}+[x, x]_{\gamma} \alpha d(y) \\
& =d(x) \alpha[g(y), x]_{\gamma} .
\end{aligned}
$$

Since $d(x) \in Z(N)$, and g is surjective function of M, we have $d(x) \alpha s \beta[y, x]_{\gamma}=0$ for all $x, y, s \in M$ and $\alpha, \beta \in \Gamma$. Since M is prime and $d(x) \neq 0$ for all $x \in M$, we have $[y, x]_{\gamma}=0$ for all $x, y \in M$. That is, M is commutative.

Lemma 3.5. Let M be a 2-torsion free prime Γ-ring satisfying the condition (*) and admitting a nonzero semiderivation d associated with an onto map $g: M \rightarrow M$. If $[d(x), d(y)]_{\alpha}=0$ for all $x, y \in M$, then M is commutative.

Proof. Suppose that

$$
\begin{equation*}
d(x) \alpha d(y)=d(y) \alpha d(x), \quad \forall x, y \in M, \alpha \in \Gamma \tag{1}
\end{equation*}
$$

Replacing y by $y \beta z$ in (1), we obtain

$$
\begin{equation*}
d(x) \alpha d(y \beta z)=d(y \beta z) \alpha d(x), \forall x, y, z \in M, \alpha, \beta \in \Gamma . \tag{2}
\end{equation*}
$$

$d(x) \alpha(d(y) \beta z+g(y) \beta d(z))=(d(y) \beta z+g(y) \beta d(z)) \alpha d(x), \forall x, y, z \in M, \alpha, \beta \in \Gamma$.

$$
\begin{align*}
& d(x) \alpha d(y) \beta z+d(x) \alpha g(y) \beta d(z) \\
& \quad=d(y) \beta z \alpha d(x)+g(y) \beta d(z) \alpha d(x), \forall x, y, z \in M, \alpha, \beta \in \Gamma . \tag{4}
\end{align*}
$$

Substituting $d(y)$ for y in (4) and using (1), we get

$$
\begin{equation*}
d(x) \alpha d^{2}(y) \beta z=d^{2}(y) \beta z \alpha d(x), \forall x, y, z \in M, \alpha, \beta \in \Gamma \tag{5}
\end{equation*}
$$

Taking $z \delta t$ instead of z in (5), we obtain

$$
\begin{equation*}
d(x) \alpha d^{2}(y) \beta z \delta t=d^{2}(y) \beta z \delta t \alpha d(x), \forall x, y, z \in M, \alpha, \beta, \delta \in \Gamma \tag{6}
\end{equation*}
$$

Using (5) in (6), we get

$$
\begin{equation*}
d^{2}(y) \beta z \alpha d(x) \delta t=d^{2}(y) \beta z \delta t \alpha d(x), \forall x, y, z \in M, \alpha, \beta, \delta \in \Gamma . \tag{7}
\end{equation*}
$$

Hence we get

$$
\begin{equation*}
d^{2}(y) \beta z \alpha[d(x), t]_{\delta}=0, \forall x, y, z \in M, \alpha, \beta, \delta \in \Gamma \tag{8}
\end{equation*}
$$

This implies

$$
\begin{equation*}
d^{2}(y) \Gamma M \Gamma[d(x), t]_{\delta}=0, \forall x, y, z \in M, \alpha, \beta, \delta \in \Gamma . \tag{9}
\end{equation*}
$$

Since M is prime, we have $d^{2}=0$ or $d(M) \subseteq Z(M)$. But $d^{2} \neq 0$ by Lemma 3.3, and so $d(M)$ is contained in $Z(M)$, which implies M is commutative by Lemma 3.4.

Theorem 3.6. Let M be a 2 -torsion free prime Γ-ring satisfying the condition (*) with a generalized semiderivation F associated with a nonzero semiderivation d and onto map g associated with d. If $F(M) \subseteq Z(M)$, then M is commutative.
Proof. Assume that

$$
\begin{equation*}
F(x) \in Z(M), \quad \forall x \in M \tag{10}
\end{equation*}
$$

For all $x, n \in M, z \in Z(M)$ and $\alpha, \beta \in \Gamma$, we have

$$
\begin{align*}
F(x \alpha z) \beta n & =F(x) \alpha z \beta n+g(x) \alpha d(z) \beta n, \\
n \beta F(x \alpha z) & =n \beta F(x) \alpha z+n \beta g(x) \alpha d(z) \\
& =F(x) \alpha z \beta n+n \beta g(x) \alpha d(z) . \tag{11}
\end{align*}
$$

Since $F(x \alpha z) \beta n=n \beta F(x \alpha z)$, we have $g(x) \alpha d(z) \beta n=n \beta g(x) \alpha d(z)$ for all $x, n \in$ $M, z \in Z(M) \backslash\{0\}$. Thus $g(x) \alpha d(z) \in Z(M)$ for all $x \in M$ and $\alpha, \beta \in \Gamma$. Let $d(Z) \neq\{0\}$. Choosing z such that $d(z) \neq 0$ and noting that $d(z) \in Z(M)$, we have $g(x) \in Z(M)$. Since g is onto, we have $M \in Z(M)$. Hence M is commutative by Lemma 2.5. On the other hand, if $d(z)=0$, then for all $x, y \in M$,

$$
\begin{aligned}
0 & =d(F(x \alpha y)) \\
& =d(F(x) \alpha y+g(x) \alpha d(y)) \\
& =F(x) \alpha d(y)+g(x) \alpha d^{2}(y)+d(g(x)) g(d(y))
\end{aligned}
$$

for all $x, y \in M$ and $\alpha \in \Gamma$. Hence $F(x \alpha d(y))=-d(g(x)) \alpha g(d(y)) \in Z(M)$ for all $x, y \in M$ and $\alpha \in \Gamma$. Since g is onto, we have we have $d(x) \alpha d(y) \in Z(M)$ for all $x, y \in M$ and $\alpha \in \Gamma$. This implies that

$$
d(x) \alpha(d(x) \beta d(y)-d(y) \beta d(x))=0
$$

for all $x, y \in M$ and $\alpha, \beta \in \Gamma$. Multiplying by $d(y)$ on left side of the above relation, we obtain

$$
d(y) \gamma d(x) \alpha M \delta((d(x) \beta d(y)-d(y) \beta d(x))=\{0\}
$$

for all $x, y \in M$ and $\alpha, \beta, \delta \gamma \in \Gamma$. Since M is prime, we have

$$
[d(x), d(y)]_{\beta}=0,
$$

for all $x, y \in M$. We conclude that M is commutative by Lemma 3.5.
Theorem 3.7. Let M be a prime Γ-ring satisfying the condition (*) and admitting a generalized semiderivation F associated with a nonzero semiderivation d and an onto map g associated with d such that $g(x \alpha y)=g(x) \alpha g(y)$ for all $x, y \in M$ and $\alpha \in \Gamma$. If $[F(M), F(M)]_{\alpha}=0$, then M is commutative.
Proof. By the hypothesis, we have

$$
\begin{equation*}
F(x) \alpha F(y)=F(y) \alpha F(x) \tag{12}
\end{equation*}
$$

for all $x, y \in M$ and $\alpha \in \Gamma$. Replacing y by $F(z) \beta y$ in the above relation, we get

$$
\begin{equation*}
F(x) \alpha F(F(z) \beta y)=F(F(z) \beta y) \alpha F(x) \tag{13}
\end{equation*}
$$

for all $x, y, z \in N$ and $\alpha, \beta \in \Gamma$. This implies that

$$
\begin{align*}
& F(x) \alpha(d(F(z)) \beta g(y)+F(z) F(y)) \\
& \quad=(d(F(z)) \beta g(y)+F(z) \beta F(y))=\alpha F(x) \tag{14}
\end{align*}
$$

for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. Hence we get

$$
\begin{equation*}
F(x) \alpha d(F(z)) \beta g(y)=d(F(z)) \beta g(y) \alpha F(x) \tag{15}
\end{equation*}
$$

for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. Taking $y \gamma w$ instead of y in (14) and using (14), we obtain

$$
d(F(z)) \beta g(y) \alpha F(x) \gamma g(w)=d(F(z)) \beta g(y) \gamma g(w) \alpha F(x)
$$

for all $x, y, z \in M$ and $\alpha, \beta, \gamma \in \Gamma$. Since g is onto, we get

$$
d(F(z)) \beta y \alpha F(x) \gamma w=d(F(z) \beta y \gamma w \alpha F(x),
$$

for all $x, y, z \in M$ and $\alpha, \beta, \gamma \in \Gamma$. This implies that

$$
d(F(z)) \Gamma M \Gamma(F(x) \gamma w-w \gamma F(x))=\{0\}
$$

for all $x, z, w \in M$ and $\gamma \in \Gamma$. Since M is prime, we have $d(F(M))=\{0\}$ or $F(M) \subseteq Z(M)$. If $F(M)$ is contained in $Z(M)$, then M is commutative by Theorem 3.6. On the other hand, if $d(F(M))=0$, then

$$
d(F(x \alpha y))=d((d(x) \alpha g(y)+x \alpha F(y))=0
$$

for all $x, y \in M$ and $\alpha \in \Gamma$. Thus

$$
d^{2}(x) \alpha g(y)+d(x) \alpha d(g(y))+d(x) \alpha F(y)+x \alpha d(F(y))=0
$$

for all $x, y \in M$ and $\alpha \in \Gamma$. This implies that

$$
\begin{equation*}
d^{2}(x) \alpha g(y)+d(x) \alpha d(g(y))+d(x) \alpha F(y)=0 \tag{16}
\end{equation*}
$$

for all $x, y \in M$ and $\alpha \in \Gamma$. Replacing y by $y \beta z$ and g is onto, we have

$$
d^{2}(x) \alpha g(y \beta z)+d(x) \alpha d(g(y \beta z))+d(x) \alpha F(y \beta z)=0
$$

for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$, which implies that

$$
d^{2}(x) \alpha y \beta z+d(x) \alpha d(y \beta z)+d(x) \alpha F(y \beta z)=0
$$

for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. Hence

$$
d^{2}(x) \alpha y \beta z+d(x) \alpha(y \beta d(z)+d(y) \beta g(z))+d(x) \alpha(F(y) \beta z+g(y) \beta d(z))=0
$$

for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$.
$d^{2}(x) \alpha y \beta z+d(x) \alpha y \beta d(z)+d(x) \alpha d(y) \beta g(z)+d(x) \alpha F(y) \beta z+d(x) \alpha g(y) \beta d(z)=0$, for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. Since g is onto, we have

$$
d^{2}(x) \alpha y \beta z+d(x) \alpha y \beta d(z)+d(x) \alpha d(y) \beta z+d(x) \alpha F(y) \beta z+d(x) \alpha y \beta d(z)=0
$$

for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. Thus

$$
\left\{d^{2}(x) \alpha y+d(x) \alpha d(y)+d(x) \alpha F(y)\right\} \beta z+2 d(x) \alpha y \beta d(z)=0
$$

for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. Since M is a 2 -torsion free and using (16), we get $d(x) \alpha y \beta d(z)=0$ for all $y, z \in M$ and $\alpha, \beta \in \Gamma$. That is, $d(M) \Gamma M \Gamma d(M)=\{0\}$. Thus we get $d=0$, which is a contradiction. This completes the proof.
Corollary 3.8. Let M be a 2-torsion free prime Γ-ring. If M admits a generalized derivation F associated with a nonzero derivation d such that $[F(x), F(y)]_{\alpha}=0$ for all $x, y \in M$ and $\alpha \in \Gamma$, then M is commutative.

Theorem 3.9. Let M be a 2 -torsion free prime Γ-ring satisfying the condition (*). If F is a generalized semiderivation of M associated with a nonzero semiderivation d and an automorphism g associated with d, then the following conditions are equivalent:
(1) $F\left([x, y]_{\alpha}\right)=[F(x), y]_{\alpha}$, for all $x, y \in M$ and $\alpha \in \Gamma$,
(2) $F\left([x, y]_{\alpha}\right)=-[F(x), y]_{\alpha}$, for all $x, y \in M$ and $\alpha \in \Gamma$,
(3) M is commutative.

Proof. It is obvious that (3) implies both (1) and (2).
Now we prove that (1) implies (3). By hypothesis,

$$
\begin{equation*}
F\left([x, y]_{\alpha}\right)=[F(x), y]_{\alpha} \tag{17}
\end{equation*}
$$

for all $x, y \in M$ and $\alpha \in \Gamma$. Taking $x \beta y$ instead of y in (17) and noting that $[x, x \beta y]_{\alpha}=x \beta[x, y]_{\alpha}$, we get

$$
F\left([x, x \beta y]_{\alpha}\right)=[F(x), x \beta y]_{\alpha},
$$

for all $x, y \in M$ and $\alpha \in \Gamma$. Hence we get

$$
F\left(x \beta[x, y]_{\alpha}\right)=[F(x), x \beta y]_{\alpha},
$$

for all $x, y \in M$ and $\alpha \in \Gamma$. This implies that

$$
x \beta F\left([x, y]_{\alpha}\right)+d(x) \beta g\left([x, y]_{\alpha}\right)=F(x) \alpha x \beta y-x \beta y \alpha F(x),
$$

for all $x, y \in M$ and $\alpha \in \Gamma$. Using (17) and noting that $F(x) \alpha x=x \alpha F(x)$ by (17), the last equation yields

$$
d(x) \alpha g\left([x, y]_{\alpha}\right)=0
$$

for all $x, y \in M$ and $\alpha \in \Gamma$. Since g is automorphism, we get

$$
d(x) \alpha g(x) \alpha g(y)=d(x) \alpha g(y) \alpha g(x)
$$

for all $x, y \in M$ and $\alpha \in \Gamma$. Replacing y by $y \beta t$, in the last equation, we get

$$
d(x) \alpha y \alpha[x, t]_{\beta}=0
$$

for all $x, y, t \in M$ and $\alpha, \beta \in \Gamma$. This implies that

$$
d(x) \Gamma M \Gamma[x, t]_{\beta}=0
$$

for all $x, t \in M$ and $\beta \in \Gamma$. Since M is prime, we have $M \subseteq Z(M)$ or $d(M)=\{0\}$. In both cases, M is commutative Lemma 2.5 and Lemma 3.4. By the similar fashion, we can show that (2) implies (3).

Theorem 3.10. Let M be a 2-torsion free prime Γ-ring satisfying the condition $\left(^{*}\right)$. If F is a generalized semiderivation of M associated with a nonzero semiderivation d and an automorphism g associated with d, then the following conditions are equivalent:
(1) $F\left([x, y]_{\alpha}\right)=[x, F(y)]_{\alpha}$, for all $x, y \in M$ and $\alpha \in \Gamma$,
(2) $F\left([x, y]_{\alpha}\right)=-[x, F(y)]_{\alpha}$, for all $x, y \in M$ and $\alpha \in \Gamma$,
(3) M is commutative.

Proof. It is obvious that (3) implies both (1) and (2). Now we prove that (1) implies (3). By hypothesis,

$$
\begin{equation*}
F\left([x, y]_{\alpha}\right)=[x, F(y)]_{\alpha} \tag{18}
\end{equation*}
$$

for all $x, y \in M$ and $\alpha \in \Gamma$. Taking $y \beta x$ instead of x in (18) and noting that $[x, x \beta y]_{\alpha}=x \beta[x, y]_{\alpha}$, we get

$$
y \beta F\left([x, y]_{\alpha}\right)+d(y) \beta g\left([x, y]_{\alpha}\right)=y \beta x \alpha F(y)-F(y) \alpha x \beta y
$$

for all x, y, and $\alpha, \beta \in \Gamma$. Using (18) and noting that $y \beta F(y)=F(y) \beta y$ by (1), we have

$$
d(y) \alpha g([x, y])=0
$$

for all $x, y \in M$ and $\alpha \in \Gamma$. Arguing in the similar manner as in the Theorem 3.9, we get the results. Similarly, we can prove that (2) implies (3).

Theorem 3.11. Let M be a prime Γ-ring satisfying the condition (*). Suppose that F is a generalized semiderivation of M associated with a nonzero semiderivation d and an onto map g associated with d such that $g(x \alpha y)=g(x) \alpha g(y)$. If F acts as a homomorphism on M, then either F is an identity map or $F=0$.

Proof. By the hypothesis, we have

$$
\begin{equation*}
F(x \alpha y)=d(x) \alpha g(y)+x \alpha F(y)=F(x) \alpha F(y) \tag{19}
\end{equation*}
$$

for all $x, y \in M$ and $\alpha \in \Gamma$. Replacing y by $y \beta z$ in the above relation, we get

$$
F(x \alpha y \beta z)=d(x) \alpha g(y \beta z)+x \alpha F(y \beta z)
$$

for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. Thus

$$
F(x \alpha y) \beta F(z)=d(x) \alpha g(y \beta z)+x \alpha F(y \beta z)
$$

for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. By (1), we get

$$
(d(x) \alpha g(y)+x \alpha F(y)) \beta F(z)=d(x) \alpha g(y \beta z)+x \alpha(d(y) \beta g(z)+y \beta F(z))
$$

for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. Hence we have

$$
d(x) \alpha g(y) \beta F(z)+x \alpha F(y) \beta F(z)=d(x) \alpha g(y \beta z)+x \alpha d(y) \beta g(z)+x \alpha y \beta F(z)
$$

for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$, and

$$
d(x) \alpha g(y) \beta F(z)+x \alpha F(y \beta z)=d(x) \alpha g(y \beta z)+x \alpha d(y) \beta g(z)+x \alpha y \beta F(z)
$$

for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$, and
$d(x) \alpha g(y) \beta F(z)+x \alpha d(y) \beta g(z)+x \alpha y \beta F(z)=d(x) \alpha g(y \beta z)+x \alpha d(y) \beta g(z)+x \alpha y \beta F(z)$, for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. This implies that

$$
d(x) \alpha g(y) \beta F(z)=d(x) \alpha g(y) \beta g(z),
$$

for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. Since g is onto, we obtain

$$
d(x) \alpha y \beta(F(z)-z)=0
$$

for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. Thus,

$$
d(x) \Gamma M \Gamma(F(z)-z)=\{0\}
$$

for all $x, z \in M$. Therefore, $d(M)=0$ or $F(z)=z$ for all $z \in M$. In the later case, F is an identity map. On the other hand, assume that $d(M)=0$. Then $F(x \alpha y)=F(x) \alpha y=F(x) \alpha F(y)$, that is, $F(x) \alpha(y-F(y))=0$ for all $x, y \in M$ and $\alpha \in \Gamma$. Replacing y by $z \beta y, z \in M$, and noting that $F(z \beta y)=z \beta F(y)$, we have $F(x) \alpha z \beta(y-F(y))=0$, for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. That is, $F(x) \Gamma M \Gamma(y-$ $F(y))=\{0\}$, for all $x, y \in M$. Therefore $F(M)=\{0\}$ or F is an identity map.

Theorem 3.12. Let M be a 2-torsion free prime Γ-ring satisfying the condition (*). Suppose that F is a generalized semiderivation of M associated with a nonzero semiderivation d and an onto map g associated with d such that $g(x \alpha y)=$ $g(x) \alpha g(y)$. If F acts as an antihomomorphism on M, then either F is an identity map or $F=0$ and M is commutative.
Proof. By the hypothesis, we have

$$
\begin{equation*}
F(x \alpha y)=d(x) \alpha g(y)+x \alpha F(y)=F(y) \alpha F(x) \tag{20}
\end{equation*}
$$

for all $x, y \in M$ and $\alpha \in \Gamma$. Thus

$$
F(y) \alpha F(x)=d(x) \alpha g(y)+x \alpha F(y)=F(y) \alpha F(x)
$$

for all $x, y \in M$ and $\alpha \in \Gamma$. Replacing y by $x \beta y$ in the above relation, we get

$$
F(x \beta y) \alpha F(x)=d(x) \alpha g(x \beta y)+x \alpha F(x \beta y)
$$

for all $x, y \in M$ and $\alpha, \beta \in \Gamma$. That is,

$$
(d(x) \beta g(y)+x \beta F(y)) \alpha F(x)=d(x) \alpha g(x \beta y)+x \alpha F(x \beta y)
$$

for all $x, y \in M$ and $\alpha, \beta \in \Gamma$. This implies that $d(x) \beta g(y) \alpha F(x)+x \beta F(y) \alpha F(x)=$ $d(x) \alpha g(x \beta y)+x \alpha F(x \beta y)$ for all $x, y \in M$ and $\alpha, \beta \in \Gamma$. Hence we get

$$
d(x) \beta g(y) \alpha F(x)+x \beta F(y) \alpha F(x)=d(x) \alpha g(x \beta y)+x \alpha F(y) \beta F(x)
$$

for all $x, y \in M$ and $\alpha, \beta \in \Gamma$, which implies that

$$
\begin{equation*}
d(x) \beta g(y) \alpha F(x)=d(x) \alpha g(x) \beta g(y) \tag{21}
\end{equation*}
$$

for all $x, y \in M$ and $\alpha, \beta \in \Gamma$. Replacing y by $y \gamma t$ in the above relation, we get

$$
d(x) \beta g(y \gamma t) \alpha F(x)=d(x) \alpha g(x) \beta g(y \gamma t)
$$

for all $x, y, t \in M$ and $\alpha, \beta \in \Gamma$, and so

$$
d(x) \beta g(y) \gamma g(t) \alpha F(x)=d(x) \alpha g(x) \beta g(y) \gamma g(t)
$$

for all $x, y, t \in M$ and $\alpha, \beta \in \Gamma$. Using (21) in the above relation, we get

$$
d(x) \beta g(y) \gamma g(t) \alpha F(x)=d(x) \beta g(y) \alpha F(x) \gamma g(t)
$$

for all $x, y, t \in M$ and $\alpha, \beta \in \Gamma$. Since g is onto, we have

$$
d(x) \Gamma M \Gamma[F(x), t]_{\alpha}=\{0\}
$$

for all $x, t \in M$. Therefore either $d(M)=\{0\}$ or $F(M) \subseteq Z(M)$. Hence in either case, F acts as a homomorphism on M. Thus this completes the proof by Theorem 3.11 and Lemma 3.4.

References

[1] Bell. H. E. and Martindale, W. S., III Semiderivations and commutatity in prime rings, Canad. Math, 31 (4) (1988), 500-5008.
[2] Bergen, J., Derivations in prime rings, Canad. Math, 26 (1983), 267-270.
[3] Bergen, J. and Grzesczuk, P., Skew derivations with central invariants, J. London Math. Soc, 59 (2) (1999), 87-99.
[4] Bresar, M., On a generalizationof the notion of centralizing mappings, Proc. Amer. Math. Soc, 114 (1992), 641-649.
[5] Bresar, M., Semiderivations of prime rings, Proc. Amer. Math. Soc, 108 (4) (1990), 859-860.
[6] Chang. J. C., On semiderivations of prime rings, Chinese J. Math Soc, 12 (1984), 255-262.
[7] Chuang. Chen-Lian, On the structure of semiderivations in prime rings, Proc. Amer. Math. Soc, 108 (4) (1990), 867-869.
[8] Firat. A., Some results for semiderivations of prime rings, International J. of pure and Applied Mathematics, 28 (3) (1990), 363-368.
[9] Soyturk, M, The Commutativity in prime gamma-rings with derivations, Tr. J. Math, 18 (1994), 149-155.
K. H. Kim

Department of Mathematics, Korea National University of Transportation, Chunguu 380-702, KOREA

E-mail address: ghkim@ut.ac.kr
Y. H. LEE

Department of Mathematics, Dankook University, Cheonan 330-714, Korea
E-mail address: yonghoon@dankook.ac.kr

[^0]: 2010 Mathematics Subject Classification. 16W25, 16N60, 16 U 80.
 Key words and phrases. Γ-ring, generalized semiderivation, prime, 2-torsion free, commutative. Submitted Aug. 4, 2016.

