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MULTIPLE POSITIVE SOLUTIONS FOR FUNCTIONAL
DYNAMIC EQUATIONS ON TIME SCALES

ARZU DENK OGUZ AND FATMA SERAP TOPAL

ABSTRACT. This paper is concerned with the existence of multiple positive
solutions for a functional dynamic equations with multi-point boundary condi-
tions on time scales by using fixed point theorems in a cone. As an application,
we also give an example to demonstrate our results.

1. INTRODUCTION

The theory of dynamic equations on time scales has become important mathe-
matical branch [2, 3, 12] since it was initiated by Hilger [14]. The study of time
scales theory has led to many important applications, for example, in the study of
insect population models, neural networks, heat transfer, quantum mechanics, epi-
demic, crop harvest and stock market [5, 6, 15, 16, 24]. Boundary-value problems
for scalar dynamic equations on time scales have received considerable attention
[4, 19, 20]. Recently, existence and multiplicity of solutions for boundary value
problems of dynamic equations have been of great interest in mathematics and its
applications to engineering sciences [1, 7, 10, 18, 26]. But very little work has
been done to the existence of positive solutions for functional dynamic equations
on time scales [17, 22, 23, 25]. In particular, we would like to mention some results
of Kaufmann and Raffoul [17] and Tang, Sun and Chen [23] which motivate us to
consider our problem.

In [17], authors studied the existence of at least one positive solution to the nonlocal
eigenvalue problem for a class of nonlinear functional dynamic equations on time
scales

uY () + Aa(t) f(u(t), u(0(1))) = 0, t€(0,T),
u(s) = ¢(s) s€[-r0, u(0)=0, au(n) =u(T).
In [23], authors discussed the existence of single and multiple positive solutions of
the boundary value problems for a p-Laplacian functional dynamic equations on

2010 Mathematics Subject Classification. 34B15, 39A10.

Key words and phrases. Positive solutions, Fixed point theorems, Functional dynamic equa-
tion, Time scales.

Submitted Sep. 28, 2016.

28



EJMAA-2017/5(2) FUNCTIONAL DYNAMIC EQUATIONS 29

time scales

(ep ()Y +h(t)f(ult), u(6(t))) = 0, te€(0,T),
u(t) =9(t) s € [=r0], u(0) = Bu(0) =u™(n) u(T)=0.

In [21], authors considered the existence of positive solutions of the boundary value
problems for the following second order multipoint boundary value problem on time
scales

V(t) + f(t,ut) =0, tel0,1],
Bu (0) yu (O Zaz gz m 2> 3.

Motivated by those works and the references thereln, in this paper we shall consider
the following functional multi point problem on time scales:

2(t) + fult), u(61(1)), u(82(1)) = 0, t € [0,T] 1)
u(s) = 1(s), s € [=r,0], u(s) = pa(s), s € [T, p,

au(0) — Bu™(0) = 0, §u(T) +~yu™(T) = Z a;u(&:), (2)

where —7,0,T,p € T and an closed interval [0,T] is defined by [0,7] ={t € T: 0 <
t < T}. Other types of intervals are defined similarly. Some preliminary definitions
and theorems on time scales can be found in the books [8, 9].

In this paper, we study more general problem and some new results are obtained
for the existence of at least one, three and four positive solutions for the above
problem by using cone theory techniques [7, 13]. The results are even new for the
special cases of differential equations and difference equations, as well as in the
general time scale setting.

The plan of this paper is as follows. In Section 2, we provide some necessary
backgrounds. In particular, we construct the Green’s function of the linear bound-
ary value problem and develop upper and lower bounds on the Green’s function.
In Section 3, we establish the main results of the paper. Finally, one example is
also included to illustrate the main results.

2. THE PRELIMINARY LEMMAS

Throughout the paper we assume that the following conditions are satisfied:
(H1) a,,7v>0,0>0,0<84+a<1,0<&E <& <o <Epnoa <T,
(Hy) D = a(0T +7 = X7 &) + B0 — X757 a) > 0,0 < Y% ais < T,
S 2 ai < 6 with a; € (0, 00),
(H3) f:]0,00) x [0,00) X [0,00) — [0, 00) is continuous,

(Hy) 1 : [-7,0] = [0,00), @2 : [T,p] — [0,00) are continuous where r > 0 and
p>T,
(Hs) 641 :[0,T] — [-r,T], 0 [0, p] are continuous and nondecreasing with

:0,T] —
91(0)<07 91( )>Oand 92( ) > T,
0}, p

(Hg) v =sup{t € [0,T] : 01(t) < =sup{t € [0,T] : 02(t) < T} and v < p.

Remark Let T = R. If the assumption (Hs) satisfies, then (Hg) satisfies.
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To prove the main results in this paper, we will employ several lemmas. These
lemmas are based on the linear boundary value problem

A(t) + y(t) =0,te [OvT} (3)
au(0) ~ BuB(0) = 0, u(T) + (1) = 3 (&) (4)

Lemma 1 Let D = a(6T +~v— >/, % ai&) + 86— Z:’;Q a;) #0and 0 < & <
& < ... <&m—2 < T, then for y € C([0,T]), the boundary value problem (3) — (4)
has the unique solution

u(t) = 2rat fOT 5T 85 +7)y(s)As — BHat S3m=2 0 (S e s)y(s) As
— fo (t — s)y(s)As.

Lemma 2 Suppose D = a(6T + v — Z:nfalfl) + 86— Y a;) # 0 and
0<& <& <. <&poo <T, then the Green’s function for the boundary value
problem (3) — (4) is given by

Gi(t,s), &0 <5<¢&1,(60=0),
GQ(tas)v fl S5§§27

Gm—?(t7 5)7 fm—S S S S gm—27
H(ta 3) €WL—2 <s< Ta

where for alli =1,2,...,m — 2,

(B+at)(6(T—s)+7=375% a5 =s) <
Gilt 5){ (t—s), s<t,

D
(B+at)(8(T—s)+y—37% a;(€5—5))
D ? =

and

Brat)(0T=s)ty) _ (4 _5), s<t,

H(t,s) =
(Brot)(((T=s)ty) t<s.

Using the above Green’s function, the solution of the problem (3)—(4) is expressed
as

= fOT G(t, s)y(s)As.

Lemma 3 Assume that the conditions (H;) — (Hz) are satisfied. Then
1) G(t,s) > 0 for all ¢,s € [0,T],
i7) There exist a number n € (0,1) and a continuous function ¢ : [0, 7] — (0, 00)

such that G(t,s) < ¢(s) and G(t,s) > n¢(s) for all ¢t,s € [0,T], where @(s)

(Bas)ST0) g = BY

Proof. i) Since D > 0, we can easily get that G(t,s) > 0 for all ¢, s € [0,T].

i1) Now, we will find an upper and a lower bound for the function G(t, s) for all
t,s €[0,T].
Upper bound:
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Case 1. Consider &;_1 <s<¢; (1 =1,2,3,....,m —2), s <t. Then

—s M2 e g
G(t, S) _ (ﬁ+at)(5(T )+'YD E]:z J(f] )) 7 (t 7 S)

_ (BHas)(§(T—t)+7)+3 521 a; (B+ad;) (t—s)+ 7% a; (t—&;) (B+as)

D
< (BHas)B(T—8)+m)+ 55577 a5 (Bas)(b=s)+ 57 a; (t=&) (B+as)
— D
_ (BHas)(0T—dt+v+30 01 agt+ 35757 at—s 101 =37 % ay¢5)
- D
< (B+a8) 0T+ +H(375" a;—9))

— D

< (3+asg5T+W) = ¢(s).

Case 2. For &1 <s<¢ (1=1,2,3,...,m—2), s > t, we have

G(t,s) = (B+at)(5(Tfs)+’nyZ;":’i a;(&—s))

(B+at)(6(T—=s)+v)
< D e

< (5+as)£()6T+'y) = ¢(s).
Case 3. For &,,_2 < s < T, s <t, we obtain
G(ﬂs):w—(t—@

_ (BHas)(0T+y—s 272 a;+t(X 5% a;—6))
- D

< (BJrasg&TJr'y) _ ¢(5)
Case 4. For &,,_2 < s < T, s > t, we clearly have

as)(d
G(t,s) < BHedlTH) — 4(),
Lower bound:
Case 1. For &1 <s<¢ (1=1,2,3,....,m—2), s <t, we get
_s N m=2 e g
G(t, S) _ (B+at)(6(T )+'7D Z]:z i(65—s)) _ (t _ S)

(Btas) (§(T—t)+)+3521 aj (B+ag;) (=) + 32757 aj (1) (B+as)
D

(B+as)(S(T=)+N+37,% a;(1=€;) (B+as)
D

(B+as)((T—t)+v+3 757 a;(t—€5))

D

_ (BHas)(ST+r+ (75" aj—8)t=370% a,¢;)
- D
S (B+as8) OTH+r+(X7" a5 —8)¢m—2=373% a56m—2)
sl D
_ (B+08)(0T+7)(8(T—&m_2)+7)

D(6T+7)
> ng(s).

Case 2. For &1 <s<¢ (1=1,2,3,...,m—2), s > t, we get

—s N2 (g
G(t75):(ﬁ+at)(6(T )JrWDZ]:Z i(&5—5))
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(B+0t) (ST+v+(X5,2 a;—8)s—3 1% a;¢5)
D

(BHat) ST+v+(E)L, aj=8)m—2 =31, a;€m—2)
D

(B+as)(0T+7)B(6(T—&m—2)+7)
DT +7)

Y

v

> ne(s).
Case 3. For &,,_2 < s <T, s <t, we obtain

G(Ls):w_(t_s)

(B+as)(5(T— t)+’¥)+2m % aj(B+ag;)(t—s)

(B+as)(6T+v)y
DOT+)

> ng(s).
Case 4. For &, 2 < s < T, s >t, we clearly have
G(t,s) = (ﬂ+at)(5(T*S)+7)

Y

> (Btas)(0T+y)8y
D(6T+~)

> n¢(s).

Lemma 4 Let the conditions (H;)—(Hz) be satisfied; then for y € C([0,T7, [0, 00)),
the solution of the boundary value problem (3)— (4) satisfies u(t) > n||ul|, t € [0,T].
Proof. By using Lemma 3, we get

fo 5)As < fo y(s)As, te€][0,T],
and SO

T
lull < [y d(s)y(s)As,
Now, by using Lemma 3 again , we obtain for ¢ € [0, 7],

=, @ $)As 21 [} d(s)y(s)As = nlful.
ThlS completes the proof.

The following two theorems are crucial in our arguments.

Theorem 1 Let £ = (E,||.||) be a Banach space, and let P C E be a cone in
E. Assume 1,y are bounded open subsets of E with 0 € Q1,Q; C Qo, and let
APﬂ(ﬁQ\Ql)—)P
be a completely continuous operator such that, either
(a) ||Au|| < |Ju|l,u € PN O and [|Aul| > ||ull,u € P NI or
(0)  JJAu| > [Jull,u € PN9IQ; and [|Au|| < ||ul|,u € PN INy.
Then A has a fixed point in PN (Q2\Qy).

Theorem 2 Let P be a cone in the real Banach space E, A : P. — P, be
completely continuous and 1 be a nonnegative continuous concave functional on P
with (u) < |Jul| for all u € P.. Suppose there exist 0 < d < a < b < ¢ such that
the following conditions hold:
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(1) {ue€P@,ab):¥(u)>a} #0 and Y(Au) > a for all u € P(1), a, b);
(ii) ||Aul| < d for u € Pgy;
(#i1) Y(Au) > a for u € P(v,a,c) with ||Aul| > b.
Then A has at least three fixed points uy,us and ug satisfying
lul <d, (u2) >a, d<|us| with ¥(us) < a,
where P, = {u € P: |lul]| < ¢} and P(¢,a,b) ={u € P:a < ¢(u), |lu]] <b}.

3. MAIN RESULTS

In this section, we present sufficient conditions for the existence of the positive
solutions of our problem. Firstly, we prove the existence of at least one positive
solution by applying Theorem 1. Secondly, we use Theorem 2 to prove the existence
of at least three positive solutions. Finally, we obtain that there exist at least four
positive solutions of our problem.

We note that u(t) is a solution of (1) — (2) if and only if

p1(t), te -0,
u(t) = fOT G(t, ) f(u(s),u(01(s)),u(b2(s)))As, te][0,T],
a(t), t e [T, p]
Let E denote the Banach space C(]0,7T]) with the norm |u| = tlg?gu);] [w(t)].

Define the cone P C E by P = {u € E : u(t) > n|ull, Vt € [0,T]}.

For each u € F, extend u(t) to [—r,T| with u(t) = ¢1(t) for t € [—r,0] and
extend u(t) to [0, p] with u(t) = @a(t) for t € [T, p].

Define an operator A : P — E by

Au(t) = [T G(t,5) (uls), (b1 (5)), u(Ba(s)) As, for t € [0,T).

Let w1 be a fixed point of A in the cone P. Define

o1(t), te[-r0],
u(t) =< wi(t), te][0,T],
wa(t), telT,pl
Then, u is a positive solution of the problem (1) — (2).

Fix v € T which is defined in (Hg) and define the following sets
Y1 ={t€0,T]:6:(t) <0, O2(t) < T},
Yo={te€[0,T]:0:(t) >0, 02(t) > T},
Ya={te[0,T7]:0.(t) >0, 02(t) <T}.

It is obvious that the sets are pairwise disjoint and Y; JY> Y3 = [0, 7.

For notational convenience, we denote m, k and M by

m=n* [y, 6(s)As, k=1 [y, é(s)As and M = fOT o(s)As.

Theorem 3 Suppose that the assumptions (H;y) — (Hg) hold and f satisfies the
following conditions:

(4)  lim U #i(s).us)

ul,u3~>0+ U1

< 1/M, uniformly in s € [—7, 0],

fur,uz, 2(s))

uy,us—0*1 Ul

< 1/M, uniformly in s € [T, p]
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and
lim fur,wa(s), ua(s)) < 1/M, uniformly in s € [0, T].
up—0t U1
(A2) lim o, er(s), us) > 1/m, uniformly in s € [—r,0].
u1,U3—>+00 (5%

Then the problem (1) — (2) has at least one positive solution.
Proof. We use Theorem 1 to prove that A has a fixed point in our cone P. First,
it is obvious that A is completely continuous and A(P) C P.

By the condition (A7), there exists an N7 > 0 such that if 0 < u; < Ny and
0 < usz < Np, then

1
f(U17<P1(5)7U3) S MU1’ fO?" ERS [77.7 0}, (5)
and there exists an Ny > 0 such that if 0 < u; < Ny and 0 < us < N, then
1
Jur,uz, pa(s)) < VaRE for s € [T,p]. (6)
and similarly, there exists an N3 > 0 such that if 0 < u; < N3, then
1
flur,ua(s),ui(s)) < s for s €1[0,T7. (7)
Let » = min{Ny, N, N3} and Q; = {u € E : |ju| < r}. We shall prove that

[Au|| < ||ul| for w € PN OQy. Let u € PN IQy. Then, for all ¢ € [0,T], we have
0 < wu(t) <r. Thus, by (5),(6),(7) and Lemma 3, for ¢ € [0,T], we find

= Jy G u(s), u(b1(s)), u(02(s)))As
= fy f(U(S)NP (01(s)), u(02(s)))As
+fy t,s)f(u(s), u(01(s)), p2(02(s))) As
+fy t,s)f(u(s), u(01(s)), u(f2(s))) As
< |y, ¢ (s)As+fY2 (s)2ru(s) )JAs + [y, ¢ s)ru(s)As
=M fo s)As
<L 7o |u\|As = Jlul.

Therefore, we get ||Aul| < ||ul| for u € P N OQy.
In view of (Aj), for all uy,usz > N, there exists N > 0 such that

1
flur,p1(s),u3) > s for s € [-r,0] (8)
Now, set
1
R=r+ HN. (9)

Let Qo = {u € E : ||lu]| < R}. We shall prove that ||Au| > |Ju| for u € PN 0Qs.
Let uw € P NIy, then |lu| = R. So from (9) and the fact that u € P, we get
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u(t) > n|lull > N, forte[0,T). (10)

Considering (8) and (10), we obtain

Au(t) = [y G(t,8)f(u(s), u(01(s)), u(B2(s))) As
> [ no(s)f (u(s), u(B1(s)), u(B2(s))) As
>fyl77¢ u<s>,w1< 1(8)), u(Ba(s))) As
> fy né(s)--u(s)As
> 1 [ o nnunAs
and so we obtain

| Au] = [[ull % fy, é(s)As = [ul.

Therefore, we get ||Aul| > ||u|| for u € P N INys.

Then, it follows from Theorem 1 that A has a fixed point w; such that r <
[lui|| < R. It is clear that w is a positive solution of (1) — (2) with the form

v1(t), tel-r0],
u(t) =< wi(t), teo,T],
pa(t), te|[T,p

The proof is complete.
Theorem 4 Suppose that the assumptions (H1)—(Hg) , (A1) hold and f satisfies

the following condition:

(AL) lim M > 1/my, uniformly in s € [—r, 0],

u1,u3—++00 w1
or

lim Flu, vz, 92(5)) > 1/mag, uniformly in s € [T, p),
u1,u2—>+00 Ul

where m; = n? [}, ¢(s)As, i=1,2.
Then the problem (1) — (2) has at least one positive solution.
Proof. The proof is similar to the proof of the Theorem 3.

In order to establish existence criteria of at least three positive solutions of the
problem (1) — (2), we define a nonnegative continuous concave functional on P by

Y(u) = min u(t).

te[0,T]
Theorem 5 Assume that the assumptions (Hy) — (Hg) are satisfied. Let
0<d<a< a4 <c
n
and suppose that f satisfies the following conditions:

(C1)  flur,p1(s),us) >

a . .
, fora <wuq,uz < 5, uniformly in s € [—r,0].

|a I8

(C2)  f(ur,p1(5),u3) <

, for 0 < wj,us <d, uniformly in s € [—7, 0],

fur, ug, pa(s)) <

SENS

, for 0 <w; <d, i=1,2, uniformly in s € [T, p|,
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d
flug,us,uz) < —, for 0 <wu; <d,i=1,2,3.
M
(Cs)  flur,p1(8),us) < ﬁ, for 0 < uy,uz < ¢, uniformly in s € [—r,0],

fug, ug, p2(s)) < i, for 0 <wu; < e, i =1,2, uniformly in s € [T, p),

flur,ug,ug) < i, for 0 <w; <e¢ i=1,2,3.

M
Then the problem (1) — (2) has at least three positive solutions of the form
e1(t), € [-r,0],
u(t) = q wi(t), t€[0,T], i=1,23,
P2 (t)7 [ p}’

where |lui|| <d, ¥(uz) > a, d < JJus|| with ¥ (us) < a.
Proof. First, we prove that A : P, — P.. Let u € P.. Then, we have 0 < u(t) < c,
t €0, T] By condition (Cg) for t € [0,T], we obtain

= a u(s),u(6:1(s)), u(02(s)))As

—fy U(S)#Pl( 1(8)), u(ba2(s)))As
+fy ) (u(s),u(b1(s5)), p2(02(s)))As

+fy t,s).f(u(s), u(0 ()) u(02(s )))AS
< fy arQs + fyz Qs+ fy s)arAs

:Mfo s)As = c.

Therefore, we get ||Au|| < c. This implies Au € P, for u € P..

We now show that all the conditions of Theorem 2 are satisfied. By (C5) and the
argument above, we can get that A : Py — P,. Hence condition (ii) of Theorem 2
holds.

We now verify that (7) of Theorem 2 is fulfilled. We note that u(t) = Tte [0,T]
is a member of P(¢,a, ) since ¢(u) = £ > a. Therefore P(1,a, 1) # (. Now let
u € P(¢,a, 7). Then, we have a < u(t) < %, t € [0,7]. Comblnmg this with (C1),
we get

a
n’

flur,p1(8),us) > =, for a <wuy,ug < g, uniformly in s € [—r, 0],
n

Enl S

Thus,
$(Au) = minyejo,r) Au(t) = mlnteOT] Jo G(t:9)F(ul(s), u(01(s)), u(6a(s)) As
> Jo n(s)f(uls), u(61(s)), u(ba(s)))As
> Jy, o f( (5), 1(01(s)), u(02(s))) As
> [y, 0(s)5As =a
Then condition (7) of Theorem 2 is satisfied.
Finally, we show that (ii7) of Theorem 2 is also satisfied. In fact, let u € P(¢, a, ¢)
with [[Aul] > &, we get
P(Au) = mingejo,ry Au(t) = nl|Aull > ng = a,
that is to say condition (#i¢) of Theorem 2 holds.
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Since all conditions of Theorem 2 are verified, the operator A has at least three
fixed points satisfying

lui| < d, min us(t) > a, d< |ug| with min us(t) < a.
te[0,T t€[0,T]

Now, let

v1(t), tel-r0],
u(t) =< w(t), te€[0,T], i=1,2,3,

@2(t)? te [Tvp]v
which are three positive solutions of the problem (1) — (2).

Theorem 6 Suppose that the assumptions (Hy) — (Hg) hold. If there exist
0<d<a<g§c

n
such that the assumptions (Cy) — (C3) and (Az) are satisfied.

Then the problem (1) — (2) has at least four positive solutions of the form

(pl(t)7 [ 7“,0]
u(t) = w(t), €[0,7], i=1,2,3,4,
902(75)7 [ ap]

where |ju1]] < d, w(uQ) >a, d<|us| with ¢¥(us) <a, ¢<|ua-
Proof. First, it follows from Theorem 5 that the problem (1) —(2) has at least three
positive solutions.

We now show that the condition of Theorem 1 is satisfied. Let ; = {u € E :

|lull| < ¢}. Then, from the proof of Theorem 5, we have ||Au|| < ¢ = ||u|| for
ue PN 891
Now, set
R=c+ %N,

where N is given in the proof of Theorem 3.

Let Q2 = {u € E : ||u]| < R}. Then by the proof of Theorem 3, we know that
|Au|| > |lu|| for uw € P N OQks.

Therefore, by Theorem 1, A has a fixed point uy satisfying ¢ < |Jug|| < R. Thus,
clearly, u is a positive solution of (1) — (2) with the form

(pl(t)7 [ 7“,0]
u(t) = w(t), €0,7], i=1,2,3,4,
<p2(t)7 [ ,p],

which are four positive solutions of the problem (1) — (2) such that
luill < d,  min us(t) >a, d<|usl with min us(t) <a, ¢ < |uaf-
te[0,T) te[0,T)
Example Let T = [-3,1] U {1+ 3= : n € No} U {2, 2,3} be a time-scale. We
consider the following dynamic equation on time scale T:

A8 1 1000[u?(t) + u(t)u(t + 3)]
w2(t) +u(t — 1) +ult +2) +1

u(s) = ¢1(s) = 5%, s € [-3,0], u(s) = pa(s) =0, s € [2,3],

1 1 A 1 1 1 1 1 1 1

10(0) = SuR(0) = 0, 2u(2) + Sut(2) = Ju(z) + gu(z) + Ju(y),  (12)

=0, fortel0,2], (11)
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Whereoz—4,6 ’y—%
p=r=3, 91.[ 2] = [-3,
v=1pu=3 3 and

u? +ud+ug+1’
1000(u3 + uqus)
u? + st +ug+ 1’
1000u3

u? +us+ 1

fur, ug,uz) =
fur, p1(s),u3) =

f(ur,uz, pa(s)) =

Then we get 7 = %8, Y1 =100,1], s = [%,2], Y; = [1, %) and after some simple
calculation, we find

D= a(6T +v - X7 i) + B0 — X757 a)) = 1,07,
m=n? [y, ¢(s)As = ghp [y, LFEOTEN A 20,0011,
M = [ o(s)hs = [y A = 8

Clearly, the conditions (H;) — (Hg) hold. Now, we check that the conditions in
Theorem 3 are satisfied. Observe that

1 3
lim flur, 01(s),us) lim 020(U14+ uyug) 0<1/8,
u1,uz—0+ Uy uruz—0+ up(uf + s* +ug + 1)
1 3
fm  JCwuneas) oy, o 1000wy
wy,ug—07+ uy wy,uzs—01 UL (Ul +uj + 1)
1 3
i Jswls)uls) o 080(U12+ ww) <1,
w1 —0+ U1 w—=0+ ur(uf +ui +ug +1)
and 5
1000
TN ACOLE TG I ) T 00wy ) 1500 > 170,001,
u1,ug——+00 Uy u1,ug—>+00 ul(ul + 8* +us + 1)

Thus, by Theorem 3, the problem (11) — (12) has at least one positive solution.
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