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ON A NEW FIXED POINT THEOREM IN HILBERT ALGEBRAS

SPACES AND APPLICATION

F. CHOUIA AND T. MOUSSAOUI

Abstract. In this paper, a new fixed point theorem is proved for some po-
tential operators on Hilbert algebras spaces by using critical point theory. An

application is given to some nonlinear integral equations.

1. Introduction

Nonlinear integral equations are important to describe some real world problems
such as control theory, electrical circuits, mathematical physics and technology and
mechanics of fluids. Also many problems of mathematical physics can be stated in
the form of nonlinear integral equations, see [3, 12, 13] and the references therein.
Integral equations involving the product of operators may be considered only in the
framework of Banach algebras, see [2, 5, 6, 7, 8]. The authors in these last papers
discuss certain nonlinear integral and nonlinear functional equations by using fixed
point theorems in Banach algebras. In this work, we present a new fixed point
theorem on Hilbert algebras where the proof is based on critical point theory and
we apply it to solve certain nonlinear integral equations. The critical point theory is
a modern evolution of an old part of mathematical analysis which is called calculus
of variations.
We introduce some preliminary concepts and results of critical point theory in
the first section. Our main result contain existence of solutions for the equation
Au.Bu = u in a Hilbert algebra H. In the last section, we consider as application
an equation of the form

u(t) = F (t, u(t)).G
(
t,

∫ 1

0

k(t, s)u(s)ds
)
, t ∈ [0, 1]

in the Hilbert algebra space L2(0, 1), which is equipped with the scalar product

(u, v)L2 =

∫ 1

0

u(s)v(s)ds
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and endowed with the norm ∥u∥L2 = (
∫ 1

0
u2(s)ds)1/2, where F : [0, 1] × R → R−,

k : [0, 1]× [0, 1] → R+ and G : [0, 1]× R → R+ are continuous functions.
Let H be a Hilbert space supplied with the scalar product (., .)H , in brief (., .) and
H∗ be the dual space of H, where the duality pairing between H and H∗ is denoted
by < ., . >H,H∗ , in brief < ., . >. The Hilbert space H is said to be a Hilbert algebra
if H is both Banach algebra and a Hilbert space. In the following we introduce
some definitions and theorems which we use in the sequel.

Definition 1.1. [8] An operator A : H → H is called compact if A (H) is a compact
subset of H.

Definition 1.2. [11] A functional φ : H → R is
1. convex if φ(αu + (1 − α)v) ≤ αφ(u) + (1 − α)φ(v) for all u, v in H and all
α ∈ (0, 1).
2. strictly convex if φ(αu+ (1− α)v) < αφ(u) + (1− α)φ(v) for all u, v in H with
u ̸= v and all α ∈ (0, 1).

Definition 1.3. [4] A functional φ : H → R is coercive if lim
∥u∥→+∞

φ(u) = +∞.

Definition 1.4. [4] A functional φ : H → R is said to be Gâteaux differentiable
at u0 if there exists u∗ ∈ H∗ such that

lim
t→0

t−1(φ(u0 + th)− φ(u0)) =< u∗, h >= u∗(h)

for all h ∈ H. The functional u∗ is called the Gâteaux derivative of φ at u0 and we
denote it by φ′(u0).

Definition 1.5. [4] A mapping A : H → H∗ is said to be a potential operator with
a potential a : H → R if a is Gâteaux differentiable and

lim
t→0

t−1(a(u+ tv)− a(u)) =< A(u), v >

for all u and v in H. For a potential, it is assumed that a(0) = 0. For more about
potential operators, see [4].

Definition 1.6. [11] Let H be a Hilbert space, Ω ⊂ H an open subset, and
φ : Ω → R a Gâteaux differentiable functional. u ∈ Ω is called a critical point of φ
if φ′(u) = 0, i.e., φ′(u).v = 0, for every v ∈ H. If further φ(u) = c, we say that u
is a critical point of φ at level c.

Remark 1.7. [11] Clearly, every local minimum point of a Gâteaux differentiable
functional φ is a critical point.

Definition 1.8. [14] Let A : H −→ H∗ be an operator.
(a) A is said to be demicontinuous if

un −→ u as n −→ +∞ implies Aun ⇀ Au as n −→ +∞.

(b) A is said to be hemicontinuous if the real function

t 7→< A(u+ tv), w > is continuous on [0, 1] for all u, v, w ∈ H.

Remark 1.9. [9] For monotone operators A : H −→ H∗ with Dom(A) = H, demi-
continuity and hemicontinuity are equivalent.

Definition 1.10. [4] A mapping A : H → H∗ is said to be monotone if < Au −
Av, u− v >≥ 0 for all u, v in H and strictly monotone if equality implies u = v.
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Remark 1.11. [4] A Gâteaux differentiable functional φ : H → R is convex if and
only if its potential operator is hemicontinuous and monotone.

Definition 1.12. [4] Let φ ∈ C1(H,R). If any sequence (un) ⊂ H for which
(φ(un)) is bounded in R and φ′(un) → 0 as n → +∞ in H∗ possesses a convergent
subsequence, then we say that φ satisfies the Palais-Smale condition ((PS) condition
for short).

Theorem 1.13. [11] Let H be a Hilbert space and let φ : H → R be a continuous,
convex and coercive functional. Then φ has a global minimum point.

Theorem 1.14. [11] Let φ : H → R be strictly convex. Then φ has at most one
minimum.

Remark 1.15. In the light of Theorem 1.13 and Theorem 1.14, we note that every
stictly convex, continuous and coercive functional has one global minimum point.

Theorem 1.16. [10] Let H be a Hilbert space and φ ∈ C1(H,R). Suppose that the
functional φ is bounded from below and verifies the Palais-Smale condition at level
c with c = inf

u∈H
φ(u). Then there exists a critical point for φ at level c.

Proposition 1.17. [1] let H be a Hilbert space, Ω an open subset of H, and φ :
Ω → R a mapping of class C1, i.e., it is Gâteaux differentiable with continuous
derivative. Given u, v ∈ Ω , if u+ sv ∈ Ω for all s ∈ [0, 1], then

φ(u+ v) = φ(u) +

∫ 1

0

< Dφ(u+ sv), v > ds.

Indeed, this result connects between the potential operator Φ and the Gâteaux
differentiable functional φ for it can be checked that

φ(u) =

∫ 1

0

< Φ(su), u > ds.

2. Main result

Let H be a Hilbert algebra space and let the operators A,B : H → H, where
A is continuous and B is compact and A.B is potential. In this section, we prove
the existence of solution for the abstract equation (A.B)(u) = u or equivalently
Au.Bu = u in H by using the minimization principle for some differentiable func-
tionals. We have the following result.

Theorem 2.1. Let A,B be as above. Suppose that:

(1) For all v ∈ H, the operator −Av : u 7→ −Av(u) = −Au.Bv is monotone
and hemicontinuous.

(2) For every v ∈ H,

(A(su).Bv, u) ≤ 0;∀u ∈ H, ∀s ∈ [0, 1] .

(3) For all u ∈ H,

(Au.B(sv), v) ≤ 0,∀v ∈ H, ∀s ∈ [0, 1] .

Then, the operator A.B has a fixed point in H.
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Proof. Since the product A.B is potential, there exists a Gâteaux differentiable
functional S : H → R such that S′ = A.B. Let J = K − S, where K is defined by

Ku =
1

2
∥u∥2 for u ∈ H, then K ′ = I, J ∈ C1(H,R) and J ′ = I − S′ = I − A.B

i.e., ∀u ∈ H : J ′(u) = u − (A.B)u. Since A.B is a potential operator, it can be
represented as

S(u) =

∫ 1

0

(
(A.B)(su), u

)
ds.

Define the functional J : H → R by

J(u) =
1

2
∥u∥2 −

∫ 1

0

(
(A.B)(su), u

)
ds =

1

2
∥u∥2 −

∫ 1

0

(
A(su).B(su), u

)
ds.

Our proof is based on Theorem 1.13, Theorem 1.14 and Theorem 1.16 and it will
be done in the following steps.

Step 1 : Define a mapping Av : H → H and a functional Jv : H → R for any
v ∈ H by

Av(u) = Au.Bv,∀u ∈ H,

Jv(u) =
1

2
∥u∥2 −

∫ 1

0

(
A(su).Bv, u

)
ds,∀u ∈ H.

It is clear that J ′
v(u) = u−Au.Bv = (I −Av)(u) for all u ∈ H.

• Jv is continuous as a sum of two continuous functionals on H.
• Jv is a strictly convex functional. Indeed, since the mapping −Av is mono-
tone and hemicontinuous, then the functional

u 7→ −
∫ 1

0

(
A(su).Bv, u

)
ds

is convex and it is well known that the functional

u 7→ 1

2
∥u∥2

is strictly convex, and so the functional Jv is strictly convex.
• For any v ∈ H, Jv is coercive. Indeed, we have

Jv(u) =
1

2
∥u∥2 −

∫ 1

0

(
A(su).Bv, u

)
ds

≥ 1

2
∥u∥2.

Thus, if ∥u∥ → +∞, then Jv(u) → +∞. An application of Theorem
1.13 and Theorem 1.14 yields that the functional Jv has a unique global
minimum w ∈ H with J ′

v(w) = 0 or equivalently 0 = w − Aw.Bv i.e.,
Avw = w.

Step 2 : Define the operator N : H → H, and the functional φ : H → R by

Nv = w for v ∈ H,

φ(v) =
1

2
∥v∥2 −

∫ 1

0

(
Aw.B(sv), v

)
ds,

where w is the unique solution of the equation AwBv = w, v ∈ H, and we show
that φ verifies all conditions of Theorem 1.16.
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• φ is bounded from below. Indeed, by using assumption 3, we have:

φ(v) =
1

2
∥v∥2 −

∫ 1

0

(
Au.B(sv), v

)
ds

≥ 1

2
∥v∥2 ≥ 0.

• φ verifies the (PS) condition. Take a sequence (vn) ⊂ H such that lim
n→+∞

φ′(vn) =

0 and (φ(vn)) is bounded i.e., there is some positive constant M such that
|φ(vn)| ≤ M,∀n ∈ N. By hypothesis 3, we have

M ≥ φ(vn) =
1

2
∥vn∥2 −

∫ 1

0

(
Au.B(svn), vn

)
ds

≥ 1

2
∥vn∥2,

which involves that (vn) is bounded in H. We note that φ′(vn) = vn −
Awn.Bvn, with lim

n→+∞
φ′(vn) = 0. Since the sequence (vn) is bounded

and the operator v 7→ AwBv is compact, the sequence (Awn.Bvn) is rela-
tively compact, and so there exists a subsequence (vnk

) ⊂ (vn) such that
Awnk

.Bvnk
→ w∗, hence vnk

→ w∗ in H. Indeed,

∥vnk
− w∗∥ ≤ ∥vnk

−Awnk
.Bvnk

∥+ ∥Awnk
.Bvnk

− w∗∥ −→ 0

as k → +∞. Thus the (PS) condition is satisfied. An Application of The-
orem 1.16 yields that there is a critical point for the functional φ which is
a fixed point for the operator A.B.

�

3. Application

Consider the nonlinear integral equation

u(t) = F (t, u(t)).G
(
t,

∫ 1

0

k(t, s)u(s)ds
)
, t ∈ [0, 1] , (3.1)

where F : [0, 1] × R → R−, k : [0, 1] × [0, 1] → R+ and G : [0, 1] × R → R+ are
continuous functions. Define two operators A and B on L2(0, 1) by

Au(t) = F (t, u(t)),

Bu(t) = G
(
t,

∫ 1

0

k(t, s)u(s)ds
)
.

We know that L2(0, 1) is a Hilbert algebra space equipped with the scalar product

(u, v)L2 =

∫ 1

0

u(s)v(s)ds.

Assume that:

(H1) F (t, u) is decreasing with respect to its second variable,
(H2) there exists α < 0, such that

F (t, u) ≤ αu, for all t ∈ [0, 1] and all u ∈ R,
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(H3) G satisfies the following condition:

G
(
t,

∫ 1

0

k(t, s)u(s)ds
)
.u(t) ≥ 0, for all t ∈ [0, 1] and all u ∈ L2(0, 1).

Then we have the following result.

Theorem 3.1. If the hypotheses (H1)-(H3) hold, then the nonlinear integral equa-
tion (3.1) has a solution in L2(0, 1).

Proof. We are going to verify all the hypotheses of Theorem 2.1 in the following
claims.

Claim 1: The mapping u 7→ −Av(u) = −Au.Bv is monotone and hemicontin-
uous.
Indeed, let u1, u2 ∈ L2(0, 1), then

(−Avu1 +Avu2, u1 − u2) = −
∫ 1

0

(F (t, u1(t))− F (t, u2(t)))(u1(t)− u2(t))

×G
(
t,

∫ 1

0

k(t, s)v(s)ds
)
dt.

Since the functions k and G are positive and F (t, .) is decreasing, then we have

(−Avu1 +Avu2, u1 − u2) ≥ 0,∀u1, u2 ∈ L2(0, 1),

i.e., −Av is monotone.
Since F is continuous then −Av is demicontinuous. From the monotonicity of −Av

and by Remark 1.9, we have that −Av is hemicontinuous on L2(0, 1).

Claim 2: The operator B is compact.
This follows from the fact that k,G are continuous.

Claim 3: Under assumption (H2), the second condition of Theorem 2.1 holds.
Indeed, let v ∈ L2(0, 1) and s ∈ [0, 1] then,

(A(su).Bv, u) =

∫ 1

0

F (t, su(t)).G
(
t,

∫ 1

0

k(t, τ)v(τ)dτ
)
u(t)dt

≤
∫ 1

0

(αsu(t)).G
(
t,

∫ 1

0

k(t, τ)v(τ)dτ
)
u(t)dt

= α

∫ 1

0

su2(t).G
(
t,

∫ 1

0

k(t, τ)v(τ)dτ
)
dt.

It is clear that ∫ 1

0

su2(t).G
(
t,

∫ 1

0

k(t, τ)v(τ)dτ
)
dt ≥ 0



46 F. CHOUIA AND T. MOUSSAOUI EJMAA-2017/5(2)

and so

(A(su).Bv, u) ≤ 0, ∀s ∈ [0, 1], ∀u ∈ L2(0, 1).

Claim 4: Under assumption (H3), the third condition of Theorem 2.1 holds.
Indeed, let u ∈ L2(0, 1) then,

(Au.B(sv), v) =

∫ 1

0

F (t, u(t)).G
(
t,

∫ 1

0

k(t, τ)sv(τ))dτ
)
v(t)dt, s ∈ [0, 1].

By assumption (H3) we see that

(Au.B(sv), v) ≤ 0, ∀s ∈ [0, 1],∀v ∈ L2(0, 1).

Conclusion: All the assertions of Theorem 2.1 are verified, then the Equation
(3.1) has a solution in L2 (0, 1), and this complete the proof.

�
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