ON THE M-POWER CLASS (N) OPERATORS

M.H.M. RASHID

Abstract

A Hilbert space operator $T \in \mathbb{B}(\mathbb{H})$ is said to be M-Power class N if there is a real number $M>0$ such that $\left\|(T-\lambda)^{n} x\right\|^{2} \leq M\left\|(T-\lambda)^{2 n} x\right\|\|x\|$ for all $\lambda>0$ and all $x \in \mathbb{H}$. In this paper we prove the following assertions:(1) T is M-Power class N if and only if $M^{2}(T-\lambda)^{* 2 n}(T-\lambda)^{2 n}-2 r(T-\lambda)^{* n}(T-$ $\lambda)^{n}+r^{2} I \geq 0$ for all $r>0$ and all $\lambda \in \mathbb{C}$. (2) If T is invertible M-Power class (N), then T^{-1} is also M-Power class (N). (3) If T is partial isometry M-Power class (N) satisfies $\|T-\lambda\| \leq \frac{1}{M}$, then it is subnormal (4)If T is M-Power class (N), then T is an isoloid.

1. Introduction

Let \mathbb{H} be a complex separable Hilbert space and let $\mathbb{B}(\mathbb{H})$ denote the algebra of all bounded linear operators on \mathbb{H}. If $T \in \mathbb{B}(\mathbb{H})$, we write $\operatorname{ker}(T), \mathcal{R}(T), \sigma(T)$, and $\sigma_{a}(T)$ for the null space, the range space, the spectrum, and the approximate point spectrum of T, respectively. An operator $T \in \mathbb{B}(\mathbb{H})$ is said hyponormal if $\|T x\| \geq\left\|T^{*} x\right\|$ for all $x \in \mathbb{H}[5] . T$ is called M-hyponormal if there exists a positive real number M such that $\left\|(T-z)^{*} x\right\| \leq M\|(T-z) x\|$ for all $x \in \mathbb{H}$ and all $z \in \mathbb{C}$. The following definition of M-Power class (N) also appear in [3].
Definition 1 An operator $T \in \mathbb{B}(\mathbb{H})$ is said to be of M-power class $(N)(T \in$ $\mathcal{M P C}(N)$ for short) if

$$
\left\|(T-\lambda)^{n} x\right\|^{2} \leq M\left\|(T-\lambda)^{2 n} x\right\|\|x\|
$$

for all $x \in \mathbb{H}$, all $n \in \mathbb{N}$ and all $\lambda \in \mathbb{C}$.
If $M=1$ and $n=1$, then the M-Power class (N) becomes the class of totally paranormal operators as studied by $[4,7]$ and $[6]$. The purpose of the present paper is to study certain properties of M-Power class (N) operators.

2. Main Results

In this section, we study some properties of M-Power class (N) operators. We begin with the following lemma which is characterize the class of M-Power class

[^0](N) operators.
Lemma 1 Let $T \in(B)(\mathbb{H})$. Then T is M-Power class (N) if and only if
$$
M^{2}(T-\lambda)^{* 2 n}(T-\lambda)^{2 n}-2 r(T-\lambda)^{* n}(T-\lambda)^{n}+r^{2} I \geq 0
$$
for all real number $r>0$ and all $\lambda \in \mathbb{C}$.

Proof. In elementary algebra, we know that for positive real numbers A, B and $C, A-2 B r+r^{2} C \geq 0$ for all $r>0$ if and only if $B^{2} \leq A C$. Therefore, T is M-Power class (N) operator if and only if

$$
\left\langle\left(M^{2}(T-\lambda)^{* 2 n}(T-\lambda)^{2 n}-2 r(T-\lambda)^{* n}(T-\lambda)^{n}+r^{2} I\right) x, x\right\rangle \geq 0
$$

for all $x \in \mathbb{H}$ if and only if $M^{2}\left\|(T-\lambda)^{2 n} x\right\|^{2}-2 r\left\|(T-\lambda)^{n} x\right\|^{2}+r^{2}\|x\|^{2} \geq 0$ for all $x \in \mathbb{H}$ if and only if $\left\|(T-\lambda)^{n} x\right\|^{2} \leq M\left\|(T-\lambda)^{2 n} x\right\|\|x\|$ for all $x \in \mathbb{H}$.

Proposition 1 Let $T \in \mathbb{B}(\mathbb{H})$ be M-Power class (N) operator. Then $T-\alpha$ and αT are M-Power class (N) operators for each $\alpha \in \mathbb{C}$.

Proof. Suppose that T is M-Power class (N) operator. Then for all $x \in \mathbb{H}$, we have

$$
\begin{aligned}
\left\|[(T-\alpha)-\lambda]^{n} x\right\|^{2} & =\left\|(T-(\alpha+\lambda))^{n} x\right\|^{2} \\
& \leq M\left\|(T-(\alpha+\lambda))^{2 n} x\right\|\|x\|=\left\|[(T-\alpha)-\lambda]^{2 n} x\right\|\|x\|
\end{aligned}
$$

Hence $T-\alpha$ is M-Power class (N) operator. Now, To prove αT is M-Power class (N) operator, we consider two cases:
Case I: If $\alpha=0$, then $\alpha T=0$ and so its M-Power class (N) operator.
Case II: If $\alpha \neq 0$, then for all $x \in \mathbb{H}$

$$
\begin{aligned}
\left\|(\alpha T-\lambda)^{n} x\right\|^{2} & =|\alpha|^{2 n}\left\|\left(T-\frac{\lambda}{\alpha}\right)^{n} x\right\|^{2} \\
& \leq|\alpha|^{2 n} M_{\lambda / \alpha}\left\|\left(T-\frac{\lambda}{\alpha}\right)^{2 n} x\right\|\|x\| \\
& \leq M\left\|(\alpha T-\lambda)^{2 n} x\right\|\|x\|
\end{aligned}
$$

Hence αT is M-Power class (N) operator.
Corollary 1 Let T be a weighted shift with weights $\left\{\alpha_{n}\right\}$. Then T satisfies the inequality $\left\|T^{n} x\right\| \leq M\left\|T^{2 n} x\right\|$ if and only if

$$
\left|\alpha_{m} \cdots \alpha_{m+n-1}\right| \leq M\left|\alpha_{m+n} \alpha_{m+n-1} \cdots \alpha_{m+2 n-1}\right|
$$

for all $m \in \mathbb{N}$.
Proposition 2 Let $T \in(B)(\mathbb{H})$ be an M-Power class (N) operator. If $\sigma(T)=$ $\{\lambda\}$, then $T=\lambda$.

Proof. Suppose that T is an M-Power class (N) operator. Then T has invariant translation property. But every quasinilpotent M-Power class (N) operator is zero operator [1], hence $T-\lambda=0$ and so $T=\lambda$.

Proposition 3 If T is invertible belongs to $\mathcal{M P C}(N)$, then T^{-1} is also belongs to $\mathcal{M} \mathbf{P C}(N)$.

Proof. We have

$$
M\left\|(T-\lambda)^{2 n} x\right\| \geq\left\|(T-\lambda)^{n} x\right\|^{2}
$$

for each x with $\|x\|=1$. This can be replaced by

$$
\frac{M\|x\|}{\left\|(T-\lambda)^{n} x\right\|} \geq \frac{\left\|(T-\lambda)^{n} x\right\|}{\left\|(T-\lambda)^{2 n} x\right\|}
$$

for each $x \in \mathbb{H}$ and all $\lambda \in \mathbb{C}$. Now replace x by $(T-\lambda)^{-2 n} x$, then

$$
M\|x\|\left\|(T-\lambda)^{-2 n}\right\| \geq\left\|(T-\lambda)^{-n} x\right\|^{2}
$$

for each $x \in \mathbb{H}$ and all $\lambda \in \mathbb{C}$. This shows that T^{-1} is M-Power class (N).
Theorem 1 Let α be a non-zero eigenvalue of an M-Power class (N) operator and $T=\left(\begin{array}{cc}\alpha & A \\ 0 & B\end{array}\right)$ on $\mathbb{H}=\operatorname{ker}(T-\alpha) \oplus \overline{\mathcal{R}(T-\alpha)^{*}}$ be 2×2 expression. Then $\left\|A(B-1)^{n-1} x\right\|^{2}+\left\|(B-1)^{n} x\right\|^{2} \leq M\left\|(B-1)^{2 n} x\right\|$ for every unit vector $x \in \overline{\mathcal{R}(T-\alpha)}$. In particular B belongs to $\mathcal{M} \mathbf{P C}(N)$.

Proof. Without loss of generality, we may assume $\alpha=1$. By Lemma $2, T$ satisfies

$$
M^{2}(T-1)^{* 2 n}(T-1)^{2 n}-2 r(T-1)^{* n}(T-1)^{n}+r^{2} I \geq 0
$$

for all $r>0$. Set $S:=T-1$. Then
$0 \leq M^{2} S^{2 n *} S^{2 n}-2 r S^{n *} S^{n}+r^{2}$

$$
=\left(\begin{array}{cc}
M^{2} r^{2} & 0 \\
0 & M^{2} B_{1}^{(2 n-1) *} A^{*} A B_{1}^{2 n-1}-2 r B_{1}^{(n-1) *} A^{*} A B_{1}^{(n-1)}+M^{2} B_{1}^{2 n *} B_{1}^{2 n}-2 r B_{1}^{n *} B_{1}^{n}+r^{2}
\end{array}\right)
$$

where $B_{1}=B-1$. Recall the above characterization of positive 2×2 matrix with operator entries. For each $r \neq 1$ there exists a contraction $D(r)$ such that $A B_{1}^{2 n-1}=D(r)(L(r))^{\frac{1}{2}}$, where $L(r)=M^{2} B_{1}^{(2 n-1) *} A^{*} A B_{1}^{2 n-1}-2 r B_{1}^{(n-1) *}\left(A^{*} A+\right.$ $\left.B^{*} B\right) B_{1}^{(n-1)}+M^{2} B_{1}^{2 n *} B_{1}^{2 n}+r^{2}$. Since $(L(r))^{\frac{1}{2}} D(r)^{*} D(r)(L(r))^{\frac{1}{2}} \leq L(r)$, we have

$$
M^{2} B_{1}^{2 n *} B_{1}^{2 n}-2 r B_{1}^{(n-1) *}\left(A^{*} A+B^{*} B\right) B^{n-1}+r^{2} \geq 0
$$

for every $r \neq 1$. Since the left of the above inequality is norm continuous as a function of r, that inequality holds for every $r>0$. For every unit vector $x \in$ $\overline{\mathcal{R}(T-1)^{*}}$,

$$
0 \leq r^{2}-2 r\left(\left\|A B^{n-1} x\right\|^{2}+\left\|B_{1}^{n} x\right\|^{2}\right)+M^{2}\left\|B_{1}^{2 n} x\right\|^{2}
$$

for all $r>0$. This is equivalent to

$$
\left\|A(B-1)^{n-1} x\right\|^{2}+\left\|(B-1)^{n} x\right\|^{2} \leq M\left\|(B-1)^{2 n} x\right\|
$$

This completes the proof.
The sum of two M-Power class (N) even commuting or double commuting (A and B are said to be double commuting if A commutes with B and B^{*}) operators may not be M-Power class (N) as can seen by the following example:

Example 1 Let

$$
T=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \text { and } S=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)
$$

be operators on 2-dimensional space. Then T and S are both $\sqrt{2}$-Power class (N) while $T+S$ is not so.

Theorem 2 Let $T \in \mathbb{B}(\mathbb{H})$. Suppose that T belongs to $\mathcal{M P C}(N)$ and $S=$ $(T-\lambda)^{n}$ is partial isometry satisfies $\|S\| \leq \frac{1}{M}$. Then T is subnormal.

Proof. Since S is partial isometry, $S S^{*} S=S$ [2, Corollary 3, Problem 98], also $T \in \mathcal{M} \mathbf{P C}(N)$, therefore by Lemma 2

$$
M^{2} S^{* 2} S^{2}-2 r S^{*} S+r^{2} \geq 0
$$

for each $r>0$. Using $S S^{*} S=S$ we obtain

$$
M^{2} S^{* 2} S^{2}-2 r S^{*} S+r^{2}=S^{*} S\left[M^{2} S^{* 2} S^{2}-2 r S^{*} S+r^{2}\right] S^{*} S \geq 0
$$

This is true for each $r>0$ and hence for $r=1$,

$$
M^{2} S^{* 2} S^{2}-S^{*} S \geq 0
$$

This means

$$
\|S x\|^{2} \leq M^{2}\left\|S^{2} x\right\|^{2} \leq M^{2}\|S\|^{2}\|S x\|^{2} \leq\|S x\|^{2}
$$

because $\|S\| \leq \frac{1}{M}$. This shows

$$
S^{*} S=M^{2} S^{* 2} S^{2}
$$

which on repeated us yields $S^{*} S=M^{2(m-1)} S^{* m} S^{m}$ for each $m \geq 1$. Now let $x_{0}, x_{1}, \cdots, x_{m}$ be a finite collection of vectors in \mathbb{H}

$$
\begin{aligned}
M^{4 m} \sum_{i, j=0}^{m}\left\langle S^{i+j} x_{i}, S^{i+j} x_{j}\right\rangle & =\sum_{i, j=0}^{m} M^{4 m-2(i+j-1)}\left\langle M^{2(i+j-1)} S^{*(i+j) S^{i+j} x_{i}, x_{j}}\right\rangle \\
& =\sum_{i, j=0}^{m} M^{[2 n+1-i-j]}\left\langle S^{*} S x_{i}, x_{j}\right\rangle
\end{aligned}
$$

Since $S^{*} S$ is a projection [2, Problem 98], we obtain

$$
\begin{aligned}
M_{i, j=0}^{4 m} \sum_{i, j=0}^{m}\left\langle S^{i+j} x_{i}, S^{i+j} x_{j}\right\rangle & =\sum_{i, j}^{m} M^{2[2 m+1-i-j]}\left\langle\left(S^{*} S\right)^{i+j} x_{i},\left(S^{*} S\right)^{i+j} x_{j}\right\rangle \\
& =M^{2(2 m+1)}\left\langle x_{0}, x_{0}\right\rangle+M^{4 m} \sum_{i, j=1}^{1}\left\langle\left(S^{*} S\right) x_{i},\left(S^{S}\right) x_{j}\right\rangle \\
& +M^{2(2 m-1)} \sum_{i, j=2}^{2}\left\langle\left(S^{*} S\right)^{2} x_{i},\left(S^{S}\right)^{2} x_{j}\right\rangle+\cdots+ \\
& +M^{2} \sum_{i, j=2 m}^{2 m}\left\langle\left(S^{*} S\right)^{2 m} x_{i},\left(S^{S}\right)^{2 m} x_{j}\right\rangle
\end{aligned}
$$

As $M \geq 1$, we get that

$$
M^{2(2 m+1)}\left\langle x_{0}, x_{0}\right\rangle \geq M^{4 m}\left\langle x_{0}, x_{0}\right\rangle
$$

Thus

$$
\begin{aligned}
M^{2(2 m+1)}\left\langle x_{0}, x_{0}\right\rangle+M^{4 m} \sum_{i, j=1}^{1}\left\langle\left(S^{*} S\right) x_{i},\left(S^{*} S\right) x_{j}\right\rangle & \geq M^{4 m}\left\langle x_{0}, x_{0}\right\rangle+M^{4 m} \sum_{i, j=1}^{1}\left\langle\left(S^{*} S\right) x_{i},\left(S^{S}\right) x_{j}\right\rangle \\
& =M^{4 m} \sum_{i, j=0}^{1}\left\langle\left(S^{*} S\right)^{i+j} x_{i},\left(S^{*} S\right)^{i+j} x_{j}\right\rangle \geq 0
\end{aligned}
$$

since $S^{*} S$ being self-adjoint is subnormal. Again

$$
M^{4 m} \sum_{i, j=0}^{1}\left\langle\left(S^{*} S\right)^{i+j} x_{i},\left(S^{*} S\right)^{i+j} x_{j}\right\rangle \geq M^{2(2 m-1)} \sum_{i, j=0}^{1}\left\langle\left(S^{*} S\right)^{i+j} x_{i},\left(S^{*} S\right)^{i+j} x_{j}\right\rangle
$$

Hence

$$
\begin{aligned}
& M^{2(2 m+1)}\left\langle x_{0}, x_{0}\right\rangle+M^{4 m} \sum_{i+j=1}^{1}\left\langle\left(S^{*} S\right) x_{i},\left(S^{*} S\right) x_{j}\right\rangle+M^{2(2 m-1)} \sum_{i+j=2}^{2}\left\langle\left(S^{*} S\right)^{2} x_{i},\left(S^{S}\right)^{2} x_{j}\right\rangle \\
& \geq M^{2(2 m-1)} \sum_{i, j=0}^{1}\left\langle\left(S^{*} S\right)^{i+j} x_{i},\left(S^{S}\right)^{i+j} x_{j}\right\rangle \\
&+M^{2(2 m-1)} \sum_{i+j=2}^{2}\left\langle\left(S^{*} S\right)^{2} x_{i},\left(S^{S}\right)^{2} x_{j}\right\rangle \\
&=M^{2(2 m-1)} \sum_{i, j=0}^{2}\left\langle\left(S^{*} S\right)^{i+j} x_{i},\left(S^{S}\right)^{i+j} x_{j}\right\rangle \geq 0
\end{aligned}
$$

Continuing in this way, we would have

$$
M^{4 m} \sum_{i, j=0}^{m}\left\langle S^{i+j} x_{i}, S^{i+j} x_{j}\right\rangle \geq M^{2} \sum_{i, j=0}^{m}\left\langle\left(S^{*} S\right)^{i+j} x_{i},\left(S^{S}\right)^{i+j} x_{j}\right\rangle
$$

This gives

$$
\sum_{i, j=0}^{m}\left\langle S^{i+j} x_{i}, S^{i+j} x_{j}\right\rangle \geq 0
$$

Hence S is subnormal and consequently T is subnormal.
Proposition 3 Let $T \in \mathbb{B}(\mathbb{H})$. If T belongs to $\mathcal{M} \mathbf{P} \mathfrak{C}(N)$ and \mathfrak{M} is an invariant subspace for T, then $\left.T\right|_{\mathfrak{M}}$ belongs to $\mathcal{M} \mathbf{P} \mathfrak{C}(N)$.

Proof. Since T has the invariant translation property, we may assume $\lambda=0$. Let P be the orthogonal projection onto \mathfrak{M}. Then $T P=P T P$, so that $\left.T\right|_{\mathfrak{M}}=P T P$. Hence, for $x \in \mathfrak{M}$ we have

$$
\left\|\left(\left.T\right|_{\mathfrak{M}}\right)^{n}\right\|^{2}=\left\|P T^{n} x\right\|^{2} \leq\left\|T^{n} x\right\|^{2} \leq\left\|T^{2 n} x\right\|\|x\|=\left\|\left(\left.T\right|_{\mathfrak{M}}\right)^{2 n} x\right\|\|x\|
$$

Thus $\left.T\right|_{\mathfrak{M}} \in \mathcal{M} \mathbf{P C}(N)$.
Theorem 3 Any isolated point in the spectrum of an an M-Power class (N) operator is its eigenvalue.

Proof. Since $T-z$ is an M-Power class (N) for each complex number z, therefore we can assume the isolated point in the spectrum $\sigma(T)$ to be zero. Choose $R>0$ such that the only point of $\sigma(T)$ strictly within $\{z:|z|=R\}$ is zero and $\{z:|z|=R\} \cap \sigma(T)=\emptyset$. Set

$$
E=\int_{|z|=R} \frac{1}{T-z} d z
$$

Then E is a non-zero projection commuting with T and hence its range span N is invariant under T. This implies that $\left.T\right|_{N}$ is an M-Power class (N) by Proposition 2. Also then

$$
\sigma\left(\left.T\right|_{N}\right)=\sigma(T) \cap\{z:|z|<R\}=\{0\} .
$$

Thus $\left.T\right|_{N}$ is an M-Power class (N) quasinilpotent operator by Proposition 2 is zero. Let $0 \neq x \in N$. Then $T x=0$. This proves the theorem.

The following example shows the m-Power class N contains the class of hyponormal properly.
Example 2 Let $\left\{e_{i}\right\}$ be an orthonormal basis for \mathbb{H}, and define

$$
T e_{i}= \begin{cases}e_{2}, & \text { if } i=1 \\ 2 e_{3}, & \text { if } i=2 \\ e_{i+1}, & \text { if } i \geq 3\end{cases}
$$

That is, T is a weight shift. From the definition of T we see that T is similar to the unilateral shift U ([2, Problem 90]). Thus there exists an operator S such that $T=S U S^{-1}$. In our case $\|S\|=2,\left\|S^{-1}\right\|=1$. Since U is the unilateral shift, U is hyponormal operator, and thus for any n and $\lambda \in \mathbb{C}$ the operator $U-\lambda)^{n}$ is a paranormal operator. It follows that

$$
\left\|(U-\lambda)^{n} x\right\|^{2} \leq\left\|(U-\lambda)^{2 n} x\right\|
$$

for all $x \in \mathbb{H}$ with $\|x\|=1$, and hence T belongs to $\mathcal{M P C}(N)$ with $M=4$.

References

[1] S.C. Arora, Ramesh Kumar, M-Paranormal operators, Publ. Inst. Math., Nouvelle serie 29, 43 (1981), 5-13.
[2] P.R. Halmos, A Hilbert Space Problem Book, Van Nostrand, Princeton, 1967.
[3] V. Istratescu, Some result on M-hyponormal operators, Math. Seminar Notes, 6 (1978), 77-86.
[4] K. B. Laursen, Operators with finite ascent, Pacific J. Math., 152 (1992), 323-336.
[5] J. G. Stampfli, Hyponormal operators and spectrum density, Trans. Amer. Math. Soc., 117 (1965), 469476.
[6] C.Schmoeger, On totally paranormal operators, Bull. Austral. Math. Soc., 66 (2002), 425441.
[7] K. Tanahashi and A. Uchiyama, A note on *-paranormal operators and related classes of operators, Bull. Korean Math. Soc., 51 (2014), no.2, 357-371.
M.H.M. Rashid

Department of Mathematics, Faculty of Science P.O. Box (7), Mu'tah university, Al-
Karak-Jordan
E-mail address: malik_okasha@yahoo.com

[^0]: 2010 Mathematics Subject Classification. 47A10; 47A12; 47B20.
 Key words and phrases. M-Power class (N) operator; M-hyponormal operator; M-paranormal operator.

 Submitted June 14, 2015.

