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A COMPARISON BETWEEN THE IMPROVED (G′/G)−

EXPANSION METHOD AND THE TANH METHOD

M. S. ABDEL LATIF

Abstract. In this paper, we show that the improved (G′/G)− expansion
method is more general than the tanh method and it may give some new exact
solutions of nonlinear partial differential equations.

1. Introduction

Recently, many methods have been proposed for obtaining exact traveling wave
solutions of partial differential equations. Examples of these methods are tanh
method [1], sine-cosine method [2], extended mapping transformation method [3],
simplest equation method [4], direct integration to the simplest equation method
[5] and the (G′/G)− expansion method [6]. Many improved and extended versions
of the (G′/G)− expansion method have been proposed to get more exact solutions
of partial differential equations (see for example [7, 8, 9]).

A good effort was done in proving that the (G′/G)− expansion method is equiv-
alent to the tanh method. For example, the equivalence between the (G′/G)−
expansion method and the tanh method is proved in [1, 10, 11]. Moreover, in [12],
it is shown that the (G′/G)− expansion method is a specific form of the simplest
equation method [4].

The improved (G′/G)− expansion method [8] is used to obtain new exact solu-
tions of some models [13, 14]. In this paper, we show that this improved (G′/G)-
expansion method is more general than the tanh method and it may give some new
exact solutions of nonlinear partial differential equations.

2. The tanh method [1]

In this section, we give the detailed description of the tanh method. Suppose
that a nonlinear evolution equation (NLEE) with independent variable u and two
independent variables x and t is given by

H(u, ut, ux, utt, uxx, uxt, ...) = 0, (1)
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where, H is a polynomial in u(x, t) and its various partial derivatives, in which
the highest order derivatives and nonlinear terms are involved. To determine u
explicitly, one can follow the following steps:

Step 1: Use the traveling wave transformation:

u = u(ξ), ξ = x− νt, (2)

where, ν is a constant to be determined latter. Then, the NLEE (1) is reduced to
a nonlinear ordinary differential equation (NLODE) for u = u(ξ):

H(u, u′, u′′, u′′′, ...) = 0. (3)

step 2: Suppose that the NLODE (3) has the following solution:

u =

n
∑

i=0

bi(y)
i, (4)

where, y is the solution of the following Riccati equation

y′ = y2 + a. (5)

The Riccati equation (5) has the following two solutions [3]
Solution 1: when a < 0

y = −

√

−a tanh(
√

−a(ξ − ξ0)). (6)

In this case

u =

n
∑

i=0

bi(−
√

−a tanh(
√

−a(ξ − ξ0)))
i. (7)

Solution 2: when a = 0

y = −

1

ξ − ξ0
. (8)

In this case

u =

n
∑

i=0

bi

(

−
1

ξ − ξ0

)i

. (9)

where, a, bi(i = 0, ..., n) are constants to be determined later, ξ0 is an arbitrary
constant and n is a positive integer to be determined in step 3.

Step 3: Determine the positive integer n by balancing the highest order deriva-
tives and nonlinear terms in Eq. (3).

Step 4: Substituting Eq. (7) or Eq. (9) into Eq. (3) and equating expressions of
different powers of (tanh(

√

−a(ξ−ξ0))
i to zero (or, equating expressions of different

powers of
(

1
ξ−ξ0

)

to zero), we obtain coefficients bi and the parameter a.

Step 5: Substituting bi and a into Eq. (7) or Eq. (9) , we can obtain the explicit
solutions of Eq. (1) immediately.

3. The improved (G′/G)- expansion method [8]

In this section, we give the detailed description of the improved (G’/G) -expansion
method. To determine u in Eq. (1) explicitly using the improved (G′/G)- expansion
method, one can follow the following five steps:

Step 1: Use the traveling wave transformation (2) to reduce the NLEE (1) to
the NLODE (3)
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Step 2: Suppose that the NLODE (3) has the following solution:

u =

n
∑

i=−n

ai (G
′/G)

i

(1 + σ (G′/G))
i =

n
∑

i=−n

ai

(

(G′/G)

1 + σ (G′/G)

)i

, (10)

where, σ and ai(i = −n, ..., n) are constants to be determined later, n is a positive
integer, andG = G(ξ) satisfies the following second order linear ordinary differential
equation(LODE):

G′′ + µG = 0, (11)

where, µ is a real constant. The general solutions of Eq. (11) can be listed as
follows. When µ < 0, we obtain the hyperbolic function solution of Eq. (11)

G = A1 cosh(
√

−µξ) +A2 sinh(
√

−µξ), (12)

where, A1 and A2 are arbitrary constants. When µ > 0, we obtain the trigonometric
function solution of Eq. (11)

G = A1 cos(
√
µξ) +A2 sin(

√
µξ), (13)

where, A1 and A2 are arbitrary constants. When µ = 0, we obtain the linear
solution of Eq. (11)

G = A1 +A2ξ, (14)

where, A1 and A2 are arbitrary constants
Step 3: Determine the positive integer n by balancing the highest order deriva-

tives and nonlinear terms in Eq. (3).
Step 4: Substituting (10) along with (11) into Eq. (11) and then setting all

the coefficients of (G′/G)
k
, (k = 1, 2, 3, ...)of the resulting systems numerator to

zero, yields a set of over-determined nonlinear algebraic equations for ν, σ and
ai(i = −n, ..., n).

Step 5: Assuming that the constants ν, σ and ai(i = −n, ..., n) can be obtained by
solving the algebraic equations in Step 4, then substituting these constants and the
known general solutions of Eq. (11) into (10), we can obtain the explicit solutions
of Eq. (1) immediately.

4. The first way to compare between the two methods

In the second step of the improved (G′/G)- expansion method let y =
(G′/G)

1+σ(G′/G) ,

Eqs. (10), (11) are transformed into

u =
n
∑

i=−n

aiy
i, (15)

y′ + (1 + µσ2)y2 − 2σµy + µ = 0. (16)

The general solution of Eq. (16) (when µ < 0) is given by [1]

y = α+ β tanh
(√

−µ(ξ − ξ0)
)

, (17)

where, α = σµ
1+µσ2 and β =

√
−µ

1+µσ2 .

Substituting solution (17) into expansion (15) we have

u =

n
∑

i=−n

ai
(

α+ β tanh
(√

−µ(ξ − ξ0)
))i

= u1 + u2, (18)
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where,

u1 =
n
∑

i=0

ai
(

α+ β tanh
(√

−µ(ξ − ξ0)
))i

=
n
∑

i=0

bi
(

tanh
(√

−µ(ξ − ξ0)
))i

, (19)

u2 =

−1
∑

i=−n

ai
(

α+ β tanh
(√

−µ(ξ − ξ0)
))i

=

n
∑

i=1

a−i

(

1

α+ β tanh (
√

−µ(ξ − ξ0))

)i

=

n
∑

i=1

a−i

(

α

α2
− β2

−

α

α2
− β2

+
1

α+ β tanh (
√

−µ(ξ − ξ0))

)i

=

n
∑

i=1

a−i

(

α

α2
− β2

+
β

β2
− α2

β
α + tanh (

√

−µ(ξ − ξ0))

1 + β
α tanh (

√

−µ(ξ − ξ0))

)i

=

n
∑

i=1

a−i

(

α

α2
− β2

+
β

β2
− α2

tanh
(√

−µ(ξ − ξ0) + z
)

)i

, z = tanh−1 β

α
, (20)

therefore, u2 may be rewritten as

u2 =

n
∑

i=0

ci
(

tanh
(√

−µ(ξ − ξ0) + z
))i

, (21)

hence,

u = u1 + u2 =

n
∑

i=0

bi
(

tanh
(√

−µ(ξ − ξ0)
))i

+

n
∑

i=0

ci
(

tanh
(√

−µ(ξ − ξ0) + z
))i

,

(22)
When µ = 0, the solution of Eq. (16) is given by

y =
1

ξ + c
, (23)

where, c is an arbitrary constant. In this case, we simply obtain the following
rational algebraic solution of Eq. (3)

u =

n
∑

i=−n

ai

(

1

ξ + c

)i

. (24)

5. The second way to compare between the two methods

In this section we will proof that The solution formula (10) will give solutions in
the form of various forms of the tanh function and the rational function.

Case 1: When µ < 0, we have

G′

G
=

√

−µ
A2 cosh(

√

−µξ) +A1 sinh(
√

−µξ)

A1 cosh(
√

−µξ) +A2 sinh(
√

−µξ)
=

√

−µ
1 + A1

A2

tanh(
√

−µξ)
A1

A2

+ tanh(
√

−µξ)

=
√

−µ coth(
√

−µξ + d), d = tanh−1 A1

A2
, (25)
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1 + σ (G′/G)

(G′/G)
=

G+ σG′

G′
=

G

G′
+ σ =

1
√

−µ
tanh(

√

−µξ + d) + σ, (26)

−1
∑

j=−n

aj

(

(G′/G)

1 + σ (G′/G)

)j

=

n
∑

j=1

a−j

(

1 + σ (G′/G)

(G′/G)

)j

=

n
∑

j=1

a−j

(

1
√

−µ
tanh(

√

−µξ + d) + σ

)j

=

n
∑

j=0

bj(tanh(
√

−µξ + d))j , (27)

(G′/G)

1 + σ (G′/G)
=

G′

G+ σG′
=

√

−µ

tanh(
√

−µξ + d) + σ
√

−µ

=

(

µσ

1 + µσ2
−

µσ

1 + µσ2
+

√

−µ

tanh(
√

−µξ + d) + σ
√

−µ

)

=

(

µσ

1 + µσ2
+

√

−µ

1 + µσ2

1
σ
√
−µ

+ tanh(
√

−µξ + d)

1 + 1
σ
√
−µ

tanh(
√

−µξ + d)

)

=
µσ

1 + µσ2
+

√

−µ

1 + µσ2
tanh(

√

−µξ + d+ k), k = tanh−1 1

σ
√

−µ
, (28)

n
∑

j=1

aj

(

(G′/G)

1 + σ (G′/G)

)j

=

n
∑

j=1

aj

(

µσ

1 + µσ2
+

√

−µ

1 + µσ2
tanh(

√

−µξ + d+ k)

)j

=

n
∑

j=0

cj(tanh(
√

−µξ + d+ k))j , (29)

So, in this case (when µ < 0) Eq. (10) can be rewritten as

u =

n
∑

j=−n

aj

(

(G′/G)

1 + σ (G′/G)

)j

=

n
∑

j=0

bj(tanh(
√

−µξ + d))j+

n
∑

j=0

cj(tanh(
√

−µξ + d+ k))j . (30)

Case 2: When µ > 0, we have

G′

G
=

√
µ
A2 cos(

√
µξ)−A1 sin(

√
µξ)

A1 cos(
√
µξ) +A2 sin(

√
µξ)

=
√
µ
1− A1

A2

tan(
√
µξ)

A1

A2

+ tan(
√
µξ)

=
√
µ cot(

√
µξ + d1), d1 = tan−1 A1

A2
, (31)

1 + σ (G′/G)

(G′/G)
=

G+ σG′

G′
=

G

G′
+ σ =

1
√
µ
tan(

√
µξ + d1) + σ, (32)
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−1
∑

j=−n

aj

(

(G′/G)

1 + σ (G′/G)

)j

=

n
∑

j=1

a−j

(

1 + σ (G′/G)

(G′/G)

)j

=

n
∑

j=1

a−j

(

1
√
µ
tan(

√
µξ + d1) + σ

)j

=

n
∑

j=0

bj(tan(
√
µξ + d1))

j , (33)

(G′/G)

1 + σ (G′/G)
=

G′

G+ σG′
=

√
µ

tan(
√
µξ + d1) + σ

√
µ

=

(

−

µσ

1− µσ2
+

µσ

1− µσ2
+

√
µ

tan(
√
µξ + d1) + σ

√
µ

)

=

(

−
µσ

1− µσ2
+

√
µ

1− µσ2

1
σ
√
µ + tan(

√
µξ + d1)

1 + 1
σ
√
µ tan(

√
µξ + d1)

)

= −

µσ

1 + µσ2
+

√
µ

1− µσ2
tan(

√
µξ + d1 − k1), k1 = tan−1 1

σ
√
µ
, (34)

n
∑

j=1

aj

(

(G′/G)

1 + σ (G′/G)

)j

=

n
∑

j=1

aj

(

−

µσ

1− µσ2
+

√
µ

1− µσ2
tan(

√
µξ + d1 − k1)

)j

=
n
∑

j=0

cj(tan(
√
µξ + d1 − k1))

j , (35)

So, in this case (when µ > 0) Eq. (10) can be rewritten as

u =

n
∑

j=−n

aj

(

(G′/G)

1 + σ (G′/G)

)j

=

n
∑

j=0

bj(tan(
√
µξ + d1))

j

+
n
∑

j=0

cj(tan(
√
µξ + d1 − k1))

j . (36)

By considering the formula [15]

tan(iα) = i tanh(α), i =
√

−1, (37)

Eq. (36) can be reformulated as

u =
n
∑

j=0

bj(tan(
√
µξ + d1))

j +
n
∑

j=0

cj(tan(
√
µξ + d1 − k1))

j =

n
∑

j=0

bj(− tan(i
√

−µξ − d1))
j +

n
∑

j=0

cj(− tan(i
√

−µξ − d1 + k1))
j =

n
∑

j=0

bj(−i tanh(
√

−µξ + id1))
j +

n
∑

j=0

cj(−i tanh(
√

−µξ + id1 − ik1))
j =

n
∑

j=0

ej(tanh(
√

−µξ + d2))
j +

n
∑

j=0

fj(tanh(
√

−µξ + d2 + k2))
j (38)
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which is equivalent to the solution (30) in case 1.
Case 3. When µ = 0, in this case we will simply obtain the following rational

solution

u =

n
∑

j=−n

aj

(

(G′/G)

1 + σ (G′/G)

)j

=

n
∑

j=−n

aj

(

A2

A1 + σA2 +A2ξ

)

. (39)

6. Conclusion

It is shown that the improved (G′/G)− expansion method is more general than
the tanh method. When using the improved (G′/G)− expansion method, it is
inevitable that one solution set for the coefficients ai will have ai = 0 for i =
−n, ...,−1 and so the solution u1 is equivalent to the one obtained from the tanh-
function method. But there will also be a solution set which gives a more general
result, namely u1 + u2, that cannot be obtained by the tanh-function method.
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