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NONLINEAR INITIAL VALUE PROBLEMS WITH MEASURE
SOLUTIONS
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Abstract. In this expository article, we discuss several initial value problems,
involving extensions of Nemicki¼¬operators to measures. For instance, we work
with general nonnegative Carathéodory functions and with signed measures
that are absolutely continuous with respect to a sigma �nite measure. We
work as well with Carathéodory functions that are piecewise linear, allowing
us to extend the associated Nemicki¼¬operator to general signed measures. We
prove existence and uniqueness for the solution of the initial value problem
using an extension of the Banach �xed point theorem. Our goal is to give a
detailed exposition of the results.

1. Introduction

These notes comprise material taken from [1], plus several extensions and a few
additions. Our aim is to give a detailed exposition, including abundant preliminary
material, on the existence of signed measures solutions for non linear initial value
problems.
The problems we consider have the form�

d�
dt �A(�) (t) = 0 for 0 < t < T

�(0) = �0
,

where A = A (t) is associated with a particular Nemycki¼¬operator.
The notion of Nemycki¼¬ operator was �rst introduced by Viktor V. Nemycki¼¬

[10] and studied by A. Mark Krasnosel�ski¼¬ [9] and Mordukha¼¬M. Va¼¬nberg [13],
who was Nemycki¼¬�s doctoral student at Moscow State University, among others.
Since we are interested in extending this operator to signed measures, we begin by
summarizing some of the de�nitions and results we need from measure theory. We
present them in the context of the extended real number system R�, although for
much of what we need it su¢ ces to work in R. Other results will be stated at the
appropriate time. For more details, we refer to [11] and the references therein.
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2. Preliminary definitions and results

Let us recall that a family � of subsets of a non-empty set X is called a �-algebra
if it satis�es the following three properties:

(1) The empty set ? belongs to �.
(2) If A 2 �, then the complement XnA also belongs to �.
(3) If fAjgj�1 � �, then

S
j�1Aj 2 �.

Let R� be the extended real line consisting of the real numbers and the symbols
�1 and +1, with the usual operations. We adopt the convention 0: (�1) =
(�1) :0 = 0. We leave (+1) + (�1) and (�1) + (+1) unde�ned. For more on
the algebraic and topological structure of R�, see [14].
Given a �-algebra �, we consider set functions � : � ! R� that take at most

one of the two values +1 and �1.
De�nition 1. The set function � : �! R� is called a signed measure if

(1) �(?) = 0
(2) �(

S
i�1Ai) =

P
i�1 �(Ai) whenever fAigi�1 � � are pairwise disjoint.

The signed measure � is called �nite if � : �! R.

As a consequence of 2) in De�nition 1, the series
P

i�1 �(Ai) converges commu-
tatively in R� and, if �(

S
i�1Ai) is �nite, it converges absolutely in R. We also

observe that if A and B 2 � with B � A and �(B) is �nite,
�(A�B) = �(A)� �(B).

Moreover, if �(A) is �nite for some A 2 �, then �(B) is �nite for every B � A,
B 2 �. In fact, assume that this statement is not true for some set B. We can
write

�(A) = �(B) + �(A�B),
which contradicts the assumption that �(A) is �nite.

De�nition 2. A measure � is a signed measure that only takes nonnegative values
in R�. It is a �nite measure if � : �! [0;+1).
De�nition 3. An ordered triple (X;�; �) consisting of a non-empty set X, a �-
algebra � of subsets of X and a measure � : �! R�, is called a measure space.

De�nition 4. A measure space (X;�; �) is complete if A 2 � and �(A) = 0 imply
that B 2 � for every B � A. As a consequence, �(B) = 0.
Measurable sets of measure zero are called null sets, o �-null sets, if it is necessary

to identify the measure.

De�nition 5. A measure space (X;�; �) is �-�nite if we can write

X =
[
i�1
Ai,

where fAigi�1 � � are pairwise disjoint and �(Ai) is �nite for all i � 1.
De�nition 6. Given a measure space (X;�; �) and a �-measurable function f :
X ! R�, we say that f has a �-integral if at least one of

R
X
f+d� and

R
X
f�d� is

�nite. If this is the case, we writeZ
X

fd� =

Z
X

f+d��
Z
X

f�d�.
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If a function f has a �-integral, then the integral
R
E
fd� exists in R� for every

E 2 �.

De�nition 7. Given a signed measure � : �! R�; the set functions �+,�� : �!
R� are de�ned as

�+(E) = supf�(A) : A � E, A 2 �g
��(E) = � inff�(A) : A � E;A 2 �g:

Since �(;) = 0, this implies that �+ and �� are nonnegative. They are, in fact,
measures and they are called, respectively, the positive part or upper variation of
� and the negative part or lower variation of �. We recall the following properties
of the measures �+ and ��:

(1) �+ � � and �� � ��
(2) �+ and �� are increasing, and �� = (��)+
(3) Given E 2 �, if one of the numbers �+(E) and ��(E) is �nite, then

�(E) = �+(E)� ��(E).
As a consequence, if � : �! R,

�(E) = �+(E)� ��(E), (1)

for all E 2 �.
(4) Let � : �! R� be a signed measure and let E 2 �. Then,

�+(E) = +1 implies �(E) = +1 (2)

��(E) = +1 implies �(E) = �1. (3)

Therefore, if �(E) is �nite, both �+(E) and ��(E) are �nite. We can
conclude that every signed measure � : � ! R is bounded, in the sense
that

sup
E2�

j� (E)j < +1.

As a consequence of 3) and 4) we have

Theorem 1. (Jordan decomposition) Given a signed measure � : �! R�,

� = �+ � ��.

De�nition 8. If � : � ! R� is a signed measure, the total variation or variation
of � is de�ned as

j�j = �+ + ��.

Remark 1. The properties of �+ and �� imply that j�j is a measure satisfying the
following properties:

(1) j�(A)j � j�j (A), for any A 2 �
(2) j�(A)j = sup fj�(B)j+ j�(A nB)j : B � A;B 2 �g

(3) j�j(A) = sup

�P
i

j�(Ai)j
�
, where fAigi is any �nite partition of A with

Ai 2 �.

Property 3 can be adopted as the de�nition of j�j, avoiding any reference to the
Jordan Decomposition.
Thus, a signed measure � : � ! R� is bounded if and only if it has �nite total

variation.
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De�nition 9. Two measures �; � : � ! [0;1] are mutually singular, denoted
� ? �, if there is a partition X = A[B, with A;B 2 �, such that �(A) = �(B) = 0.

If � : �! R� is a signed measure, then �+ ? ��. Moreover, if there are measures
�1 and �2 such that � = �1 � �2 and �1 ? �2, then �1 = �+ and �2 = ��. In
particular, the Jordan decomposition of a signed measure is unique.

Remark 2. We extend De�nition 9 to signed measures in the following way: Two
signed measures �; � : � ! R� are mutually singular, denoted � ? �, if there is a
partition X = A [ B, with A;B 2 �, such that �(A1) = 0 for every �-measurable
subset A1 of A and �(B1) = 0 for every �-measurable subset B1 of B. Equivalently,
two signed measures �; � : �! R� are mutually singular, if j�j ? j�j.

Remark 3. If �1; �2 : � ! R� are mutually singular signed measures and we
assume that �1 (E) + �2 (E) is well de�ned for all E 2 �, then

j�1 + �2j = j�1j+ j�2j .
The inequality j�1 + �2j � j�1j+j�2j follows from 3) in Remark 1, while the proof

of the reverse inequality, j�1 + �2j � j�1j+ j�2j, uses Remark 2, and the de�nition
of supremum adapted to the various cases, j�1j (E) ; j�2j (E) < +1, j�1j (E) =
+1; j�2j (E) < +1, etc.

De�nition 10. If � and � are signed measures, we say that � is absolutely con-
tinuous with respect to �, denoted � � �, if E 2 � and j�j (E) = 0 implies that
j�j (E) = 0.

If � is a measure, we have that � � � if and only if �+ � � and �� � �.
Moreover, we can say that � � � if and only if E 2 � and � (E) = 0 implies that
� (E1) = 0 for every �-measurable subset E1 of E.
Given a measure space (X;�; �) and a function f : X ! R� that has a �-integral,

the set function �, de�ned for E 2 � as �(E) =
R
E
fd�, is a signed measure and

�� �. We will denote this signed measure � as fd�.
Conversely, we have the following result:

Theorem 2. (Radon-Nikodym theorem) Let (X;�; �) be a �-�nite measure space
and let � : � ! R�be a signed measure such that � << �. Then, there exists a
�-measurable function f : X ! R such that � = fd�. The function f is unique up
to �-a.e. That is to say, if fd� = gd� then f and g are equal, except on a �-null
set.

We remark that this result does not require the signed measure � to be �-�nite.
Moreover, there are known conditions characterizing those measures � for which
every signed measure � can be represented as fd�.
Observe that given E 2 �,

(d�) (E) =

Z
E

d� = � (E) . (4)

As for the total variation of fd�,

jfd�j = jf j d�, (5)

where jf j denotes de absolute value of the function f . The context should make
clear the distinction between the absolute value of a function and the total variation
of a signed measure. If the signed measure � is �nite, then f 2 L1 (�).
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Theorem 3. (Lebesgue decomposition) Let (X;�; �) be a measure space and let
� : � ! R�be a �-�nite signed measure. Then, there exist unique signed measures
�a and �s de�ned on � such that � = �a + �s, �a � � and �s ? �.

The Jordan and Lebesgue decompositions are related in the following way: Given
the Jordan decomposition � = �+ � �� of a signed measure � : � ! R�, if � is
�-�nite, then

�a =
�
�+
�
a
�
�
��
�
a
, (6)

�s =
�
�+
�
s
�
�
��
�
s
. (7)

This concludes our review of signed measures. Additional results will be pre-
sented at the appropriate time.
We are now ready to introduce the notion of Nemycki¼¬operator. We follow, for

the most part, the presentation in ([13], Chapter VI), which we extend from the
Lebesgue measure space on Rn, to the setting of an abstract measure space.

3. The Nemycki¼¬operator

To begin, we �x a complete measure space (X;�; �).

De�nition 11. (Carathéodory function) A function g : X�R ! R is called a
Carathéodory function, or N -function, if it satis�es the following two properties,
called Carathéodory conditions:

(1) The function u! g (x; u) is continuous for �-a.e. x 2 X.
(2) The function x! g (x; u) is �-measurable for each u 2 R.

We denote
L0 (�) = ff : X ! R; f is �-measurableg .

Lemma 4. Given an N -function g and given f 2 L0 (�), the composite function
g (x; f (x)) belongs to L0 (�).

Proof. We �rst assume that f is a simple function,

f =
kP
i=1

ci�Ei ,

with ci 2 R and fEig � �, pairwise disjoint. Given a 2 R,

fx 2 X : g (x; f (x)) < ag =
�
x 2 X n

kS
i=1

Ei : g (x; 0) < a

�
[

kS
i=1

fx 2 Ei : g (x; ci) < ag ,

which is �-measurable because of De�nition 11. If f 2 L0 (�), there exists a
sequence f'ng of simple functions, 'n : X ! R, such that 'n (x) ! f (x) in R
for each x 2 X ([11], p. 78). Then, De�nition 11 implies that g (x; 'n (x)) !
g (x; f (x)) for �-a.e. x 2 X. Thus, the function g (x; f (x)) is �-measurable and
the lemma is proved. �

Remark 4. When the function g only depends on u, the operator Ng is called
autonomous. In this case, Ng reduces to a simple composition of two functions,
g � f .
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It was Constantin Carathéodory [4] who studied the measurability of this compo-
sition. He observed that the composition of two measurable functions might no be
measurable and proved that g � f is measurable if f is measurable and g is contin-
uous, thus suggesting the correct assumptions on a general function g as stated in
De�nition 11. This is the reason for N -functions to be called Carathéodory func-
tions and for the two conditions formulated in De�nition 11 to be referred to as
Carathéodory conditions.

De�nition 12. (Nemycki¼¬operator) Given an N -function g, the Nemycki¼¬operator
Ng is de�ned for f 2 L0 (�) as

Ng(f) (x) = g (x; f (x)) . (8)

Lemma 4 implies that the Nemycki¼¬operator maps L0 (�) into itself. When � is a
�nite measure, L0 (�) becomes a complete semi-metric space de�ning

d (f; g) =

Z
X

jf (x)� g (x)j
1 + jf (x)� g (x)jd� (x) ,

for which convergence of a sequence is the convergence in �-measure ([11], p. 110).
When X is a bounded subset of Rk for some k � 1 and � is the Lebesgue measure
de�ned on the Lebesgue �-algebra of X, Vainberg proves that Ng is continuous
from

�
L0 (�) ; d

�
to itself ([13], p. 153). In the abstract case, the continuity is

proved in ([7], p. 343, Proposition 7.18).

Remark 5. De�nition 11 can be extended to a function g : X�Rn ! Rm in the
natural way, with the associated Nemycki¼¬operator de�ned as

Ng (f) (x) = g (x; f (x))

= (g1 (x; f1 (x) ; :::; fn (x)) ; :::; gm (x; f1 (x) ; :::; fn (x))) .

Then, if f1; :::; fn 2 L0 (�), each of the functions gj (x; f1 (x) ; :::; fn (x)) belongs to
L0 (�), for 1 � j � m, extending Lemma 4. To prove this assertion, we observe
that if we �x (u1; :::; un�1) 2 Rn�1, the function (x; un) ! gj (x; u1; :::; un�1; un)
is an N -function from X � R to R. Thus, using Lemma 4, the function x !
gj (x; u1; :::; un�1; fn (x)) is measurable for each (u1; :::; un�1) 2 Rn�1. Then, the
function (x; u1; :::; un�1) ! gj (x; u1; :::; un�1; fn (x)) from X � Rn�1 to R is an
N -function as well, and so on.

Under appropriate hypotheses, the Nemycki¼¬operator has interesting continuity
and boundedness properties in Lp spaces and in Sobolev spaces, among others. As
an example, we state the following result: Consider the Lebesgue measure space on
Rk. Given 1 � p; q < 1, (8) de�nes a continuous and bounded operator from Lp

into Lq if and only if ([13], p. 155) there exist a function a 2 Lq and a constant
b � 0 so that

jg (x; u)j � a (x) + b jujp=q .
This result applies as well to 0 < p; q < 1, if Lp and Lq are endowed with their

standard structure of metric spaces ([13], p. 155).
For much more on Lp-continuity, see ([7], Chapter 7).
There is an extensive literature in which various forms of the Nemycki¼¬operator

are studied in connection with nonlinear problems involving integral operators as
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well as partial di¤erential equations and ordinary di¤erential equations, (for in-
stance, see the references mentioned in [1]). In some applications, the need arises
to study the Fréchet and Gâteau di¤erentiability of particular Nemycki¼¬operators
(see [5], p. 267; [6], pp. 318, 342; [8], pp. 96-97; [12]). Other results on di¤erentia-
bility can be formulated using Sobolev spaces ([6], p. 342). For a treatment of the
di¤erentiability of a general Nemycki¼¬operator, see ([2], Chapter 1; [7], Chapter 6).
In the following sections we will describe extensions of particular Nemycki¼¬op-

erators to various spaces of signed measures, under appropriate conditions on the
function g.
From now on we will assume that (X;�; �) is a complete �-�nite measure space.

4. Extension of the Nemycki¼¬operator for non-negative N-functions

If we denote
L (�) =

�
f 2 L0 (�) ; f has a �-integral

	
(see De�nition 6) and

Ma = f� : �! R� signed measure; � << �g ,
there is a map � : L (�) ! Ma, de�ned as � (f) = fd�. Moreover, if g is a non-
negative N -function, Ng maps L (�) into itself. In fact, Ng maps L0 (�) into L0 (�)
according to Lemma 4, and then the non-negative measurable function g (x; f (x))
has a �-integral, for every f 2 L (�).

Proposition 5. Let g be a non-negative N -function. Then, there exists a unique
operator Ng :Ma !Ma such that

� �Ng (f) = Ng � � (f) (9)

for all f 2 L0 (�). That is to say, there is a unique operator Ng :Ma !Ma that
makes the following diagram commutative:

L (�)
Ng! L (�)

� # # �

Ma
Ng! Ma

(10)

Proof. According to Theorem 2, given � 2 Ma, � = fd� for f 2 L (�). Thus, we
propose the de�nition

Ng (�) = g (x; f (x)) d�. (11)

Since Theorem 2 assures the uniqueness of f up to �-a.e., we need to show that Ng

is well de�ned. Indeed, if f = h outside of a null set O 2 �, and E 2 �,Z
E

g (x; h (x)) d� =

Z
E\(XnO)

g (x; f (x)) d� =

Z
E

g (x; f (x)) d�,

where we have used the completeness of (X;�; �). So, Ng (�) = Ng (hd�). The
de�nition given by (11) implies that (9) holds. Concerning the uniqueness of Ng,
suppose that T :Ma !Ma is another operator satisfying

� �Ng (f) = T � � (f) .
Then,

T (fd�) = T � � (f) = � �Ng (f) = Ng � � (f) = Ng (fd�) .

This completes the proof of the proposition. �
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5. Properties of the map (g; �)! Ng (�)

If the operator Ng is given by (11), the map (g; �)! Ng (�) has several proper-
ties resembling those expected from a functional calculus. We gather them in the
following proposition:

Proposition 6. (1) When � is the measure �,

Ng (�) = g (x; 1) d�,

for every non-negative N -function g.
(2) If g1 and g2 are two N -functions, the sum g1+ g2 is an N -function. More-

over, when they are non-negative, the operator Ng is additive in g. That
is,

Ng1+g2 = Ng1 +Ng2 .
(3) The multiplicative product g1g2 of two N -functions g1 and g2, is an N -

function. Given two non-negative N -functions g1 and g2,

Ng1g2 (fd�) = g1 (x; f) g2 (x; f) d�.

As a particular case, given a non-negative �-measurable function � : X !
[0;+1) and a non-negative N -function g, the multiplicative product �g is
also a non-negative N -function and

N�g = �Ng,

where
�
�Ng

�
(fd�) is the measure de�ned on E 2 � as

R
E
� (x) g (x; f (x)) d�.

(4) Given two N -functions g1; g2 : X � R ! R, the function (g2 � g1) (x; u) =
g2 (x; g1 (x; u)) is also an N -function. Furthermore, if g1 and g2 are non-
negative,

Ng2 �Ng1 = Ng2�g1 .
(5) If g(x; u) does not depend on u, then

Ng (�) = g (x) d�,

for all � = fd� 2Ma. In particular,

Ng (�) = g (x) d�. (12)

(6) If g (x; u) = juj, then g is a non-negative N -function and
Ng(�) = j�j ,

the total variation of �.

Proof. The assertion in 1) follows from (4) and the de�nition of Ng. As a conse-
quence, the operator Ng can be de�ned on measures �, �nite or not, for a fairly
general class of N -functions.
The main statements in 2) and 3) are direct applications of De�nition 11 and

Proposition 5. As for the particular case in 3), given � = fd� 2 Ma and given
E 2 �, �

N�g (�)
�
(E) =

Z
E

N�g (f) d� =

Z
E

� (x) g (x; f (x)) d�

def
=
��
�Ng

�
(fd�)

�
(E) .

Let us prove 4): By De�nition 11, for �-null sets A;B 2 �, the function u !
g1 (x; u) is continuous for each x 2 XnA and the function v ! g2 (x; v) is continuous
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for each x 2 XnB. So, the function u ! g2 (x; g1 (x; u)) is continuous for each
x 2 Xn (A

S
B). Now, if we �x u 2 R, the function x! g1 (x; u) is �-measurable,

so, according to Lemma 4, the function x! g2 (x; g1 (x; u)) is �-measurable.
If we assume now that g1 and g2 are both non-negative N -functions, we can

write �
Ng2 �Ng1

�
(fd�) = Ng2 (Ng1 (f) d�) = Ng2 (g1(x; f (x) d�)

= g2 (x; g1 (x; f (x))) d� = Ng2�g1 (fd�) .

Part 5) follows directly from the de�nition of Ng and the particular case (12) is
an application of (4).
Finally, the proof of 6) is a direct application of (5) and the de�nition of Ng.
This completes the proof of the theorem. �

In the next section we obtain an explicit representation of the operator Ng for
N -functions generalizing the function juj.

6. Extension of the Nemycki¼¬operator for piecewise linear
N-functions

We begin with the following de�nition:

De�nition 13. An N -function g : X�R! R is called piecewise linear if

g(x; u) =
nX
i=1

ai (x) jdiu� bi (x) j+ c (x)u, (13)

where di 2 R; ai; bi; c : X ! R are �-measurable, bounded functions and bi is
�-integrable.

If g is a piecewise linear N -function, the Nemycki¼¬operator Ng is well de�ned,
bounded and continuous from L1 (�) into itself. We consider now the spaceMf of
�nite signed measures,

Mf = f� : �! R; � signed measureg .
The properties listed in Proposition 6 suggest that given � 2Mf we can write,

Ng(�) =
nX
i=1

ai (x) jdi�� bi (x)�j+ c (x)�, (14)

where jdi�� bi (x)�j means the total variation of the �nite signed measure di� �
bi (x)� and c (x)� is the �nite signed measure de�ned as

(c (x)�) (E) =

Z
E

c (x) d
�
�+
�
�
Z
E

c (x) d
�
��
�
,

for E 2 �. Since jdi�� bi (x)�j is a �nite measure, ai (x) jdi�� bi (x)�j is de�ned
as is suggested in 3) of Proposition 6,

(ai (x) jdi�� bi (x)�j) (E) =
Z
E

ai (x) d jdi�� bi (x)�j ,

for E 2 �.
We claim that

jc (x)�j = jc (x)j j�j .
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In fact, using the Jordan decomposition, we can write

jc (x)�j =
��c (x) ��+ � ����� = ��c (x)�+ � c (x)���� .

. Since �+and �� are mutually singular, the signed measures c (x)�+ and c (x)��

are mutually singular as well. According to Remark 3 and (5),��c (x)�+ � c (x)���� = ��c (x)�+��+ ��c (x)���� = jc (x)j�+ + jc (x)j��
= jc (x)j j�j ,

where, once again, the context should make clear the distinction between the ab-
solute value of a function and the total variation of a signed measure
From (10), we can see that the operator Ng de�ned by (14) makes the following

diagram commutative:

L1 (�)
Ng! L1 (�)

� # # �

Mf
Ng! Mf

(15)

In fact, if � = �(f), for f 2 L1 (�),

Ng (�) =
�
Ng � �

�
(f) =

nX
i=1

ai jdifd�� bi�j+ cfd�

=

 
nX
i=1

ai jcif � bij+ cf
!
d� = (� �Ng) (f) .

That is to say, the de�nition given by (14) is a natural extension of Ng to the
whole spaceMf . Observe that � is an isometric isomorphism between L1 (�) and
the proper closed subspaceMfa ofMf consisting of those signed measures of the
form fd�, for f 2 L1 (�). As such, the restriction of Ng toMfa is the only operator
that makes the following diagram conmutative:

L1 (�)
Ng! L1 (�)

� # # �

Mfa
Ng! Mfa

We can write (14) in a more explicit form. In fact, let,

l+(g) (x) = lim
u!+1

g(x; u)

u
=

nX
i=1

ai (x) jdij+ c (x) (16)

and

l�(g) (x) = lim
u!�1

g(x; u)

u
= �

nX
i=1

ai (x) jdij+ c (x) . (17)

We observe that l+(g) (x) and l�(g) (x) exist for each x 2 X and are �-measurable,
bounded functions. Then we have

Proposition 7. Given � 2Mf , we can write,

Ng(�)(E) =

Z
E

Ng (f) d�+
�
l+(g) (�s)

+
�
(E)�

�
l�(g) (�s)

�
�
(E),

where, using Theorem 2 and Theorem 3, � = fd�+ �s.
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Proof. According to (14),

Ng(�) =
nX
i=1

aijdifd�+ di�s � bi�j+ c (fd�+ �s) .

We observe that difd� � bi� and di�s are mutually singular. Therefore, using
Lemma 3,

Ng(�) =
nX
i=1

ai jdifd�� bi�j+ cfd�+
nX
i=1

ai jdij j�sj+ c�s

= Ng(fd�) +
nX
i=1

ai jdij j�sj+ c�s.

Using (16) and (17), we obtain, for each E 2 �,

Ng(�)(E) =

Z
E

Ng (f) d�+

�
l+(g)� l�(g)

2
j�sj
�
(E) +

�
l+(g) + l�(g)

2
�s

�
(E).

Since
�s = (�s)

+ � (�s)�

and
j�sj = (�s)+ + (�s)� ,

after some cancellations, we can write

Ng(�)(E) =

Z
E

Ng (f) d�+
�
l+(g) (�s)

+
�
(E)�

�
l�(g) (�s)

�
�
(E).

This completes the proof of the proposition. �
We are now ready to consider an initial value problem associated with the oper-

ator Ng, where g is the N -function given by (13).

7. An initial value problem associated with a piecewise linear
N-function

We �rst introduce some preliminary de�nitions and results, starting with the
following proposition:

Proposition 8. The spaceMf becomes a Banach space if we de�ne

k�kMf
= j�j (X) . (18)

For a proof of this result see [11], Theorem 1, p. 226.

Given 0 < T < +1 �xed, we denote with C [0; T ;Mf ] the space of continuous
functions � : [0; T ] ! Mf . The space C [0; T ;Mf ] becomes a Banach space with
the norm

k�k = sup
0�t�T

k� (t)kMf
. (19)

Likewise, the space C1 [0; T ;Mf ] of continuously di¤erentiable functions � :
[0; T ]!Mf , becomes a Banach space with the norm k�k+



�0

.
We now consider the function G : [0; T ]�X � R! R de�ned as

G (t; x; u) =
nX
i=1

ai (x) jtdiu� bi (x) j+ c (x) tu,
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where, as in the previous section, di 2 R; ai; bi; c : X ! R are �-measurable,
bounded functions and bi is �-integrable.
Now, we de�ne the operator A = A (t) on C [0; T ;Mf ] as

A (�) (t) =
nX
i=1

ai (x) jtdi�� bi (x)�j+ c (x) t�. (20)

That is to say, if we de�ne

Gt (x; u) = G (t; x; u) =
nX
i=1

ai (x) jtdiu� bi (x) j+ c (x) tu,

the operator A, for 0 � t � T �xed, is

A (�) (t) = NGt(� (t)),

for � 2 C [0; T ;Mf ], where NGt is de�ned by (14).

Proposition 9. The operator A satis�es the following conditions:

(1) Given � 2 C [0; T ;Mf ], A (�) (t) 2Mf , for each 0 � t � T .
(2) jA (�) (t)j � A j� (t)j+B (x)�, for 0 � t � T , x 2 X and � 2 C [0; T ;Mf ],

where A is a non-negative real number and B 2 L1 (�).
(3) jA (�1) (t)�A (�2) (t)j � A j�1 (t)� �2 (t)j for all 0 � t � T , x 2 X and

�1; �2 2 C [0; T ;Mf ], where the constant A is the same one as in 2).
(4) A is continuous and bounded from C [0; T ;Mf ] to itself.

Proof. To simplify the notation, and without loss of generality, we will work with
one term in (20). That is to say, we will assume for this proof that

A (t) (�) = a (x) jtd�� b (x)�j+ c (x) t�,

where di 2 R; a; b; c : X ! R are �-measurable, bounded functions and b 2 L1 (�).
1) follows directly from the de�nition of A.
Proof of 2): By the properties of the total variation, we can write

jA (�) (t)j � ja (x)j (t jdj j�j+ jb (x)j�) + t jc (x)j j�j
= t (ja (x)j jdj+ jc (x)j) j�j+ ja (x)j jb (x)j�,

So, the estimate follows if we take

A = T sup
x2X

(ja (x)j jdj+ jc (x)j) ,

B (x) = ja (x)j jb (x)j .

Proof of 3):

jA (�1) (t)�A (�2) (t)j
= ja (x) jtd�1 (t)� b (x)�j+ c (x) t�1 (t)� a (x) jtd�2 (t)� b (x)�j � c (x) t�2 (t)j
� ja (x)j (jjtd�1 (t)� b (x)�j � jtd�2 (t)� b (x)�jj)
+ jc (x)j t j�1 (t)� �2 (t)j
� ja (x)j jdj t j�1 (t)� �2 (t)j+ jc (x)j t j�1 (t)� �2 (t)j
� t (ja (x)j jdj+ jc (x)j) j�1 (t)� �2 (t)j ,

from which the estimate follows.
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Proof of 4): According to 1), we know that given � 2 C [0; T ;Mf ], A (�) (t)
maps [0; T ] toMf . Let us prove that this function is continuous. If ftjg converges
to t,

jA (�) (tj)�A (�) (t)j
= ja (x) jtjd� (tj)� b (x)�j+ c (x) tj� (tj)� a (x) jtd� (t)� b (x)�j � c (x) t� (t)j
� (ja (x)j jdj+ jc (x)j) jtjd� (tj)� td� (t)j
� A (jtj � tj j� (tj)j+ t j� (tj)� � (t)j) .

So,

kA (�) (tj)�A (�) (t)kMf
� A (jtj � tj k�k+ T j� (tj)� � (t)j) !

j!1
0.

We now prove that A is continuous from C [0; T ;Mf ] to itself. If f�jg converges
to � in C [0; T ;Mf ], using 3) we can write

sup
0�t�T

jA (�j) (t)�A (�) (t)j (X) � AT sup
0�t�T

j�j (t)� � (t)j (X) !
j!1

0.

Finally, if B is a bounded set in C [0; T ;Mf ], using 2) we write

sup
�2B

kA (�)k � AT sup
�2B

k�k+
Z
X

B (x) d� <1.

It is clear that the same proof works for the full operator given by (20), with
constants

A = T sup
x2X

 
nX
i=1

jai (x)j jdij+ jc (x)j
!
,

B (x) =

nX
i=1

jai (x)j jbi (x)j .

This completes the proof of the proposition. �

Given �0 2Mf , we consider the initial value problem�
d�
dt �A(�) (t) = 0 for 0 < t < T

�(0) = �0
, (21)

where A = A (t) is de�ned by (20).
We recall the following well known extension of the Banach �xed point theorem:

Proposition 10. Let (S; d) be a complete metric space and consider a map f : S !
S. If there exists k 2 f1; 2; :::g such that the composite map f (k) is a contraction,
then the map f has a unique �xed point.

Theorem 11. The initial value problem (21) has one and only one solution in
C1 [0; T ;Mf ].

Proof. We begin by observing that (21) has the same solutions in C1 [0; T ;Mf ] as
the integral equation

�(t) = �0 +

Z t

0

A (�) (s) ds. (22)
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Thus, to prove the theorem, it su¢ ces to show that (22) has one and only one
solution in C1 [0; T ;Mf ], by proving that the operator T de�ned on C [0; T ;Mf ]
as

T (�) (t) = �0 +
Z t

0

A (�) (s) ds (23)

has a unique �xed point. According to Proposition 10, it is enough to show that the
composite operator T (k), where T is given by (23), is a contraction on C[0; T ;Mf ]
for some k 2 f1; 2; :::g.
We claim that T (k) satis�es the following estimate:


T (k) (�1) (t)� T (k) (�2) (t)




Mf

� Aktk

k!
k�1 � �2k. (24)

We will prove this claim by induction on k.
For k = 1, we can write, using (23) and Part 3) of Proposition 9,

kT (�1)(t)� T (�2)(t)kMf

�
Z t

0

kA (�1) (s)�A (�2) (s)kMf
ds

� A
Z t

0

k�1 (s)� �2 (s)kMf
ds

� At k�1 � �2k ,

which gives us (24) for k = 1. Assuming that (24) holds for k = n, let us prove it
for k = n+ 1.

kT (n+1)(�1)(t)� T (n+1)(�2)(t)kMf

�
Z t

0




A�T (n)(�1)� (s)�A�T (n)(�2)� (s)



Mf

ds

� A
Z t

0

kT (n)(�1) (s)� T (n)(�2)(s)kMf
ds

� A
Z t

0

Ansn

n!
k�1 (s)� �2 (s)kMf

ds � An+1tn+1

(n+ 1)!
k�1 � �2k,

so the estimate (24) holds. Finally,


T (k) (�1)� T (k) (�2)


 = sup
0�t�T




T (k) (�1) (t)� T (k) (�2) (t)



Mf

� AkT k

k!
k�1 � �2k.

Since (AT )k

k! ! 0 as k ! 1, we can conclude that the operator T (k) will be a
contraction on C[0; T ;Mf ], for k large enough.
This concludes the proof of the theorem. �

Remark 6. From the proof of Theorem 11, we can see that the estimate of T (k)
for k = 1, that is to say the estimate of T , will just give a solution to the equation
(22) for T su¢ ciently small. However, using an observation that appears in [3] we
can obtain a unique global solution of (22) without using iterations. The idea is to
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replace the norm on C [0; T ;Mf ] with the norm

k�k� = sup
0�t�T

�
e�At k� (t)kMf

�
, (25)

where A is the constant appearing in Part 3 of Proposition 9. From the inequalities

e�AT k� (t)kMf
� e�At k� (t)kMf

� k� (t)kMf

we can see that the norm given by (25) is equivalent to the original norm given by
(19). Now, we claim that the operator T satis�es the inequality

kT (�1)� T (�2)k� �
�
1� e�AT

�
k�1 � �2k�, (26)

that is, it is a contraction with respecto to the new norm on C [0; T ;Mf ]. In fact,

kT (�1)(t)� T (�2)(t)kMf

�
Z t

0

kA (�1) (s)�A (�2) (s)kMf
ds

� A
Z t

0

k�1 (s)� �2 (s)kMf
ds

= A

Z t

0

esAe�sA k�1 (s)� �2 (s)kMf
ds

� k�1 � �2k�
Z t

0

AesAds =
�
etA � 1

�
k�1 � �2k� ,

from which (26) follows.

8. An initial value problem associated with a class of non-negative
N-functions

As before, we �x a complete �-�nite measure space (X;�; �). We denote

Mfa (�) = f� : �! R signed measure; � << �g
and we consider onMfa (�) the same norm we used onMf ,

k�kMfa(�)
= j�j (X) .

Remark 7. With this norm, Mfa (�) is a closed subspace of Mf and, thus, it is
a Banach space. In fact, let f�jgj�1 be a sequence in Mfa (�) converging to � in
Mf . Then for each j, �j = fjd�, with fj 2 L1 (�). We claim that ffjgj�1 is a
Cauchy sequence in L1 (�).

kfj � fkkL1(�) =
Z
X

jfj (x)� fk (x)j d� = j�j � �kj (X)

= k�j � �kkMf
!

j;k!1
0.

Thus, ffjgj�1 converges in L1 (�) to some function f . We claim that � = fd�.

k�� fd�kMf

� k�� �jkMf
+ k�j � fd�kMf

= k�� �jkMf
+ k(fj � f) d�kMf

= k�� �jkMf
+ kfj � fkL1(�) !

j!1
0.



84 J. ÁLVAREZ AND M. GUZMÁN-PARTIDA EJMAA-2017/5(2)

Notice that, in particular, we have really proved that Mfa (�) is isometrically
isomorphic to L1 (�), as we mentioned before. Indeed,

kfd�kMfa(�) = jfd�j (X) =
Z
X

jf (x)j d� = kfkL1(�) ,

([11], p. 94).

For 0 < T < +1 �xed, C [0; T ;Mfa (�)] is the space of continuous functions
� : [0; T ]!Mfa (�). It becomes a Banach space with the norm

k�k = sup
0�t�T

k� (t)kMfa(�)
.

Likewise, the space C1 [0; T ;Mfa (�)] of continuously di¤erentiable functions � :
[0; T ] ! Mfa (�), becomes a Banach space with the norm k�k +



�0

, while
C
�
0; T ;L1 (�)

�
is the space of continuous functions f : [0; T ] ! L1 (�), which

becomes a Banach space with the norm

kfk = sup
0�t�T

kf (t)kL1(�) .

The spaces C [0; T ;Mfa (�)] and C
�
0; T ;L1 (�)

�
are isometrically isomorphic.

According to all we have said before, it su¢ ces to prove that C [0; T ;Mfa (�)] is
isometrically isomorphic to the subspace C (�) of C [0; T ;Mf ] de�ned as

C (�) =
�
� 2 C [0; T ;Mf ] : � (t) = f (t) d� for f 2 C

�
0; T ;L1 (�)

�	
.

We �rst prove that C (�) = C [0; T ;Mfa (�)] as sets. It is clear that C (�) �
C [0; T ;Mfa (�)]. Conversely, if � 2 C [0; T ;Mfa (�)], then for each 0 � t � T ,
there is a function ft 2 L1 (�) so that � (t) = ftd�. As for the continuity of the
function t! ft, if ftjgj�1 converges to t,

ftj � ft

L1(�) = Z

X

��ftj � ft�� d� = k� (tj)� � (t)kMfa(�)
!
j!1

0.

A similar estimate will show that C [0; T ;Mfa (�)] and C (�) are isometrically
isomorphic. Consequently, each of these spaces is isometrically isomorphic to
C
�
0; T ;L1 (�)

�
.

Given f0 2 L1 (�), we formulate the initial value problem�
df
dt �A(f) (t) = 0 for 0 < t < T

f(0) = f0
, (27)

where
A(f) (t) = G (t; x; f) , (28)

for some function G : [0; T ]�X � R! R to be de�ned later.
Likewise, given �0 2Mfa (�), we consider the initial value problem�

d�
dt �A(�) (t) = 0 for 0 < t < T

�(0) = �0
, (29)

where
A(�) (t) = G (t; x; f) d�.

The solutions in C1 [0; T ;Mfa (�)] of (29) are exactly the measures of the form
� = fd�, where the function f runs throught all the solutions in C1

�
0; T ;L1 (�)

�
of the problem (27). The proof of this claim follows from the relationship we
have shown between continuous functions with values in Mfa (�) and continuous
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functions with values in L1 (�). So, to prove that (29) has one and only one solution
in C1 [0; T ;Mfa (�)], it su¢ ces to prove that (27) has one and only one solution in
C1
�
0; T ;L1 (�)

�
.

We now formulate conditions on the function G, so that (27) has one and only
one solution in C1

�
0; T ;L1 (�)

�
. We begin with the following lemma:

Lemma 12. Let G : [0; T ]�X � R! R be a function satisfying the conditions:
(1) jG (t; x; u)j � a (x)+b juj, for some a 2 L1 (�) and b � 0, for �-a.e. x 2 X,

0 � t � T and u 2 R.
(2) The function x! G (t; x; u) is �-measurable for each 0 � t � T and u 2 R.
(3) There exists C > 0 such that jG (t; x; u1)�G (t; x; u2)j � C ju1 � u2j, for

0 � t � T , u1; u2 2 R and for �-a.e. x 2 X.
(4) There exists C > 0 such that jG (t1; x; u)�G (t2; x; u)j � C juj jt1 � t2j, for

0 � t1; t2 � T , u 2 R and for �-a.e. x 2 X.
Then, the following properties hold:

a): For each 0 � t � T , the function Gt : X � R! R de�ned as Gt (x; u) =
G (t; x; u) is an N -function.

b): For each 0 � t � T , the Nemycki¼¬operator NGt maps L
1 (�) to itself.

c): The function f ! NGt (f) maps C[0; T ;L
1 (�)] continuously into itself.

Proof. The proof of a) is a direct application of 2) and 3), while the proof of b)
follows from 1). To prove c) we begin by observing that given f 2 C[0; T ;L1 (�)],
the function NGt

(f) (x) belongs to L1 (�) for each 0 � t � T , as a consequence of
b). Moreover, NGt

(f) belongs to C[0; T ;L1 (�)] because of 4. Finally, if ffjgj�1
converges to f in C[0; T ;L1 (�)], we use 3) to write

kNGt (fj) (t)�NGt (f) (t)kL1(�) � C kfj (t)� f (t)kL1(�)
� C kfj � fk .

Thus,
sup
0�t�T

kNGt
(fj) (t)�NGt

(f) (t)kL1(�) !
j!1

0.

This completes the proof of the lemma. �

Theorem 13. The initial value problem (27) has one and only one solution in
C1
�
0; T ;L1 (�)

�
if we assume that the operator A is given by (28) and the function

G satis�es the conditions stated in Lemma 12.

Proof. The proof goes along the same lines as the proof of Theorem 11. The initial
value problem (27) has the same solutions in C1[0; T ;L1 (�)] as the integral equation

f(t) = f0 +

Z t

0

A (f) (s) ds. (30)

We show that (30) has one and only one solution in C1[0; T ;L1 (�)] by proving that
the operator T de�ned on C[0; T ;L1 (�)] as

T (f) (t) = f0 +
Z t

0

A (f) (s) ds

has a unique �xed point. According to Proposition 10, it su¢ ces to show that T (k)
is a contraction in C[0; T ;L1 (�)] for some k 2 f1; 2; :::g, for which it is enough to
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prove that for f1; f2 2 C[0; T ;L1 (�)] and k 2 f1; 2; :::g,

kT (k)(f1) (t)� T (k)(f2) (t) kL1(�) � Ck
tk

k!
kf1 � f2k. (31)

When k = 1,

kT (f1) (t)� T (f2) (t) kL1(�)

�
Z t

0

kA (f1) (s)�A (f2) (s)kL1(�) ds

=

Z t

0

kG (t; x; f1 (s))�G (t; x; f2 (s))kL1(�)
� Ct kf1 � f2k .

We prove now that (31) holds for k = n+ 1, assuming that it holds for k = n.

kT (n+1)(f1)(t)� T (n+1)(f2)(t)kL1(�)

= k
Z t

0

(A(T (n)(f1)) (s)�A(T (n)(f2))(s))dskL1(�)

�
Z t

0

kG(s; �; T (n)(f1)(s))�G(s; �; T (n)(f2)(s))kL1(�)ds

� C
Z t

0

kT (n)(f1)(s)� T (n)(f2)(s)kL1(�)ds

� C
Z t

0

Cnsn

n!
kf1 � f2kds =

Cn+1tn+1

(n+ 1)!
kf1 � f2k.

As in Theorem 11, (31) implies the estimate

kT (k)(f1)� T (k)(f2)k � Ck
tk

k!
kf1 � f2k,

from which the result follows. This completes the proof of the theorem. �

Remark 8. As an illustration, we present now an example of an operator A as
considered in Theorem 13. With this purpose, we construct �rst a function G that
satis�es the hypothesis of Lemma 12. We �x a function H : R ! R satisfying the
two conditions:
1. There exists C1 > 0 such that jH(r)j � C1 jrj for all r 2 R.
2. H is a Lipschitz function; that is to say, there exists C2 > 0 such that

jH(r1)�H(r2)j � C2 jr1 � r2j for all r1; r2 2 R.
Then, given a 2 L1 (�), we de�ne G : [0; T ] � X � R ! R as G(t; x; u) =

H(a(x) + tu).
We claim that G satis�es conditions 1) through 4) in Lemma 12.
In fact, jG(t; x; u)j = jH(a(x) + tu)j � C1 ja(x) + tuj � C1 (ja(x)j+ T juj), so

condition 1) is satis�ed.
If we �x 0 � t � T , u 2 R, the function x ! H(a(x) + tu) is �-measurable,

because it is the composition, in the appropriate order, of the �-measurable function
x! a(x) and the continuous function r ! H(r + tu). So condition 2) holds.
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We can write

jG(t; x; u1)�G(t; x; u2)j
= jH(a(x) + tu1)�H(a(x) + tu2)j
� C2t ju1 � u2j � C2T ju1 � u2j .

Therefore, condition 3) is satis�ed.
Finally, if we �x 0 � t1; t2 � T , x 2 X, u 2 R, we have that

jG(t1; x; u)�G(t2; x; u)j
= jH(a(x) + t1u)�H(a(x) + t2u)j � C2 juj jt1 � t2j .

Thus, condition 4) is satis�ed as well.
According to Lemma 12, for each 0 � t � T , the function Gt : X � R ! R

de�ned as Gt(x; u) = H(a(x) + tu) is an N -function.
If f 2 C[0; T ;L1 (�)], we can de�ne the operator

A : C[0; T ;L1 (�)]! C[0; T ;L1 (�)]

as
A (f) (t) = NGt(f(t)) = H(a(�) + tf(t; �)).

Remark 9. According to Remark 5, Theorem 13 applies, with the obvious changes
in notation, to a system of m equations in n unknowns.
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