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CENTRAL MEAN OSCILLATION AND RECTANGULARLY
DEFINED SPACES

CAROLINA ESPINOZA-VILLALVA

ABSTRACT. We define a rectangular version of the space AP(R?) studied by
Garcia-Cuerva, Chen and Lau and construct its dual. We also define the
atomic Hardy space associated to this space and identify its dual with the space

. ’

CMO” (R?) of functions with bounded central rectangular mean oscillation.
Finally, we obtain continuity on LP(R?) for the commutator of the rectangular
Hardy operator and CMO (R2) functions.

1. INTRODUCTION

Recently, the theory of Herz spaces has been developed in order to study con-
tinuity of classical operators in harmonic analysis, as well as the Hardy spaces
associated to the former spaces. This theory has its origin in the work of N. Wiener
[15], A. Beurling [2] and C. Herz [13].

According to the classical definition, a measurable function f belongs to the
homogeneous Herz space K;"q(R”), 1<p,g< oo, acRif

o3} 1/‘1
UML¢<§:TWWMM> < oo, (1)

k=—o0
and for ¢ = 0o
£y . = sup (2" fxm ) < oc. )
: kez

Here By = {x € R": 281 < |z| < 2F} for k € Z.

Taking ¢ =1and « = 1/p’ in (1) or « = —1/p in (2) we obtain homogeneous ver-
sions of the spaces AP(R") and B?(R"), studied first by Chen and Lau [6] and later
by J. Garcia-Cuerva [12]. The second author obtained several characterizations of
HAP(R™), the Hardy space associated to AP(R™), and it is by means of the atomic
characterization that the dual space (HAP(R™))* is identified with CMO? (R™).
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In this work we consider homogeneous versions of AP(R™), BP(R™) and CMOP' (R™)
in the simplest product space, R x R. These spaces are denoted as AP (R?), Br (R?)
and CMO"(R?). In order to define an atomic Hardy space associated to AP(R™),
we could have used the atoms defined by S.-Y. A. Chang and R. Fefferman (see
[4] and [5]), which give the right atomic decomposition for HP(R x R), but those
atoms are complicated to handle. For that reason, we choose a significantly simpler
way of defining our atoms, by assumming that they are supported on rectangles
centered at the origin, instead of being supported on arbitrary open sets. Following
this idea, our definition for the product CMO" (R?) relates better to the space bmo
studied by M. Cotlar, S. Ferguson and D. C. Chang and C. Sadosky in [7], [10], [3]
and [14], than to the classical product version of BMO. Even though we obtain a
space smaller than CMO" (R?), CMO” (R?) still is a useful class of functions that
let us, for instance, define continuous operators on LP(R?). Indeed, we studied
the boundedness on LP(R?) of the commutator of the rectangular Hardy operator
defined in [9] with functions in a particular CMO’(R2). More general versions of
this operator, in the radial context, are considered in [11].

In the first section we introduce the space A?(R?) and its dual B?(R?), and
prove some basic properties of these spaces. In the second section we define the

atomic Hardy space associated to A?(R?) whose dual is identified with cMO” (R?).
Finally, the third section is devoted to prove continuity for commutators of the
rectangular Hardy operator with CMOP(RZ) functions.

We will use standard notation along this paper and we will adopt the convention
to denote by C' a constant that could be changing line by line.

2. RECTANGULAR HERZ SPACES
For j1, jo € Z consider the following subsets in R?:
Cj = le X Cjzﬂ

where C; = {z € R : 277! < |z| < 27}, and denote by xj, j, the characteristic
function of the set C}, j,.

1,J2

Definition 1. Let 1 < p < oo and denote by p’ the conjugate exponent of p. We
shall call AP(R?) the space consisting of those functions f € L (R?) for which

loc
Hf”AP — Z Z o(d1+i12)/p Hfle,aer < . (3)
Jj1=—00 j2=—00

It is not difficult to prove that (AP(R?), |-l i») is a Banach space and that
AP(R?) c AP(R?) continuously. Moreover, for 1 < p; < pa < oo we have the
inclusions AP2(R?) C AP (R?) and AP(R?) C L}(R?) for all 1 < p < oo.

Definition 2. For 1 < p < oo, the space B”(RQ) consists of all those functions
f e L? (R?) such that

loc
1/p
| fllge = sup 7/ |f (21, 22)[Pdz1dzs <oco. (4)
Ry>0 AR1 Ry JI_R, R\)x[~Ra,Ra]
i=1,

There is an alternative way to describe BP(R?) in terms of the behavior of the
functions in the subsets Cj, j,.
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Proposition 2.1. A function f belongs to the space BP(RQ) if and only if the
following quantity is finite:

sup 270 HRP| eys. (5)
41,4267

Furthermore, the quantities in (5) and (4) are comparable.

Proof. Let f € BP(R?). For any pair of integers j; and ja

1 x50 5 llE = / f (@1, 22)Pder s

J1.d2
S/ |f(z1, 22)[Pdzrdxs
[—271,291]x [—292,272]
-
< O £l -

Therefore

sup 27UERP| sl < Ol fllgo-

J1,J2€Z
For the converse, suppose the supremum in (5) is finite and denote it by S. Given
Ry > 0 and Ry > 0, take integers ki and kp such that 21 < R; < 2% fori =1,2.
Then

k1 k2

fzy2o)[Pdrdas < / \f (21, 22)[Pdardz
/[Rl’Rl]X[Rg,Rz] 1 1oz Z Z 1,T2)| 1422

J1=—00 ja=—00 Ci .32

k1 ko
< Z Z 9d1t+j2 gp

J1=—00 ja=—00
< 2k1+kzc . P
< (4R, R,)CSP.

Consequently, || fllz < C-S. O
After a simple calculation we verify that (5) induces a norm in 87 (R?) that makes
it a Banach space, and by the previous proposition the same is true for || - || z,. We
will denote the norm induced by (5) as || - [|%;,. In addition, since
. . . . c
J J Jj=2  j=2
cl U U GGelNl U U G
j1=—00 ja=—00 Jj1=—00 ja=—00

for every integer j, it is easy to show that B? (R?) C BP (R?) continuously. Indeed,
in [8] we proved that BP(R?) is a proper subspace of B,(R?).
Proposition 2.2. The space of those C™ functions having compact support in R?

is dense in AP(R?) for every 1 < p < co.

Proof. Consider f € AP(R?) and take € > 0. Since

k1 ko

1f1Li» = k}gnoo Z Z QU+ /P | s,

ko—oo J1=—k1 ja=—k2

Py
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we can choose natural numbers K; and K5 such that

K1 K>

. . ’ €
Yo > 29 Gl = 1l <z

j1=—K1 j2=—K>

Therefore
—(K1+1) 0o

-~ . . ’ €
Sy = Z Z Ui +2)/p 1/ X152 lp < 5

Jj1=—00 ja=—00

00 00 ‘ ‘ , ¢
Sf= > > 20y by < 3

j1=Ki1+1 jz=—o00

[ee] (oo}
_ N €
Si= Y 2yl <

J1=—00 jo=—(K2+1)

[ee) ) ) ] , €
SE= 33 200yl <

J1=—00 jo=Ka+1
Since fxj,j, € LP(Cj, j,), for each pair of indexes j; and j» we can take a
C*>(C}, ;,) function g, ;, supported in Cj, ;, such that
€

5. 201ti2)/P' (2K +1)(2K2 + 1)
for every —K; < j; < K;, 7 = 1,2. If we define
K1 K

9= Z Z Gi1,52

j1=—Ki jo=—K>

1f X152 = Girgallp <

is clear that g is a smooth function with compact support and that
K1 Ko

”f - gHAP = S;r +57 + S; + 55 + Z Z 202 +52)/p ||fXj1,j2 - gjhjé”p
J1=—K1 jo=—K>

<y
575

O

Using this density result, we will be able to prove the next duality theorem.

Theorem 2.3. Let 1 < p < oo. Then (AP(R2))* = B¥ (R2) in the following sense:
For every g € BY (R?), the functional A, defined by

Ag(f) = /]R2 f(l”l, 172)9(171,I2)d11d12,

is continuous on AP(R?) and its norm in (AP(R?))* satisfies ||A,y|| < ||g|lg». Con-
versely, given A € (AP(R2))*, there is a unique g € BP (R?) such that A = A,.
Furthermore, ||g|g» < [|A]l.

Proof. Given f € AP(R?), a smooth compactly supported function, let k; and k;
be the smallest integers satisfying that supp(f) C [—2%1,2%1] x [—2F2,2F2]. Then

Mg ()] =

/ fla1, z2)g(a1, x2)da, des
[—2F1,2F1] x [—2Fk2 2k2]
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Z Z / f(x1,z2)||g(z1, x2)|dz1, do

j1=—00 jo=—o0 ¥ Ci1.i2

k1
Z Z 9—(1+352)/p’ HgX]17]2||p i1 +72/v' ||fXJ17]2||p

J1=—00 ja=—00
< lgllger 11 4o -
By Proposition 2.2, the class of compactly supported C*° functions is dense in
AP (R?), and as a consequence, A, extends to a unique continuous linear functional
A, € (AP(R?))* for which ||Ay| < [lg]lz» holds.
For the converse, first note that for each pair of integers j; and j,, LP(Cj,, Jz)
is continuously contained in AP(R?) with 201+72)/F| . lze(cy, ;) = I [lio-
this sense, any A € (AP(R?))* induces a continuous linear functional on L? (leuz)
whose (LP(Cj, j,))*-norm is not greater than 201+32)/"||A||. This fact, together
with the duality of LP(Cj, j,) and LP'(Cj, ;,) gives a function gj, j, € L (C}, j,)
with norm not greater than 201+32)/7||A||, such that

A = [ oo o) oy
Ciyda
for every f € LP(Cj, j,). Let us define
Z Z 9j1,52Xjr,g2
J1=—00j2=—00

Then g belongs to B? (R?) and llgllg»r < ||A]l. Also, a simple calculation shows
that for every smooth function f with compact support A(f) = Ag4(f), so that
A=Ay O

Corollary 2.4. Let f € LP (R?). Then f € AP(R?) if and only if

f(@1,22)g(21, 22)dr1dTs| < 00 (6)

R2

for every g € B (R?). If this is the case,

1Nl 4o = SUP{‘/ flx1, 22)g(21, z2)dz1dzo
RQ

Nl < 1}.

Proof. When f € AP (R?), the result follows easily from the previous theorem by
using the Hahn-Banach theorem.

For the converse take f € LP (R?) such that (6) holds whenever g € B* (R?).
Without loss of generality we can assume that f > 0. For n € N define A,, in
B (R2) as

Z Z/ f(z1,22)g(x1, x2)dx1das.

Jji=—njo=—n Ciy.32

It is not difficult to see that A, € (B (R2))* with

n

Al = D" > 20527ty ol

Jji=—nj2=-n
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Also for every n € N and g € B? (R?)
|An(g)| = |An(g+) - An(g_)|

< /. f(x1,22) 9" (21, 22)dz1d2s + ] f(z1,22)9™ (21, 22)dx1d2s
R R
< 00,

where g (21, 22) = max{g(x1,22),0} and g~ (z1,22) = max{—g(z1,22),0}. The
above inequalities guarantee that the family of continuous linear functionals {A;, } nen
is pointwise bounded. By the Banach-Steinhaus theorem sup{||A,| : n € N} is fi-
nite. Thus
n n
sup » Y 20 R p ), < oo,

(S S —,

so f € AP(R?). O

3. ATOMS AND CENTRAL RECTANGULAR MEAN OSCILLATION

Our goal in this section is to prove a duality result concerning to an atomic space
related to AP(R?) and to the space of functions with bounded central rectangular
mean oscillation. For this purpose we introduce the notion of a central rectangular
(1,p)-atom and we define the space HAP(R?).

Definition 3. For 1 < p < oo, a central rectangular (1, p)-atom is a function a,
with support contained in a rectangle [— Ry, R1] X [—Ra, Rz], that satisfies
1 1/p

—_— |a(z1, x2)|Pdz1das < .
4R1R2 [R17R1]X[R27R2] 4R1R2
ii) [po a(z1,z2)dridry = 0.

The first thing we notice is that if condition ¢) holds for some rectangle R con-
taining the support of a, then it holds for any rectangle R C R such that R contains
the support of a. For that reason we can consider the smallest rectangle containing
the support of a. We also observe that every central rectangular (1, p)-atom belongs
to a closed ball in AP(R?): suppose supp(a) C [—Ry, Ri] x [~Ra, Ry] and take k
and ko such that 251—1 < Ry < 2kt and 2k2—1 < R; < 2%2. Then

00 00
lalliw = > D 29 lax, gl

J1=—00j2=—00

k1 k2

Yo >0 29 ax, gl

j1=—00 ja=—00

k1 ko

1/p
R
< </[R1,R1]><[R2,R2] a(xl,xz)deldx2> Z Z 9(1+72)/p
C
C
C

Jj1=—00 j2=—00
4Ry Ryt

(2k1+k2)%—12(k1+k2)/p’

with C' a constant that depends on p but not on the particular atom.
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Definition 4. Let f € L? (R?). We say that f belongs to HAP(R?) if f = 3" \ja;,
where the a; are central rectangular (1,p)-atoms and ) |A;| < oco.

For f € HAP(R?) we define

£l i =10E S TIN f =D Njay
j=1

Any atomic space constructed in this way and endowed with the atomic norm
becomes a Banach space (see [1]), and since for a function f in HAP(R?) with
f=32ja; we have 3272 | |A;] < oo, we also have that || f]| 4, < C||f|l g 4-

Next we introduce a space of functions with bounded central rectangular mean
oscillation and we discuss its relation with H.AP(R?).

Definition 5. For 1 < p < co we define
CMO”(R?) = {f € L}, (R?) : || fllexror < 00}

loc

where
1 1/p
Sp = SUP | —— T1,%2) — Pdzidx ,
flesior = 0 | g [ )~ il ]
j=1,2

and fg, g, is the average of f on [—Ry, R1] X [—Ra, Ra].

It is not difficult to prove that (CMO"(R2), | - llc 107 ) is @ Banach space after
identifying functions that differ by a constant almost everywhere in R?. Also it can
be verified that a function f belongs to CMOP(Rz) if and only if

1/p

inf
2, 0

7j=1,2

AR\ R /—R R —Rs.R
|f(£C1,(E2) | L1AX2
182 J] 1,R1]x[ 2, Ro]

is finite. Actually, the supremum in (7) defines a norm that is equivalent to || -
lloxtor-  Clearly BP(R?) ¢ CMO"(R?) for 1 < p < oo, while CMO"(R?) is a
subspace of the classical CMO” (R?) studied in [6] and [12]. For 1 < p; < py < 00
we also have the inclusion CMO” (R?) ¢ CMO™ (R?).

Theorem 3.1. Let 1 < p < oco. Given g € cMO”® (R?), the functional A, defined
over compactly supported functions by

Ag(f) = /R2 f(xl’xz)g(th)dﬂfld@

extends in a unique way to a continuous linear functional Ay € (HAP(RQ))* whose
(HAP(R?))*-norm satisfies |Ag|l < C|lgll

/ cmo”'
Conversely, given A € (HAP(R?))* there is a unique, up to a constant, g €
. p/
CMO" (R?) such that A = A,. Moreover, HchMop/ < C||Ag]l-

Proof. Fix g € CMO" (R?). For a central rectangular (1, p)-atom supported in
[-R1, R1] X [-R2, Rs] we have

[Ag(a)] =

/ a(xy,x2)g(x1, 2)dr1das
[~ R1,R1]x[~R2,Rz2]
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/ a(z1,22)[g(x1,22) — gRry R, |dT1dT2
[=Ry1,R1]x[—R2,R2]

1/p
1
§4R1R2 7/ \a(xl,x2)|pda:1dx2
4R1Ry J|_R, Ri]x[~Ras,Ro)
1 1/p
X |9(21,72) = gR, R, |” duydas
4R1R2 [RI,RI]X[RQ,RQ] ! 2
SL

Now, if f € HAP (R?) is compactly supported, we can write

f= Z Ajag,
j=1

where the functions a; are central rectangular (1, p)-atoms, all supported on a fixed
rectangle [— Ry, R1] X [—Ra, R2] and

o0

>IN CllF Il e

j=1

The series converges in AP(R?) (because it is absolutely convergent), and conse-
quently in L?. Since g € L¥' ([—=Ry, R1] x [—Ra, Rs]), we have

Ay(f) = Z)‘jAg(aj)a

and as a consequence we obtain
1Ag (N < Cligllg xqor 1 | r.de-

Recall that the class of compactly supported functions in H Ar (R?) include the
subspace of finite linear combinations of central rectangular (1, p)-atoms and the
last one is dense in HAP(R?). It follows that A4 extends in a unique way to a
continuous linear functional A, € (HAP(R?))* that satisfies ||A4|| < C||g||cMop/.

For the converse, fix A € (HAP(R?))* and for Ry, Ry > 0 consider the space
LE([—R1, R1] X [—Ra2, Ry]) defined as

{f € L7 (= Ry, R] x [~ Ra, Ro]) : /

[=R1,R1]X[—R2,R2]

f(x1, z2)dzrdas = O} )

Clearly, LE([~R1, Ri] x [~ Rz, R]) is continuously included in HAP(R?) with || -
| riv < (4R R2)'/?"|| - ||,. From the duality between L? and L? and the previous
comment, we obtain a function g locally in L' that allows us to represent A over
compactly supported functions h having average 0 as

A(h) = Ag(h) = /]R2 g(x1,z2)h(x1, x2)dx1dT>.
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Let us prove that g belongs to cMmo”’ (R?). For any Ry, Ry > 0, the integral

1/p’
/ l9(z1,%2) — gR, R,|" dx1dzs
[-=R1,R1]X[—R2,R3]

is equal to

sup {

But

Bl e (= Ry R X [~ Ro,Ra)) = 1}-

/2 (9(w1,22) — gR, R, P(21, 22)dT1dT2
R

/ (9(21,72) — grs o), 22)dydera
R2

= / g(xl,l’Q)(h(I'l, .'172) - thRQ)dl'ldI'Q
R2

= Ag(h - hRLRz)

= A(h = hg,,r,),
and given the inequality ||h — hr, g, |l gir < C(4R1Ry)Y" | it is easy to see that
1/p'
[/ lg(z1,22) — gRl,R2|p/d$1d$2
[=R1,R1]X[—R2,R2]

< sup {|A(R)] « 7]l Lo(= Ry Ra ¢ - Ro. )y < C'

< AR R
Since the above is true for every Ry > 0 and Rz > 0, we get ||g||cMopr < Al O

4. COMMUTATORS OF THE RECTANGULAR 2-DIMENSIONAL HARDY OPERATOR

The classical 2-dimensional Hardy operator Hj is defined for x € R? \ {0} as

1
(@)= o /y|<|z| f(y)dy

[ stlalyat
B1(0)

Instead of the radial operator we can consider an operator acting on each coordinate

separately,
1

lwillzz] Joggy;1<ie;1,5=12)
where z; # 0 for j = 1,2. In [9] we proved the continuity of the n-dimensional
Hardy operator HE on BP(R") and CMO"(R™). In this section we consider the
commutator of the Hardy operator HI?, defined as

Hy'f = bHy'f — H'(bf),

Hy' f(x) f(y)dy,

where b is a locally integrable function. Our aim is to prove that when b belongs to
CM(’)q(RQ), for certain value of ¢ depending on p, the commutator operator H, 5 is
bounded on LP(R?).

The next lemma will be used to obtain the continuity of the commutator defined
above.
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Lemma 4.1. For a function b in CMOl(Rz), there is a constant C' such that
[b(t1,t2) = bar 25 < [b(t1,t2) = bas o + C(|k = 5| + 7 = 1) [[bl] ¢yt -

Proof. First notice that when k < s
s—1

|b(t1, tg) - bzk’2j| < |b(t1, tg) — b25,2j| + Z |b2i72j — b2i+172j |
i=k
Analogously when s < k
k—1
[(t1, t2) — bar 2] < [B(t1, t2) = boe s | + D [bas 23 — boier 4.
i=s

Additionally for every i and j

|boi 95 — bait1 9| =

1
/ (b(z1, 2) = bai+r 95 )dz1d>
R

4. 2047 o
21 2]
<2 / 1b(21, 29) — byesr o5 |dnd
S o L1,L2) = 02i+1 25 |AL1GT2
420014 Rait1 o
< 2||bHcMol'
Thus
[b(t1, t2) — bak 25| < [b(t1,t2) = bas 25| + Clk — s|[b]] o 1 -
In a similar way, we see
[b(t1,82) = bas 25| < [b(t1,t2) — baa 21| + Cll = j[bll e o1
and finally we obtain
|b(t1,t2) = bar 93| < [b(t1,t2) — bas 24| + Clk — s][[bl ¢ 00

< [b(t1, t2) = by 1| + C([k = s[ + [l = GD[bll¢ p10-
(]

Let us now introduce some notation. For k € Z, denote by Sj the square
[—2F 2%)2 and define Oy = S, \ Sk_1. Observe that Cj, N Cj = 0 when k # j and
that R? = UkezC-

Then for a function f in LP(R?) we can write

IFIE = (1fell?,

k=—o00

where fi = fxc,-
Now we state our result.

Theorem 4.2. Let 1 < p < 0o, b € emo™ T }(RQ). Then HE is bounded on
LP(R?) with norm

IHGT < ClBll , gq ooty -
MO

Proof. First let us examine [|(HJ f)x[.

Il = |

Ck

AGHY

)
|[1ll@2| Ji-jer ] foal1x [~ 221, o ]
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P

X (b(ml, .’172) — b(tl, tz))dtldtz d.’lﬁld.’lfg

1 P
S/ ( |f(t1,t2)]|b(w1, 22) _b(tlatZ)dtldt2) dxidxs
Sk

o, |71[P|22|P
k p
Z / |f(t1,t2)”b($1,$2) — b(tl,t2)|dt1dt2> dxldxg
. C;

< C2—2k}p /
a Cr \i=—co

k p
< 02—2kp/ ( Z / |f(t1, tg)Hb(xl,xg) — b2k’2k|dt1dt2> dxidzs
Ck C;

i1=—00
k p
Z / ‘f(tl,tQ)”b(tl,tQ) — b2k72kdt1dt2> d:l?ldIQ
. C;

+ C27 %P /
Cr \i=—co

k p
= (272 (/ b(z1,22) — bzk,2k|1’da:1d302) ( Z / |f(t1,t2)|dt1dt2>
Ck C’i

1=—00

& P
+ ooty ( N RLURSIURSE bzk,zkldtldw)
C;

i=—00

=1+ J.
For I observe that

1< C2~%kp < |b($1, Ig) - b2k)2k |pdm1dx2)

Sk

b l/p ) p
g (Z (/c lf(tl’t2)|pdt1dt2> |Ci|1/p>

1=—00

k p
< ca2ol e ( S g2 ||fi||p>

1=—00

k p
= CIbIE vy0r ( > 2 ||fz-||p> :

1=—00

Now to estimate J we use Lemma, 4.1.

k p
J=0C (22k/p, Z / |f(t1’ t2)||b(t17 tg) — b2k72k |dt1dt2>

k p
<C (22k/p' Z / |f(t1, t2)||b(t1, t2) — b2i72i|dt1dt2>
i=—o0 Y Ci

k p
+ Clbllg g0t (2_%/13, > (k- i)/ |f(t17t2)|dt1dt2> =Ji+ Jo.
— oo C;

For the first term we have

k 1/p
J<C (22W > [ / | f(tl,t2)|pdt1dt2]
C;

1=—00
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, 1/p'\ P
X |:/ |b(t1,t2) — b2i,27‘,|p dtldt2:| )
C;

k 1 1/p\?
2i—k) /o' | L
= <i—zoo2 "Il {ISZ»I /5 b(t1,82) = b 20" dtldt‘z} )

k p
< O o ( > 2 ||fi||p> .

i=—00

For the second term we can use the Holder inequality to obtain

k p
J2 < CIBIIG o (2‘2’”” D (k- z'>||f1-||pci1/p>
k P
P 2i—k)/P" (1. _ || f.
< CIBIE o (_Z 2 (k z)||fz||p> :

From all the calculations above we get

00 ) k p
R P P 2(i—k)/p" || £,
> Il = Mg+ 10 3 (32 2015,

k=—o0 k=—o0 \i=—00

9] k p
O S (Z 226-)/p <k—z’>||fi||p>

k=—o00 \i=—o00

[e%S) k P
< CIBIG gygmstrsny 2 (Z P <k—z'>fi|p)

k=—o0 \i=—o00

oo k p/p’ k
L (Z 21—’“<k—i>fﬂ> (Z 20+ Hﬁ-lﬁ)-

k=—oco0 \i=—o00 i=—00

Since the series Zfz_ o207 (k- i)P" converges, to the same value, for every integer
k, we can use Tonelli’s theorem to obtain

1EZEFIE = > HEPRE
k=—0c0
I i S 5 (zw—wp) |
i=—00 k=i

But again, for every integer number i, the series Z;‘;Z 2(i=k)p/p’ converges to the
same value. Thus we finally get

(T cas el L Tp— Y
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