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CENTRAL MEAN OSCILLATION AND RECTANGULARLY

DEFINED SPACES

CAROLINA ESPINOZA-VILLALVA

Abstract. We define a rectangular version of the space Ȧp(R2) studied by
Garćıa-Cuerva, Chen and Lau and construct its dual. We also define the

atomic Hardy space associated to this space and identify its dual with the space

˙CMOp′
(R2) of functions with bounded central rectangular mean oscillation.

Finally, we obtain continuity on Lp(R2) for the commutator of the rectangular

Hardy operator and ˙CMOp
(R2) functions.

1. Introduction

Recently, the theory of Herz spaces has been developed in order to study con-
tinuity of classical operators in harmonic analysis, as well as the Hardy spaces
associated to the former spaces. This theory has its origin in the work of N. Wiener
[15], A. Beurling [2] and C. Herz [13].

According to the classical definition, a measurable function f belongs to the
homogeneous Herz space K̇α

p,q(Rn), 1 ≤ p, q < ∞, α ∈ R if

∥f∥K̇α
p,q

:=

( ∞∑
k=−∞

2nkαq∥fχEk
∥qp

)1/q

< ∞, (1)

and for q = ∞
∥f∥K̇α

p,∞
:= sup

k∈Z

(
2nkα∥fχEk

∥p
)
< ∞. (2)

Here Ek = {x ∈ Rn : 2k−1 < |x| ≤ 2k} for k ∈ Z.
Taking q = 1 and α = 1/p′ in (1) or α = −1/p in (2) we obtain homogeneous ver-

sions of the spaces Ap(Rn) and Bp(Rn), studied first by Chen and Lau [6] and later
by J. Garćıa-Cuerva [12]. The second author obtained several characterizations of
HAp(Rn), the Hardy space associated to Ap(Rn), and it is by means of the atomic

characterization that the dual space (HAp(Rn))∗ is identified with CMOp′
(Rn).
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In this work we consider homogeneous versions ofAp(Rn), Bp(Rn) and CMOp′
(Rn)

in the simplest product space, R×R. These spaces are denoted as Ȧp(R2), Ḃp(R2)

and ˙CMOp
(R2). In order to define an atomic Hardy space associated to Ȧp(Rn),

we could have used the atoms defined by S.-Y. A. Chang and R. Fefferman (see
[4] and [5]), which give the right atomic decomposition for Hp(R × R), but those
atoms are complicated to handle. For that reason, we choose a significantly simpler
way of defining our atoms, by assumming that they are supported on rectangles
centered at the origin, instead of being supported on arbitrary open sets. Following

this idea, our definition for the product ˙CMOp
(R2) relates better to the space bmo

studied by M. Cotlar, S. Ferguson and D. C. Chang and C. Sadosky in [7], [10], [3]
and [14], than to the classical product version of BMO. Even though we obtain a

space smaller than ˙CMO
p
(R2), ˙CMOp

(R2) still is a useful class of functions that
let us, for instance, define continuous operators on Lp(R2). Indeed, we studied
the boundedness on Lp(R2) of the commutator of the rectangular Hardy operator

defined in [9] with functions in a particular ˙CMOq
(R2). More general versions of

this operator, in the radial context, are considered in [11].

In the first section we introduce the space Ȧp(R2) and its dual Ḃp(R2), and
prove some basic properties of these spaces. In the second section we define the

atomic Hardy space associated to Ȧp(R2) whose dual is identified with ˙CMOp′

(R2).
Finally, the third section is devoted to prove continuity for commutators of the

rectangular Hardy operator with ˙CMOp
(R2) functions.

We will use standard notation along this paper and we will adopt the convention
to denote by C a constant that could be changing line by line.

2. Rectangular Herz spaces

For j1, j2 ∈ Z consider the following subsets in R2:

Cj1,j2 = Cj1 × Cj2 ,

where Cj = {x ∈ R : 2j−1 < |x| ≤ 2j}, and denote by χj1,j2 the characteristic
function of the set Cj1,j2 .

Definition 1. Let 1 < p < ∞ and denote by p′ the conjugate exponent of p. We
shall call Ȧp(R2) the space consisting of those functions f ∈ Lp

loc(R2) for which

∥f∥Ȧp =
∞∑

j1=−∞

∞∑
j2=−∞

2(j1+j2)/p
′
∥fχj1,j2∥p < ∞. (3)

It is not difficult to prove that (Ȧp(R2), ∥·∥Ȧp) is a Banach space and that

Ȧp(R2) ⊂ Ȧp(R2) continuously. Moreover, for 1 < p1 ≤ p2 < ∞ we have the

inclusions Ȧp2(R2) ⊂ Ȧp1(R2) and Ȧp(R2) ⊂ L1(R2) for all 1 < p < ∞.

Definition 2. For 1 < p < ∞, the space Ḃp(R2) consists of all those functions
f ∈ Lp

loc(R2) such that

∥f∥Ḃp = sup
Rj>0
j=1,2

[
1

4R1R2

∫
[−R1,R1]×[−R2,R2]

|f(x1, x2)|pdx1dx2

]1/p
< ∞. (4)

There is an alternative way to describe Ḃp(R2) in terms of the behavior of the
functions in the subsets Cj1,j2 .
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Proposition 2.1. A function f belongs to the space Ḃp(R2) if and only if the
following quantity is finite:

sup
j1,j2∈Z

2−(j1+j2)/p∥fχj1,j2∥p. (5)

Furthermore, the quantities in (5) and (4) are comparable.

Proof. Let f ∈ Ḃp(R2). For any pair of integers j1 and j2

∥fχj1,j2∥pp =

∫
Cj1,j2

|f(x1, x2)|pdx1dx2

≤
∫
[−2j1 ,2j1 ]×[−2j2 ,2j2 ]

|f(x1, x2)|pdx1dx2

≤ C2j1+j2∥f∥pḂp
.

Therefore

sup
j1,j2∈Z

2−(j1+j2)/p∥fχj1,j2∥p ≤ C∥f∥Ḃp .

For the converse, suppose the supremum in (5) is finite and denote it by S. Given
R1 > 0 and R2 > 0, take integers k1 and k2 such that 2ki−1 < Ri ≤ 2ki for i = 1, 2.
Then

∫
[−R1,R1]×[−R2,R2]

|f(x1x2)|pdx1dx2 ≤
k1∑

j1=−∞

k2∑
j2=−∞

∫
Cj1,j2

|f(x1, x2)|pdx1dx2

≤
k1∑

j1=−∞

k2∑
j2=−∞

2j1+j2Sp

≤ 2k1+k2C · Sp

≤ (4R1R2)CSp.

Consequently, ∥f∥Ḃp ≤ C · S. �

After a simple calculation we verify that (5) induces a norm in Ḃp(R2) that makes
it a Banach space, and by the previous proposition the same is true for ∥ · ∥Ḃp . We
will denote the norm induced by (5) as ∥ · ∥∗Ḃp . In addition, since

Ej ⊂

 j∪
j1=−∞

j∪
j2=−∞

Cj1,j2

∩ j−2∪
j1=−∞

j−2∪
j2=−∞

Cj1,j2

c

for every integer j, it is easy to show that Ḃp(R2) ⊂ Ḃp(R2) continuously. Indeed,

in [8] we proved that Ḃp(R2) is a proper subspace of Ḃp(R2).

Proposition 2.2. The space of those C∞ functions having compact support in R2

is dense in Ȧp(R2) for every 1 < p < ∞.

Proof. Consider f ∈ Ȧp(R2) and take ϵ > 0. Since

∥f∥Ȧp = lim
k1→∞
k2→∞

k1∑
j1=−k1

k2∑
j2=−k2

2(j1+j2)/p
′
∥fχj1,j2,∥p,
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we can choose natural numbers K1 and K2 such that∣∣∣∣∣∣
K1∑

j1=−K1

K2∑
j2=−K2

2(j1+j2)/p
′
∥fχj1,j2,∥p − ∥f∥Ȧp

∣∣∣∣∣∣ < ϵ

5
.

Therefore

S−
1 =

−(K1+1)∑
j1=−∞

∞∑
j2=−∞

2(j1+j2)/p
′
∥fχj1,j2,∥p <

ϵ

5

S+
1 =

∞∑
j1=K1+1

∞∑
j2=−∞

2(j1+j2)/p
′
∥fχj1,j2,∥p <

ϵ

5

S−
2 =

∞∑
j1=−∞

∞∑
j2=−(K2+1)

2(j1+j2)/p
′
∥fχj1,j2,∥p <

ϵ

5

S+
2 =

∞∑
j1=−∞

∞∑
j2=K2+1

2(j1+j2)/p
′
∥fχj1,j2,∥p <

ϵ

5
.

Since fχj1,j2 ∈ Lp(Cj1,j2), for each pair of indexes j1 and j2 we can take a
C∞(Cj1,j2) function gj1,j2 supported in Cj1,j2 such that

∥fχj1,j2 − gj1,j2∥p <
ϵ

5 · 2(j1+j2)/p′(2K1 + 1)(2K2 + 1)

for every −Ki ≤ ji ≤ Ki, j = 1, 2. If we define

g =

K1∑
j1=−K1

K2∑
j2=−K2

gj1,j2

is clear that g is a smooth function with compact support and that

∥f − g∥Ȧp = S+
1 + S−

1 + S+
2 + S−

2 +

K1∑
j1=−K1

K2∑
j2=−K2

2(j2+j2)/p
′
∥fχj1,j2 − gj1,j2∥p

<
4ϵ

5
+

ϵ

5
.

�
Using this density result, we will be able to prove the next duality theorem.

Theorem 2.3. Let 1 < p < ∞. Then (Ȧp(R2))∗ = Ḃp′
(R2) in the following sense:

For every g ∈ Ḃp′
(R2), the functional Λg defined by

Λg(f) =

∫
R2

f(x1, x2)g(x1, x2)dx1dx2,

is continuous on Ȧp(R2) and its norm in (Ȧp(R2))∗ satisfies ∥Λg∥ ≤ ∥g∥Ḃp . Con-

versely, given Λ ∈ (Ȧp(R2))∗, there is a unique g ∈ Ḃp′
(R2) such that Λ = Λg.

Furthermore, ∥g∥Ḃp ≤ ∥Λ∥.

Proof. Given f ∈ Ȧp(R2), a smooth compactly supported function, let k1 and k2
be the smallest integers satisfying that supp(f) ⊂ [−2k1 , 2k1 ]× [−2k2 , 2k2 ]. Then

|Λg(f)| =

∣∣∣∣∣
∫
[−2k1 ,2k1 ]×[−2k2 ,2k2 ]

f(x1, x2)g(x1, x2)dx1, dx2

∣∣∣∣∣
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≤
k1∑

j1=−∞

k2∑
j2=−∞

∫
Cj1,j2

|f(x1, x2)||g(x1, x2)|dx1, dx2

≤
k1∑

j1=−∞

k2∑
j2=−∞

2−(j1+j2)/p
′
∥gχj1,j2∥p′2j1+j2/p

′
∥fχj1,j2∥p

≤ ∥g∥Ḃp′∥f∥Ȧp .

By Proposition 2.2, the class of compactly supported C∞ functions is dense in
Ȧp(R2), and as a consequence, Λg extends to a unique continuous linear functional

Λg ∈ (Ȧp(R2))∗ for which ∥Λg∥ ≤ ∥g∥Ḃp holds.
For the converse, first note that for each pair of integers j1 and j2, L

p(Cj1,j2)

is continuously contained in Ȧp(R2) with 2(j1+j2)/p
′∥ · ∥Lp(Cj1,j2 )

= ∥ · ∥Ȧp . In

this sense, any Λ ∈ (Ȧp(R2))∗ induces a continuous linear functional on Lp(Cj1,j2)

whose (Lp(Cj1,j2))
∗-norm is not greater than 2(j1+j2)/p

′∥Λ∥. This fact, together

with the duality of Lp(Cj1,j2) and Lp′
(Cj1,j2) gives a function gj1,j2 ∈ Lp′

(Cj1,j2)

with norm not greater than 2(j1+j2)/p
′∥Λ∥, such that

Λ(f) =

∫
Cj1,j2

f(x1, x2)gj1,j2(x1x2)dx1dx2

for every f ∈ Lp(Cj1,j2). Let us define

g =

∞∑
j1=−∞

∞∑
j2=−∞

gj1,j2χj1,j2 .

Then g belongs to Ḃp′
(R2) and ∥g∥Ḃp′ ≤ ∥Λ∥. Also, a simple calculation shows

that for every smooth function f with compact support Λ(f) = Λg(f), so that
Λ = Λg. �

Corollary 2.4. Let f ∈ Lp
loc(R2). Then f ∈ Ȧp(R2) if and only if∣∣∣∣∫

R2

f(x1, x2)g(x1, x2)dx1dx2

∣∣∣∣ < ∞ (6)

for every g ∈ Ḃp′
(R2). If this is the case,

∥f∥Ȧp = sup

{∣∣∣∣∫
R2

f(x1, x2)g(x1, x2)dx1dx2

∣∣∣∣ : ∥g∥Ḃp′ ≤ 1

}
.

Proof. When f ∈ Ȧp(R2), the result follows easily from the previous theorem by
using the Hahn-Banach theorem.

For the converse take f ∈ Lp
loc(R2) such that (6) holds whenever g ∈ Ḃp′

(R2).
Without loss of generality we can assume that f ≥ 0. For n ∈ N define Λn in
Ḃp′

(R2) as

Λn(g) =
n∑

j1=−n

n∑
j2=−n

∫
Cj1,j2

f(x1, x2)g(x1, x2)dx1dx2.

It is not difficult to see that Λn ∈ (Ḃp′
(R2))∗ with

∥Λn∥ =

n∑
j1=−n

n∑
j2=−n

2(j1+j2)/p
′
∥fχj1,j2∥p.
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Also for every n ∈ N and g ∈ Ḃp′
(R2)

|Λn(g)| = |Λn(g
+)− Λn(g

−)|

≤
∫
R2

f(x1, x2)g
+(x1, x2)dx1dx2 +

∫
R2

f(x1, x2)g
−(x1, x2)dx1dx2

< ∞,

where g+(x1, x2) = max{g(x1, x2), 0} and g−(x1, x2) = max{−g(x1, x2), 0}. The
above inequalities guarantee that the family of continuous linear functionals {Λn}n∈N
is pointwise bounded. By the Banach-Steinhaus theorem sup{∥Λn∥ : n ∈ N} is fi-
nite. Thus

sup
n∈N

n∑
j1=−n

n∑
j2=−n

2(j1+j2)/p
′
∥fχj1,j2∥p < ∞,

so f ∈ Ȧp(R2). �

3. Atoms and central rectangular mean oscillation

Our goal in this section is to prove a duality result concerning to an atomic space
related to Ȧp(R2) and to the space of functions with bounded central rectangular
mean oscillation. For this purpose we introduce the notion of a central rectangular
(1, p)-atom and we define the space HȦp(R2).

Definition 3. For 1 < p < ∞, a central rectangular (1, p)-atom is a function a,
with support contained in a rectangle [−R1, R1]× [−R2, R2], that satisfies

i)

[
1

4R1R2

∫
[−R1,R1]×[−R2,R2]

|a(x1, x2)|pdx1dx2

]1/p
≤ 1

4R1R2
.

ii)
∫
R2 a(x1, x2)dx1dx2 = 0.

The first thing we notice is that if condition i) holds for some rectangle R con-

taining the support of a, then it holds for any rectangle R̃ ⊂ R such that R̃ contains
the support of a. For that reason we can consider the smallest rectangle containing
the support of a. We also observe that every central rectangular (1, p)-atom belongs

to a closed ball in Ȧp(R2): suppose supp(a) ⊂ [−R1, R1] × [−R2, R2] and take k1
and k2 such that 2k1−1 ≤ R1 ≤ 2k1 and 2k2−1 ≤ R1 ≤ 2k2 . Then

∥a∥Ȧp =

∞∑
j1=−∞

∞∑
j2=−∞

2(j1+j2)/p
′
∥aχj1,j2∥p

=

k1∑
j1=−∞

k2∑
j2=−∞

2(j1+j2)/p
′
∥aχj1,j2∥p

≤

(∫
[−R1,R1]×[−R2,R2]

|a(x1, x2)|pdx1dx2

)1/p k1∑
j1=−∞

k2∑
j2=−∞

2(j1+j2)/p
′

≤ C(4R1R2)
1
p−12(k1+k2)/p

′

≤ C(2k1+k2)
1
p−12(k1+k2)/p

′

≤ C

with C a constant that depends on p but not on the particular atom.
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Definition 4. Let f ∈ Lp
loc(R2). We say that f belongs to HȦp(R2) if f =

∑
λjaj ,

where the aj are central rectangular (1, p)-atoms and
∑

|λj | < ∞.

For f ∈ HȦp(R2) we define

∥f∥HȦp = inf


∞∑
j=1

|λj | : f =
∑

λjaj

 .

Any atomic space constructed in this way and endowed with the atomic norm
becomes a Banach space (see [1]), and since for a function f in HȦp(R2) with
f =

∑
λjaj we have

∑∞
j=1 |λj | < ∞, we also have that ∥f∥Ȧp ≤ C∥f∥HȦp .

Next we introduce a space of functions with bounded central rectangular mean
oscillation and we discuss its relation with HȦp(R2).

Definition 5. For 1 ≤ p < ∞ we define

˙CMOp
(R2) = {f ∈ Lp

loc(R
2) : ∥f∥ ˙CMOp < ∞},

where

∥f∥ ˙CMOp = sup
Rj>0
j=1,2

[
1

4R1R2

∫
[−R1,R1]×[−R2,R2]

|f(x1, x2)− fR1,R2 |pdx1dx2

]1/p
,

and fR1,R2 is the average of f on [−R1, R1]× [−R2, R2].

It is not difficult to prove that ( ˙CMOp
(R2), ∥ · ∥ ˙CMOp) is a Banach space after

identifying functions that differ by a constant almost everywhere in R2. Also it can

be verified that a function f belongs to ˙CMOp
(R2) if and only if

sup
Rj>0
j=1,2

inf
a∈R

[
1

4R1R2

∫
[−R1,R1]×[−R2,R2]

|f(x1, x2)− a|pdx1dx2

]1/p
(7)

is finite. Actually, the supremum in (7) defines a norm that is equivalent to ∥ ·
∥ ˙CMOp . Clearly Ḃp(R2) ⊂ ˙CMOp

(R2) for 1 < p < ∞, while ˙CMOp
(R2) is a

subspace of the classical ˙CMO
p
(R2) studied in [6] and [12]. For 1 ≤ p1 < p2 < ∞

we also have the inclusion ˙CMOp2
(R2) ⊂ ˙CMOp1

(R2).

Theorem 3.1. Let 1 < p < ∞. Given g ∈ ˙CMOp′

(R2), the functional Λg defined
over compactly supported functions by

Λg(f) =

∫
R2

f(x1, x2)g(x1, x2)dx1dx2

extends in a unique way to a continuous linear functional Λg ∈ (HȦp(R2))∗ whose

(HȦp(R2))∗-norm satisfies ∥Λg∥ ≤ C∥g∥ ˙CMOp′ .

Conversely, given Λ ∈ (HȦp(R2))∗ there is a unique, up to a constant, g ∈
˙CMOp′

(R2) such that Λ = Λg. Moreover, ∥g∥ ˙CMOp′ ≤ C∥Λg∥.

Proof. Fix g ∈ ˙CMOp′

(R2). For a central rectangular (1, p)-atom supported in
[−R1, R1]× [−R2, R2] we have

|Λg(a)| =

∣∣∣∣∣
∫
[−R1,R1]×[−R2,R2]

a(x1, x2)g(x1, x2)dx1dx2

∣∣∣∣∣
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=

∣∣∣∣∣
∫
[−R1,R1]×[−R2,R2]

a(x1, x2)[g(x1, x2)− gR1,R2
]dx1dx2

∣∣∣∣∣
≤4R1R2

[
1

4R1R2

∫
[−R1,R1]×[−R2,R2]

|a(x1, x2)|pdx1dx2

]1/p

×

[
1

4R1R2

∫
[−R1,R1]×[−R2,R2]

|g(x1, x2)− gR1,R2 |p
′
dx1dx2

]1/p′

≤∥g∥ ˙CMOp′ .

Now, if f ∈ HȦp(R2) is compactly supported, we can write

f =

∞∑
j=1

λjaj ,

where the functions aj are central rectangular (1, p)-atoms, all supported on a fixed
rectangle [−R1, R1]× [−R2, R2] and

∞∑
j=1

|λj | ≤ C∥f∥HȦp .

The series converges in Ȧp(R2) (because it is absolutely convergent), and conse-

quently in Lp. Since g ∈ Lp′
([−R1, R1]× [−R2, R2]), we have

Λg(f) =
∞∑
j=1

λjΛg(aj),

and as a consequence we obtain

|Λg(f)| ≤ C∥g∥ ˙CMOp′∥f∥HȦp .

Recall that the class of compactly supported functions in HȦp(R2) include the
subspace of finite linear combinations of central rectangular (1, p)-atoms and the

last one is dense in HȦp(R2). It follows that Λg extends in a unique way to a

continuous linear functional Λg ∈ (HȦp(R2))∗ that satisfies ∥Λg∥ ≤ C∥g∥ ˙CMOp′ .

For the converse, fix Λ ∈ (HȦp(R2))∗ and for R1, R2 > 0 consider the space
Lp
0([−R1, R1]× [−R2, R2]) defined as{

f ∈ Lp ([−R1, R1]× [−R2, R2]) :

∫
[−R1,R1]×[−R2,R2]

f(x1, x2)dx1dx2 = 0

}
.

Clearly, Lp
0([−R1, R1] × [−R2, R2]) is continuously included in HȦp(R2) with ∥ ·

∥HȦp ≤ (4R1R2)
1/p′∥ · ∥p. From the duality between Lp and Lp′

and the previous

comment, we obtain a function g locally in Lp′
that allows us to represent Λ over

compactly supported functions h having average 0 as

Λ(h) = Λg(h) =

∫
R2

g(x1, x2)h(x1, x2)dx1dx2.
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Let us prove that g belongs to ˙CMOp′

(R2). For any R1, R2 > 0, the integral[∫
[−R1,R1]×[−R2,R2]

|g(x1, x2)− gR1,R2 |p
′
dx1dx2

]1/p′

is equal to

sup

{∣∣∣∣∫
R2

(g(x1, x2)− gR1,R2)h(x1, x2)dx1dx2

∣∣∣∣ : ∥h∥Lp([−R1,R1]×[−R2,R2]) = 1

}
.

But ∫
R2

(g(x1, x2)− gR1,R2)h(x1, x2)dx1dx2

=

∫
R2

g(x1, x2)(h(x1, x2)− hR1,R2)dx1dx2

= Λg(h− hR1,R2)

= Λ(h− hR1,R2
),

and given the inequality ∥h− hR1,R2∥HȦp ≤ C(4R1R2)
1/p′

, it is easy to see that[∫
[−R1,R1]×[−R2,R2]

|g(x1, x2)− gR1,R2 |p
′
dx1dx2

]1/p′

≤ sup
{
|Λ(h)| : ∥h∥Lp([−R1,R1]×[−R2,R2]) ≤ C

}
≤ ∥Λ∥(4R1R2)

1/p′
.

Since the above is true for every R1 > 0 and R2 > 0, we get ∥g∥ ˙CMOp′ ≤ C∥Λ∥. �

4. Commutators of the rectangular 2-dimensional Hardy operator

The classical 2-dimensional Hardy operator H2 is defined for x ∈ R2 \ {0} as

H2f(x) =
1

|x|2

∫
|y|<|x|

f(y)dy

=

∫
B1(0)

f(t|x|)dt.

Instead of the radial operator we can consider an operator acting on each coordinate
separately,

HR
2 f(x) =

1

|x1||x2|

∫
{y:|yj |<|xj |,j=1,2}

f(y)dy,

where xj ̸= 0 for j = 1, 2. In [9] we proved the continuity of the n-dimensional

Hardy operator HR
n on Ḃp(Rn) and ˙CMOp

(Rn). In this section we consider the
commutator of the Hardy operator HR

2 , defined as

HR
b f = bHR

2 f −HR
2 (bf),

where b is a locally integrable function. Our aim is to prove that when b belongs to
˙CMOq

(R2), for certain value of q depending on p, the commutator operator HR
b is

bounded on Lp(R2).
The next lemma will be used to obtain the continuity of the commutator defined

above.
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Lemma 4.1. For a function b in ˙CMO1
(R2), there is a constant C such that

|b(t1, t2)− b2k,2j | ≤ |b(t1, t2)− b2s,2l |+ C(|k − s|+ |j − l|)∥b∥ ˙CMO1 .

Proof. First notice that when k < s

|b(t1, t2)− b2k,2j | ≤ |b(t1, t2)− b2s,2j |+
s−1∑
i=k

|b2i,2j − b2i+1,2j |.

Analogously when s < k

|b(t1, t2)− b2k,2j | ≤ |b(t1, t2)− b2s,2j |+
k−1∑
i=s

|b2i,2j − b2i+1,2j |.

Additionally for every i and j

|b2i,2j − b2i+1,2j | =

∣∣∣∣∣ 1

4 · 2i+j

∫
R2i,2j

(b(x1, x2)− b2i+1,2j )dx1dx2

∣∣∣∣∣
≤ 2

4 · 2i+1+j

∫
R2i+1,2j

|b(x1, x2)− b2i+1,2j |dx1dx2

≤ 2∥b∥ ˙CMO1 .

Thus

|b(t1, t2)− b2k,2j | ≤ |b(t1, t2)− b2s,2j |+ C|k − s|∥b∥ ˙CMO1 .

In a similar way, we see

|b(t1, t2)− b2s,2j | ≤ |b(t1, t2)− b2s,2l |+ C|l − j|∥b∥ ˙CMO1 ,

and finally we obtain

|b(t1, t2)− b2k,2j | ≤ |b(t1, t2)− b2s,2j |+ C|k − s|∥b∥ ˙CMO1

≤ |b(t1, t2)− b2s,2l |+ C(|k − s|+ |l − j|)∥b∥ ˙CMO1 .

�

Let us now introduce some notation. For k ∈ Z, denote by Sk the square
[−2k, 2k]2 and define Ck = Sk \ Sk−1. Observe that Ck ∩ Cj = ∅ when k ̸= j and
that R2 = ∪k∈ZCk.

Then for a function f in Lp(R2) we can write

∥f∥pp =

∞∑
k=−∞

∥fk∥pp,

where fk = fχCk
.

Now we state our result.

Theorem 4.2. Let 1 < p < ∞, b ∈ ˙CMOmax{p,p′}
(R2). Then HR

b is bounded on
Lp(R2) with norm

∥HR
b ∥ ≤ C∥b∥ ˙CMOmax{p,p′} .

Proof. First let us examine ∥(HR
b f)k∥pp.

∥(HR
b f)k∥pp =

∫
Ck

∣∣∣∣∣ 1

|x1||x2|

∫
[−|x1|,|x1|]×[−|x2|,|x2|]

f(t1, t2)
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× (b(x1, x2)− b(t1, t2))dt1dt2

∣∣∣∣∣
p

dx1dx2

≤
∫
Ck

1

|x1|p|x2|p

(∫
Sk

|f(t1, t2)||b(x1, x2)− b(t1, t2)|dt1dt2
)p

dx1dx2

≤ C2−2kp

∫
Ck

(
k∑

i=−∞

∫
Ci

|f(t1, t2)||b(x1, x2)− b(t1, t2)|dt1dt2

)p

dx1dx2

≤ C2−2kp

∫
Ck

(
k∑

i=−∞

∫
Ci

|f(t1, t2)||b(x1, x2)− b2k,2k |dt1dt2

)p

dx1dx2

+ C2−2kp

∫
Ck

(
k∑

i=−∞

∫
Ci

|f(t1, t2)||b(t1, t2)− b2k,2k |dt1dt2

)p

dx1dx2

= C2−2kp

(∫
Ck

|b(x1, x2)− b2k,2k |pdx1dx2

)( k∑
i=−∞

∫
Ci

|f(t1, t2)|dt1dt2

)p

+ C2−2kp|Ck|

(
k∑

i=−∞

∫
Ci

|f(t1, t2)||b(t1, t2)− b2k,2k |dt1dt2

)p

= I + J.

For I observe that

I ≤ C2−2kp

(∫
Sk

|b(x1, x2)− b2k,2k |pdx1dx2

)

×

(
k∑

i=−∞

(∫
Ci

|f(t1, t2)|pdt1dt2
)1/p

|Ci|1/p
′

)p

≤ C2−2kp/p′
∥b∥p ˙CMOp

(
k∑

i=−∞
22i/p

′
∥fi∥p

)p

= C∥b∥p ˙CMOp

(
k∑

i=−∞
22(i−k)/p′

∥fi∥p

)p

.

Now to estimate J we use Lemma 4.1.

J = C

(
2−2k/p′

k∑
i=−∞

∫
Ci

|f(t1, t2)||b(t1, t2)− b2k,2k |dt1dt2

)p

≤ C

(
2−2k/p′

k∑
i=−∞

∫
Ci

|f(t1, t2)||b(t1, t2)− b2i,2i |dt1dt2

)p

+ C∥b∥ ˙CMO1

(
2−2k/p′

k∑
−∞

(k − i)

∫
Ci

|f(t1, t2)|dt1dt2

)p

= J1 + J2.

For the first term we have

J1 ≤ C

(
2−2k/p′

k∑
i=−∞

[∫
Ci

|f(t1, t2)|pdt1dt2
]1/p
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×
[∫

Ci

|b(t1, t2)− b2i,2i |p
′
dt1dt2

]1/p′)p

≤ C

(
k∑

i=−∞
22(i−k)/p′

∥fi∥p
[

1

|Si|

∫
Si

|b(t1, t2)− b2i,2i |p
′
dt1dt2

]1/p′)p

≤ C∥b∥p
˙CMOp′

(
k∑

i=−∞
22(i−k)/p′

∥fi∥p

)p

.

For the second term we can use the Hölder inequality to obtain

J2 ≤ C∥b∥p
˙CMO1

(
2−2k/p′

k∑
i=−∞

(k − i)∥fi∥p|Ci|1/p
′

)p

≤ C∥b∥p
˙CMO1

(
k∑

i=−∞
22(i−k)/p′

(k − i)∥fi∥p

)p

.

From all the calculations above we get

∞∑
k=−∞

∥(HR
b f)k∥pp ≤ C(∥b∥p ˙CMOp + ∥b∥p

˙CMOp′ )
∞∑

k=−∞

(
k∑

i=−∞
22(i−k)/p′

∥fi∥p

)p

+ C∥b∥p
˙CMO1

∞∑
k=−∞

(
k∑

i=−∞
22(i−k)/p′

(k − i)∥fi∥p

)p

≤ C∥b∥p
˙CMOmax{p,p′}

∞∑
k=−∞

(
k∑

i=−∞
22(i−k)/p′

(k − i)∥fi∥p

)p

≤ C∥b∥p
˙CMOmax{p,p′}

∞∑
k=−∞

(
k∑

i=−∞
2i−k(k − i)p

′

)p/p′ (
k∑

i=−∞
2(i−k)p/p′

∥fi∥pp

)
.

Since the series
∑k

i=−∞ 2i−k(k− i)p
′
converges, to the same value, for every integer

k, we can use Tonelli’s theorem to obtain

∥HR
b f∥pp =

∞∑
k=−∞

∥(HR
b f)k∥pp

≤ C∥b∥p
˙CMOmax{p,p′}

∞∑
i=−∞

∥fi∥pp

( ∞∑
k=i

2(i−k)p/p′

)
.

But again, for every integer number i, the series
∑∞

k=i 2
(i−k)p/p′

converges to the
same value. Thus we finally get

∥HR
b f∥p ≤ C∥b∥ ˙CMOmax{p,p′}∥f∥p.

�
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