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ON A THREE-DIMENSIONAL SYSTEM OF NONLINEAR

DIFFERENCE EQUATIONS

J. L. WILLIAMS

Abstract. We investigate the solutions to the following system of nonlinear
difference equations, 

xn+1 =
f(zn)
yn−1

,

yn+1 =
f(xn)
zn−1

zn+1 =
f(yn)
xn−1

for n ∈ N0,

where x−1 = α, y−1 = β, z−1 = γ, x0 = λ, y0 = µ, and z0 = ω are positive

real numbers.

1. Introduction

There are various results on systems of difference equations, see [1, 4, 10, 11, 2].
Understanding the theory and dynamics of such systems play a crucial role in
mathematics, physics, and biology, see [8, 7, 3].

Consider the following system of difference equations,
xn+1 = f(zn)

yn−1
,

yn+1 = f(xn)
zn−1

zn+1 = f(yn)
xn−1

for n ∈ N0,

(1)

where x−1 = α, y−1 = β, z−1 = γ, x0 = λ, y0 = µ, and z0 = ω are positive
numbers.

Next are some papers on periodic and positive solutions to three-dimensional
systems of nonlinear difference equations:

Tarek F. Ibrahim studied in [5] the periodic solutions of the following three-
dimensional max-type cyclic system of difference equations

xn+1 = max

{
α

xn
, yn

}
, yn+1 = max

{
α

yn
, zn

}
, zn+1 = max

{
α

zn
, xn

}
.
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M. R. S. Kulenović and Z. Nurkanović in [6] studied the global behavior of the
following rational system of nonlinear difference equations

xn+1 =
a+ xn
b+ yn

, yn+1 =
c+ yn
d+ zn

, zn+1 =
e+ zn
f + xn

.

Stevo Stević in [9] studied the stability of the following rational system of non-
linear difference equations

xn+1 =
a1xn−2

b1ynzn−1xn−2 + c1
, yn+1 =

a2yn−2

b2znxn−1yn−2 + c2
, zn+1 =

a3zn−2

b3xnyn−1zn−2 + c3
.

2. Assumptions

The function f will have one of the following forms:

f(t) = 1 (2)

f(t) = t (3)

f(t) =

{
A, if t > 0

B, if t < 0
(4)

f(t) =

{
At, if t < 0

Bt, if t > 0
(5)

where A, B ∈ R such that A2 +B2 6= 0.

3. Main Results

Theorem 3.1. Let (2) hold and suppose that x−1, y−1, z−1, x0, y0, and z0 are
positive real numbers. Also, let {xn, yn, zn} be a solution of the system of equations
(1) with x−1 = α, y−1 = β, z−1 = γ, x0 = λ, y0 = µ, and z0 = ω. Then all
solutions of (1) are of the following:

x12n+1 =
1

β
, y12n+1 =

1

γ
, z12n+1 =

1

α

x12n+2 =
1

µ
, y12n+2 =

1

ω
, z12n+2 =

1

λ

x12n+3 = γ, y12n+3 = α, z12n+3 = β

x12n+4 = ω, y12n+4 = λ, z12n+4 = µ

x12n+5 =
1

α
, y12n+5 =

1

β
, z12n+5 =

1

γ

x12n+6 =
1

λ
, y12n+6 =

1

µ
, z12n+6 =

1

ω

x12n+7 = β, y12n+7 = γ, z12n+7 = α

x12n+8 = µ, y12n+8 = ω, z12n+8 = λ

x12n+9 =
1

γ
, y12n+9 =

1

α
, z12n+9 =

1

β

x12n+10 =
1

ω
, y12n+10 =

1

λ
, z12n+10 =

1

µ

x12n+11 = α, y12n+11 = β, z12n+11 = γ

x12n+12 = λ, y12n+12 = µ, z12n+12 = ω.
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Proof. The result holds for n = 0. Now suppose the result is true for some k > 0,
we have the following:

x12k+1 =
1

β
, y12k+1 =

1

γ
, z12k+1 =

1

α

x12k+2 =
1

µ
, y12k+2 =

1

ω
, z12k+2 =

1

λ
x12k+3 = γ, y12k+3 = α, z12k+3 = β

x12k+4 = ω, y12k+4 = λ, z12k+4 = µ

x12k+5 =
1

α
, y12k+5 =

1

β
, z12k+5 =

1

γ

x12k+6 =
1

λ
, y12k+6 =

1

µ
, z12k+6 =

1

ω
x12k+7 = β, y12k+7 = γ, z12k+7 = α

x12k+8 = µ, y12k+8 = ω, z12k+8 = λ

x12k+9 =
1

γ
, y12k+9 =

1

α
, z12k+9 =

1

β

x12k+10 =
1

ω
, y12k+10 =

1

λ
, z12k+10 =

1

µ
x12k+11 = α, y12k+11 = β, z12k+11 = γ

x12k+12 = λ, y12k+12 = µ, z12k+12 = ω.

Also, for k + 1 we have the following:

x12k+13 =
1

y12k+11
=

1

β
, y12k+13 =

1

z12k+11
=

1

γ
, z12k+13 =

1

x12k+11
=

1

α

x12k+14 =
1

y12k+12
=

1

µ
, y12k+14 =

1

z12k+12
=

1

ω
, z12k+14 =

1

x12k+12
=

1

λ

x12k+15 =
1

y12k+13
= γ, y12k+15 =

1

z12k+13
= α, z12k+15 =

1

x12k+13
= β

x12k+16 =
1

y12k+14
= ω, y12k+16 =

1

z12k+14
= λ, z12k+16 =

1

x12k+14
= µ

x12k+17 =
1

y12k+15
=

1

α
, y12k+17 =

1

z12k+15
=

1

β
, z12k+17 =

1

x12k+15
=

1

γ

x12k+18 =
1

y12k+16
=

1

λ
, y12k+18 =

1

z12k+16
=

1

µ
, z12k+18 =

1

x12k+16
=

1

ω

x12k+19 =
1

y12k+17
= β, y12k+19 =

1

z12k+17
= γ, z12k+19 =

1

x12k+17
= α

x12k+20 =
1

y12k+18
= µ, y12k+20 =

1

z12k+18
= ω, z12k+20 =

1

x12k+18
= λ

x12k+21 =
1

y12k+19
=

1

γ
, y12k+21 =

1

z12k+19
=

1

α
, z12k+21 =

1

x12k+19
=

1

β

x12k+22 =
1

y12k+20
=

1

ω
, y12k+22 =

1

z12k+20
=

1

λ
, z12k+22 =

1

x12k+20
=

1

µ

x12k+23 =
1

y12k+21
= α, y12k+23 =

1

z12k+21
= β, z12k+23 =

1

x12k+21
= γ

x12k+24 =
1

y12k+22
= λ, y12k+24 =

1

z12k+22
= µ, z12k+24 =

1

x12k+22
= ω.
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Therefore the result is true for every k ∈ N0. This concludes the proof. �

Theorem 3.2. Suppose that (2) hold and let {xn, yn, zn} be a solution of the system
of equations (1). Also, assume that x−1, y−1, z−1, x0, y0, and z0 are positive real
numbers. Then all solutions of (1) are periodic with period twelve.

Proof. By (2), we have the following equal:

xn+1 =
f(zn)

yn−1
=

1

yn−1
, yn+1 =

f(xn)

zn−1
=

1

zn−1
, zn+1 =

f(yn)

xn−1
=

1

xn−1

xn+2 =
f(zn+1)

yn
=

1

yn
, yn+2 =

f(xn+1)

zn
=

1

zn
, zn+2 =

f(yn+1)

xn
=

1

xn

xn+3 =
f(zn+2)

yn+1
= zn−1, yn+3 =

f(xn+2)

zn+1
= xn−1, zn+3 =

f(yn+2)

xn+1
= yn−1

xn+4 =
f(zn+3)

yn+2
= zn, yn+4 =

f(xn+3)

zn+2
= xn, zn+4 =

f(yn+3)

xn+2
= yn

xn+4 =
f(zn+3)

yn+2
= zn, yn+4 =

f(xn+3)

zn+2
= xn, zn+4 =

f(yn+3)

xn+2
= yn

xn+5 =
f(zn+4)

yn+3
=

1

xn−1
, yn+5 =

f(xn+4)

zn+3
=

1

yn−1
, zn+5 =

f(yn+4)

xn+3
=

1

zn−1

xn+6 =
f(zn+5)

yn+4
=

1

xn
, yn+6 =

f(xn+5)

zn+4
=

1

yn
, zn+6 =

f(yn+5)

xn+4
=

1

zn

xn+7 =
f(zn+6)

yn+5
= yn−1, yn+7 =

f(xn+6)

zn+5
= zn−1, zn+7 =

f(yn+6)

xn+5
= xn−1

xn+8 =
f(zn+7)

yn+6
= yn, yn+8 =

f(xn+7)

zn+6
= zn, zn+8 =

f(yn+7)

xn+6
= xn

xn+9 =
f(zn+8)

yn+7
=

1

zn−1
, yn+9 =

f(xn+8)

zn+7
=

1

xn−1
, zn+9 =

f(yn+8)

xn+7
=

1

yn−1

xn+10 =
f(zn+9)

yn+8
=

1

zn
, yn+10 =

f(xn+9)

zn+8
=

1

xn
, zn+10 =

f(yn+9)

xn+8
=

1

yn

xn+11 =
f(zn+10)

yn+9
= xn−1, yn+11 =

f(xn+10)

zn+9
= yn−1, zn+11 =

f(yn+10)

xn+9
= zn−1

xn+12 =
f(zn+11)

yn+10
= xn, yn+12 =

f(xn+11)

zn+10
= yn, zn+12 =

f(yn+11)

xn+10
= zn.

This concludes the proof. �

To see the periodic behavior of {xn, yn, zn}, observe the following three diagrams
with x1 = 1, x2 = 2, y1 = 3, y2 = 4, z1 = 5, and z2 = 6:



142 J. L. WILLIAMS EJMAA-2016/4(2)

Theorem 3.3. Let (3) hold and suppose that x−1, y−1, z−1, x0, y0, and z0 are
positive real numbers. Also, let {xn, yn, zn} be a solution of the system of equations
(1) with x−1 = α, y−1 = β, z−1 = γ, x0 = λ, y0 = µ, and z0 = ω. Then all
solutions of (1) are of the following:

x6n−5 =
ω

β
, y6n−5 =

λ

γ
, z6n−5 =

µ

α

x6n−4 =
1

α
, y6n−4 =

1

β
, z6n−4 =

1

γ

x6n−3 =
1

λ
, y6n−3 =

1

µ
, z6n−3 =

1

ω

x6n−2 =
β

ω
, y6n−2 =

γ

λ
, z6n−2 =

α

µ

x6n−1 = α, y6n−1 = β, z6n−1 = γ

x6n = λ, y6n = µ, z6n = ω.

Proof. The result holds for n = 0. Now suppose the result is true for some k > 0,
we have the following:

x6k−5 =
ω

β
, y6k−5 =

λ

γ
, z6k−5 =

µ

α

x6k−4 =
1

α
, y6k−4 =

1

β
, z6k−4 =

1

γ

x6k−3 =
1

λ
, y6k−3 =

1

µ
, z6k−3 =

1

ω

x6k−2 =
β

ω
, y6k−2 =

γ

λ
, z6k−2 =

α

µ

x6k−1 = α, y6k−1 = β, z6k−1 = γ

x6k = λ, y6k = µ, z6k = ω.

Also, for k + 1 we have the following:

x6k+1 =
f (z6k)

y6k−1
=

z6k
y6k−1

=
ω

β

y6k+1 =
f (x6k)

z6k−1
=

x6k
z6k−1

=
λ

γ

z6k+1 =
f (y6k)

x6k−1
=

y6k
x6k−1

=
µ

α

x6k+2 =
f (z6k+1)

y6k
=
z6k+1

y6k
=
µ/α

µ
=

1

α

y6k+2 =
f (x6k+1)

z6k
=
x6k+1

z6k
=
ω/β

ω
=

1

β

z6k+2 =
f (y6k+1)

x6k
=
y6k+1

x6k
=
λ/γ

λ
=

1

γ

x6k+3 =
f (z6k+2)

y6k+1
=
z6k+2

y6k+1
=

1/γ

λ/γ
=

1

λ

y6k+3 =
f (x6k+2)

z6k+1
=
x6k+2

z6k+1
=

1/α

µ/α
=

1

µ
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z6k+3 =
f (y6k+2)

x6k+1
=
y6k+2

x6k+1
=

1/β

ω/β
=

1

ω

x6k+4 =
f (z6k+3)

y6k+3
=
z6k+3

y6k+2
=

1/ω

1/β
=
β

ω

y6k+4 =
f (x6k+3)

z6k+3
=
x6k+3

z6k+2
=

1/λ

1/γ
=
γ

λ

z6k+4 =
f (y6k+3)

x6k+3
=
y6k+3

x6k+2
=

1/µ

1/α
=
α

µ

x6k+5 =
f (z6k+4)

y6k+3
=
z6k+4

y6k+3
=
α/µ

1/µ
= α

y6k+5 =
f (x6k+4)

z6k+3
=
x6k+4

z6k+3
=
β/ω

1/ω
= β

z6k+5 =
f (y6k+4)

x6k+3
=
y6k+4

x6k+3
=
γ/λ

1/λ
= γ

x6k+6 =
f (z6k+5)

y6k+4
=
z6k+5

y6k+4
=

γ

γ/λ
= λ

y6k+6 =
f (x6k+5)

z6k+4
=
x6k+5

z6k+4
=

α

α/µ
= µ

z6k+6 =
f (y6k+5)

x6k+4
=
y6k+5

x6k+4
=

β

β/ω
= ω.

Therefore the result is true for every k ∈ N0. This concludes the proof. �

To see the periodic behavior of {xn, yn, zn}, observe the following three diagrams
with x1 = 1, x2 = 2, y1 = 3, y2 = 4, z1 = 5, and z2 = 6:
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Theorem 3.4. Let (4) hold with A,B < 0 and suppose that x−1, y−1, z−1, x0, y0,
and z0 are positive real numbers. Also, let {xn, yn, zn} be a solution of the system
of equations (1) with x−1 = α, y−1 = β, z−1 = γ, x0 = λ, y0 = µ, and z0 = ω.
Then all solutions of (1) are the following:

x12n+1 =
A

β

(
A

B

)3n

, y12n+1 =
A

γ

(
A

B

)3n

, z12n+1 =
A

α

(
A

B

)3n

x12n+2 =
B

µ

(
B

A

)3n

, y12n+2 =
B

ω

(
B

A

)3n

, z12n+2 =
B

λ

(
B

A

)3n

x12n+3 = γ

(
B

A

)3n+1

, y12n+3 = α

(
B

A

)3n+1

, z12n+3 = β

(
B

A

)3n+1

x12n+4 = ω

(
A

B

)3n+1

, y12n+4 = λ

(
A

B

)3n+1

, z12n+4 = µ

(
A

B

)3n+1

x12n+5 =
A

α

(
A

B

)3n+1

, y12n+5 =
A

β

(
A

B

)3n+1

, z12n+5 =
A

γ

(
A

B

)3n+1

x12n+6 =
B

λ

(
B

A

)3n+1

, y12n+6 =
B

µ

(
B

A

)3n+1

, z12n+6 =
B

ω

(
B

A

)3n+1

x12n+7 = β

(
B

A

)3n+2

, y12n+7 = γ

(
B

A

)3n+2

, z12n+7 = α

(
B

A

)3n+2

x12n+8 = µ

(
A

B

)3n+2

, y12n+8 = ω

(
A

B

)3n+2

z12n+8 = λ

(
A

B

)3n+2

x12n+9 =
A

γ

(
A

B

)3n+2

, y12n+9 =
A

α

(
A

B

)3n+2

, z12n+9 =
A

β

(
A

B

)3n+2

x12n+10 =
B

ω

(
B

A

)3n+2

, y12n+10 =
B

λ

(
B

A

)3n+2

, z12n+10 =
B

µ

(
B

A

)3n+2

x12n+11 = α

(
B

A

)3n+3

, y12n+11 = β

(
B

A

)3n+3

, z12n+11 = γ

(
B

A

)3n+3

x12n+12 = λ

(
A

B

)3n+3

, y12n+12 = µ

(
A

B

)3n+3

, z12n+12 = ω

(
A

B

)3n+3

.

Proof. The result follows by the principle of mathematical induction. �

Corollary 3.1. If A 6= B and A,B < 0, then the solutions of (1) are oscillatory
and nonperiodic.

Theorem 3.5. Suppose (5) hold and let {xn, yn, zn} be a solution of the system
of equations (1). Also, assume that x−1, y−1, z−1, x0, y0, and z0 are positive real
numbers with A > 0 and B < 0. Then all solutions of (1) are periodic with period
twelve.
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Proof. Let (., ., .) be the pair of solutions of (1), then the following set{
(α, β.γ) , (λ, µ, ω)

(
Bω
β , Bλγ ,

Bµ
α

)
,
(
AB
α , ABβ , ABγ

)
,
(
A2

λ ,
A2

µ ,
A2

ω

)
,
(
βA
ω ,

γA
α ,

αA
µ

)
,(

αB
A , βBA , γBA

)
,
(
λB
A , µBA , ωBA

)
,
(
ωA
β ,

λA
γ ,

µA
α

)
,
(
A2

α ,
A2

β ,
A2

γ

)
,
(
AB
λ , ABµ , ABω

)
,
(
βB
ω , γBλ ,

αB
µ

)
,

(α, β, γ) , (λ, µ, ω) , . . .
}

is periodic with period twelve. This concludes the proof. �

To see the periodic and oscillatory behavior of {xn, yn}, observe the following
three diagrams with A = 1, B = −1, x1 = 1, x2 = 2, y1 = 3, y2 = 4, z1 = 5, and
z2 = 6:
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