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HADAMARD TYPE INEQUALITIES FOR (s, r)-PREINVEX

FUNCTIONS IN THE FIRST SENSE

B. MEFTAH, K. BOUKERRIOUA AND T. CHIHEB

Abstract. In this paper we study a new concept of (s, r)- preinvex functions

in the first sens. Some new Hadamard-type integral inequalities are introduced.
Which are compared with some existing inequalities in the literature.

1. Introduction

It is well-known that if the function f : [a, b] → R is convex then

f

(
a+ b

2

)
≤ 1

b− a

b∫
a

f(x)dx ≤ f (a) + f (b)

2
. (1)

If the function f is concave, then (1) is reversed (see [26]).
The inequality (1) is called Hermite-Hadamard integral inequality in the litera-

ture. The above inequality has attracted many researchers, various generalizations,
refinements, extensions and variants have appeared in the literature we can mention
the works [1, 4, 5, 8, 9, 12, 13, 16, 18, 21-25, 28-33, 36] and the references cited therein.

In recent years, lot of efforts have been made by many mathematicians to gen-
eralize the classical convexity. Hanson [10], introduced a new class of generalized
convex functions, called invex functions. In [6], the authors gave the concept of
preinvex function which is special case of invexity. Pini [27], Noor [19, 20], Yang
and Li [35] and Weir [34], have studied the basic properties of the preinvex functions
and their role in optimization, variational inequalities and equilibrium problems.

In [18] Ngoc et al. proved the following theorem for r-convex functions
Theorem 1.[18, Theorem 2.1] Let f : [a, b] → (0,∞) be r-convex function on

[a, b] with a < b, then the following inequality holds for 0 < r ≤ 1:

1

b− a

b∫
a

f(x)dx ≤
(

r
r+1

)
{fr (a) + fr (b)}

1
r .

In [23] Park gave the following theorems
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Theorem 2.[23, Theorem 2.2] Let f : [a, b] → (0,∞) be an (s, r)-convex function
in the first sense on [a, b] with a < b, then for r, s ∈ (0, 1] the following inequality
holds:

1

b− a

b∫
a

f(x)dx ≤
{(

r
s+r

) 1
r

fr (a) +
Γ(1+ 1

r )Γ(1+
1
s )

Γ(1+ 1
r+

1
s )

fr (b)

} 1
r

.

Theorem 3.[23, Theorem 2.3] Let f, g : [a, b] → (0,∞) be, respectively (s1, r1)-
convex and (s2, r2)-convex functions in the first sense on [a, b] with a < b, then for
0 < r1, r2 ≤ 2 the following inequality holds:

1

b− a

b∫
a

f(x)g(x)dx ≤ 1

2

{(
r1

r1+2s1

) r1
2

fr1 (a) +

(
Γ
(
1+ 2

r1

)
Γ
(
1+ 1

s1

)
Γ
(
1+ 2

r1
+ 1

s1

) ) r1
2

fr1 (b)

} 2
r1

+

{(
r2

r2+2s2

) r2
2

gr2 (a) +

(
Γ
(
1+ 2

r2

)
Γ
(
1+ 1

s2

)
Γ
(
1+ 2

r2
+ 1

s2

) ) r2
2

gr2 (b)

} 2
r2

 .

In [36] Zabandan et al. proved the following theorems
Theorem 4.[36, Theorem 2.1] Let f : [a, b] → (0,∞) be r-convex and r ≥ 1.

Then the following inequality holds:

1

b− a

b∫
a

f(x)dx ≤
{

fr(a)+fr(b)
2

} 1
r

.

Theorem 5.[36, Theorem 2.8] Let f, g : [a, b] → (0,∞) be r-convex and s-convex
functions respectively on [a, b] and r, s > 0. Then for the following inequality holds:

1

b− a

b∫
a

f(x)g(x)dx ≤ 1

2

(
r

r+2

)
fr+2(b)−fr+2(a)

fr(b)−fr(a) +
1

2

(
s

s+2

)
gs+2(b)−gs+2(a)

gs(b)−gs(a) ,

with f (b) ̸= f (a) and g (b) ̸= g (a).
In [30] W. Ul-Haq and J. Iqbal proved the following Hadamard’s inequalities for

r-preinvex function
Theorem 6.[30, Theorem 4] Let f : K = [a, a+ η(b, a)] → (0,∞) be an r-

preinvex function on the interval of real numbers K◦ (interior of K) and a, b ∈ K◦

with a < a+ η(b, a), then the following inequality holds:

1

η(b, a)

a+η(b,a)∫
a

f(x)dx ≤
[
fr(a)+fr(b)

2

] 1
r

, r ≥ 1.

Theorem 7.[30, Theorem 6] Let f : K = [a, a+ η(b, a)] → (0,∞) be an r-
preinvex function with (r ≥ 0) on the interval of real numbers K◦ (interior of K)
and a, b ∈ K◦ with a < a+ η(b, a), then the following inequality holds:

1

η(b, a)

a+η(b,a)∫
a

f(x)dx ≤

{
r

r+1

[
fr+1(a)−fr+1(b)

fr(a)−fr(b)

]
, r ̸= 0

f(a)−f(b)
ln f(a)−ln f(b) , r = 0,

with f (b) ̸= f (a).
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Theorem 8.[30, Theorem 11] Let f, g : K = [a, a+ η(b, a)] → (0,∞) be an
r-preinvex and s-preinvex functions respectively with r, s > 0 on the interval of real
numbers K◦ (interior of K) and a, b ∈ K◦ with a < a+ η(b, a), then the following
inequality holds:

1

η(b, a)

a+η(b,a)∫
a

f(x)g(x)dx ≤ 1

2

r

r + 2

[
fr+2(a)−fr+2(b)

fr(a)−fr(b)

]
+

1

2

s

s+ 2

[
gs+2(a)−gs+2(b)

gs(a)−gs(b)

]
,

with f (b) ̸= f (a) and g (b) ̸= g (a).
In [21, 22] Noor proved the following Hadamard’s inequality for log-preinvex

function and product of two log-preinvex functions
Theorem 9.[22, Theorem 2.8] Let f be a log-preinvex function on the interval

[a, a+ η(b, a)], then

1

η(b, a)

a+η(b,a)∫
a

f(x)dx ≤ f(a)−f(b)
ln f(a)−ln f(b) ,

with f (b) ̸= f (a).
Theorem 10.[21, Theorem 3.1] Let f, g : K = [a, a + η(b, a)] → (0,∞) be

preinvex functions on the interval of real numbers K◦ ( the interior of K) and
a, b ∈ K◦ with a < a+ η(b, a), then the following inequality holds.

1

η(b, a)

a+η(b,a)∫
a

f(x)g(x)dx ≤ 1

4

(
[f2(b)−f2(a)]
ln f(b)−ln f(a) +

[g2(b)−g2(a)]
ln g(b)−ln g(a)

)
,

with f (b) ̸= f (a) and g (b) ̸= g (a).
Motivated by the above results, in this paper we introduce a new class of preinvex

functions which is called (s, r)-preinvex functions in the first sense, then we establish
some new Hadamard type inequalities where the function f be in this novel class
of functions.

2. Preliminaries

In this section we recall some concepts of convexity which are well known in the
literature. Throughout this section I is an interval of R.

Definition 1.[26] A function f : I → R is said to be convex, if

f (tx+ (1− t) y) ≤ tf (x) + (1− t) f(y)

holds for all x, y ∈ I and all t ∈ [0, 1].
Definition 2.[26] A positive function f : I → R is said to logarithmically convex,

if

f(tx+ (1− t)y) ≤ [f(x)]
t
[f(y)]

(1−t)

holds for all x, y ∈ I and all t ∈ [0, 1].
Definition 3.[24] A nonnegative function f : I ⊂ [0,∞) → R is said to be

s-convex in the first sense for some fixed s ∈ (0, 1], if

f(tx+ (1− t)y) ≤ tsf(x) + (1− ts)f(y)

holds for all x, y ∈ I and t ∈ [0, 1].
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Definition 4.[1] A positive function f : I ⊂ [0,∞) → R is said to be s-
logarithmically convex in the first sense on I, for some s ∈ (0, 1], if

f(tx+ (1− t)y) ≤ [f(x)]
ts
[f(y)]

(1−ts)

holds for all x, y ∈ I and t ∈ [0, 1].
Definition 5.[25] A positive function f : I → R is said to be r-convex on I,

where r ≥ 0, if

f(tx+ (1− t)y) ≤

{
[tfr (x) + (1− t) fr(y)]

1
r , r ̸= 0

[f(x)]
1−t

[f(y)]
t
, r = 0

holds for all x, y ∈ I and t ∈ [0, 1].
Let K be a subset in Rn and let f : K → R and η : K ×K → Rn be continuous

functions.
Definition 6.[34] A set K is said to be invex at x with respect to η, if

x+ tη (y, x) ∈ K

holds for all x, y ∈ K and t ∈ [0, 1].
K is said to be an invex set with respect to η if K is invex at each x ∈ K.
Definition 7.[34] A function f on the invex set K is said to be preinvex with

respect to η, if

f (x+ tη (y, x)) ≤ (1− t) f (x) + tf(y)

holds for all x, y ∈ K and t ∈ [0, 1].
Definition 8.[19] A positive function f on the invex set K is said to be loga-

rithmically preinvex with respect to η, if

f (x+ tη (y, x)) ≤ [f (x)]
(1−t)

[f(y)]
t

holds for all x, y ∈ K and t ∈ [0, 1].
Definition 9.[32] A nonnegative function f on the invex set K is said to be

s-preinvex in the first sense with respect to η, if

f (x+ tη (y, x)) ≤ (1− ts)f (x) + tsf(y)

for some fixed s ∈ (0, 1] and all x, y ∈ K and t ∈ [0, 1] .
Definition 10.[33] The function f on the invex set K is said to be s-log-preinvex

in the first sense with respect to η, if

f (x+ tη (y, x)) ≤ [f (x)]
(1−ts)

[f(y)]
ts

for some fixed s ∈ (0, 1] and all x, y ∈ K and t ∈ [0, 1] .
Definition 11.[2] A positive function f on the invex set K is said to be r-

preinvex with respect to η, where r ≥ 0, if

f (x+ tη (y, x)) ≤

{
[(1− t) fr (x) + tfr(y)]

1
r , r ̸= 0

[f(x)]
1−t

[f(y)]
t
, r = 0

holds for all x, y ∈ K and t ∈ [0, 1].
Lemma 1.[15] For a ≥ 0 and b ≥ 0, the following algebraic inequalities are true

(a+ b)
λ ≤ 2λ−1

(
aλ + bλ

)
, for λ ≥ 1

and

(a+ b)
λ ≤ aλ + bλ, for 0 ≤ λ ≤ 1.
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Lemma 2.[11] Assume that a ≥ 0, p ≥ q ≥ 0 and p ̸= 0, then for any ε > 0 we
have

a
q
p ≤ q

pε
q−p
p a+ p−q

p ε
q
p .

We also recall that the Euler Beta function is defined as follows

β (x, y) =

1∫
0

tx−1 (1− t)
y−1

dt =
Γ (x) Γ (y)

Γ (x+ y)
.

3. Main results

In the following definition, we introduce a new concept of (s, r)-preinvex function
in the first sense.

Definition 12. A positive function f on the invex set K, is said to be (s, r)-
preinvex function in the first sense, if

f (x+ tη (y, x)) ≤

{
[(1− ts) fr (x) + tsfr(y)]

1
r , r ̸= 0

[f(x)]
(1−ts)

[f(y)]
ts
, r = 0

holds for some fixed s ∈ (0, 1], r ∈ R and all x, y ∈ K, and t ∈ [0, 1].
Now we set off to establish some Hadamard type inequalities for (s, r)-preinvex
functions in the first sense.

Theorem 11. Let f : [a, a+ η (b, a)] → R+ be (s, r)-preinvex function in the
first sense with respect to η with η (b, a) > 0, If f ∈ L1 ([a, a+ η (b, a)]), then the
following inequality

1

η (b, a)

a+η(b,a)∫
a

f(x)dx ≤
[(

1− 1

s+ 1

)
fr (a) +

1

s+ 1
fr (b)

] 1
r

(2)

holds for some fixed s ∈ (0, 1], and r ≥ 1.
Proof. For x = a+ tη (b, a), we have

1

η (b, a)

a+η(b,a)∫
a

f(x)dx =

1∫
0

f(a+ tη (b, a))dt. (3)

Let φ(x) = xr, obviously φ is convex function since r ≥ 1, then

φ(

1∫
0

f(a+ tη (b, a))dt) ≤
1∫
0

φ (f(a+ tη (b, a))) dt, (4)

we can restate (4) as 1∫
0

f(a+ tη (b, a))dt

r

≤
1∫
0

(f(a+ tη (b, a)))
r
dt. (5)
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Now using the (s, r)-preinvexity in the first sense of f , we deduce

1∫
0

(f(a+ tη (b, a)))
r
dt ≤

1∫
0

[(1− ts) fr (a) + tsfr(b)] dt

= fr (a)

1∫
0

(1− ts) dt+ fr(b)

1∫
0

tsdt

=

(
1− 1

s+ 1

)
fr (a) +

1

s+ 1
fr (b) . (6)

The substitution of (6) into (5), gives the desired result. The proof is completed.

Remark 1. For s = 1, Theorem 11 becomes Theorem 4 from [30]. Moreover if
we choose η (b, a) = b− a, we obtain Theorem 2.1 from [36].

Theorem 12. Let f : [a, a+ η (b, a)] → R+ be (s, r)-preinvex function in the
first sense with respect to η, with η (b, a) > 0. If f ∈ L1 ([a, a+ η (b, a)]), then the
following inequality

1

η (b, a)

a+η(b,a)∫
a

f(x)dx ≤
[
1

sr
fr (a)

(
β

(
1

s
,
1

r
+ 1

))r

+

(
r

s+ r

)r

fr(b)

] 1
r

(7)

holds for all a, b ∈ K and s, r ∈ (0, 1].

Proof. From the (s, r)-preinvexity in the first sense of f , we have

1

η (b, a)

a+η(b,a)∫
a

f(x)dx =

1∫
0

f(a+ tη (b, a))dt

≤
1∫
0

[(1− ts) fr (a) + tsfr(b)]
1
r dt. (8)

Since 0 < r ≤ 1, using Minkowski’s inequality, we get

1∫
0

[(1− t)
s
fr (a) + tsfr(b)]

1
r dt ≤

 1∫
0

(1− ts)
1
r f (a) dt

r

+

 1∫
0

t
s
r f(b)dt

r
1
r

=

fr (a)

 1∫
0

(1− ts)
1
r dt

r

+ fr(b)

 1∫
0

t
s
r dt

r
1
r

=

fr (a)

1

s

1∫
0

(1− u)
1
r u

1
s−1du

r

+

(
r

s+ r

)r

fr(b)


1
r

=

[
1

sr
fr (a)

(
β

(
1

s
,
1

r
+ 1

))r

+

(
r

s+ r

)r

fr(b)

] 1
r

, (9)
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which is the desired result. The proof is achieved.
Remark. If we choose η (b, a) = b − a in Theorem 12, we obtain Theorem 2.2
from [23]. Moreover if we take s = 1 then we obtain Theorem 2.1 from [18].
Theorem 13. Let f : [a, a+ η (b, a)] → R+ be (s, r)-preinvex function in the
first sense with respect to η with η (b, a) > 0. If f ∈ L1 ([a, a+ η (b, a)]), then the
following inequality

1

η (b, a)

a+η(b,a)∫
a

f(x)dx ≤

{
2

1−r
r

s f (a)β
(
1
s ,

1
r + 1

)
+ 2

1−r
r

r
s+rf(b) if 0 < r ≤ 1

1
sf (a)β

(
1
s ,

1
r + 1

)
+ r

s+rf(b) if r ≥ 1

(10)

holds for some fixed s ∈ (0, 1], and r > 0.
Proof. Since f is (s, r)-preinvex function in the first sense, we have

1

η (b, a)

a+η(b,a)∫
a

f(x)dx =

1∫
0

f(a+ tη (b, a))dt

≤
1∫
0

[(1− ts) fr (a) + tsfr(b)]
1
r dt. (11)

From Lemma 1, we have

[(1− ts) fr (a) + tsfr(b)]
1
r ≤

{
2

1−r
r

(
(1− ts)

1
r f (a) + t

s
r f(b)

)
if 0 < r ≤ 1

(1− ts)
1
r f (a) + t

s
r f(b) if r ≥ 1

,

(12)

integrating (12) with respect to t on [0, 1], we get

1∫
0

[(1− ts) fr (a) + tsfr(b)]
1
r dt ≤


2

1−r
r f (a)

1∫
0

(1− ts)
1
r dt+ 2

1−r
r f(b)

1∫
0

t
s
r dt if 0 < r ≤ 1

f (a)
1∫
0

(1− ts)
1
r dt+ f(b)

1∫
0

t
s
r dt if r ≥ 1

=

{
2

1−r
r

s f (a)β
(
1
s ,

1
r + 1

)
+ 2

1−r
r

r
s+rf(b) if 0 < r ≤ 1

1
sf (a)β

(
1
s ,

1
r + 1

)
+ r

s+rf(b) if r ≥ 1,

(13)

which is the desired result. The proof is completed.
Theorem 14. Let f : [a, a+ η (b, a)] → (0,∞) be (s, r)-preinvex function in the
first sense with respect to η with η (b, a) > 0. If f ∈ L1 ([a, a+ η (b, a)]), then the
following inequality

1

η (b, a)

a+η(b,a)∫
a

f(x)dx ≤


r

(r+1)θ

[
(α+ θ)

1+r
r − α

1+r
r

]
if r > 0

f(a) if r = 0 and f (a) = f (b)

f (a)
[
f(b)
f(a)

](1−s)εs
[
[ f(b)
f(a) ]

sεs−1

−1

sεs−1 ln[ f(b)
f(a) ]

]
if r = 0 and f (a) ̸= f (b)

(14)



EJMAA-2017/5(2) HADAMARD TYPE INEQUALITIES 177

holds for some fixed s ∈ (0, 1] and r ≥ 0, where

α = fr (a) + (1− s) εs [fr(b)− fr (a)]

θ = sεs−1 [fr(b)− fr (a)] , (15)

and ε > 0.
Proof. Case 1 : r > 0.

Since f is (s, r)-preinvex function in the first sense, we get

1

η (b, a)

a+η(b,a)∫
a

f(x)dx =

1∫
0

f(a+ tη (b, a))dt

≤
1∫
0

[(1− ts) fr (a) + tsfr(b)]
1
r dt

=

1∫
0

[ fr (a) + ts [fr(b)− fr (a)]]
1
r dt. (16)

From Lemma 2, we have

ts ≤ sεs−1t+ (1− s) εs, ε > 0. (17)

Substituting (17) into (16), we obtain

1

η (b, a)

a+η(b,a)∫
a

f(x)dx ≤
1∫
0

(α+ θt)
1
r dt, (18)

where α and θ are are given by (15).
Let z = α+ θt, then (18) becomes

1

η (b, a)

a+η(b,a)∫
a

f(x)dx ≤ 1

θ

α+θ∫
α

z
1
r dz

=
r

(r + 1) θ

[
(α+ θ)

1+r
r − α

1+r
r

]
. (19)

Case 2 :
If r = 0, then f is s-log-preinvex in the first sense, we have

1

η (b, a)

a+η(b,a)∫
a

f(x)dx =

1∫
0

f(a+ tη (b, a))dt

≤
1∫
0

[f (a)]
(1−ts)

[f(b)]
ts
dt

= f (a)

1∫
0

[
f(b)

f (a)

]ts
dt. (20)
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If f(a) = f(b), (20) gives

1

η (b, a)

a+η(b,a)∫
a

f(x)dx ≤ f (a) , (21)

and if f(a) ̸= f(b), using (17), (20) becomes

1

η (b, a)

a+η(b,a)∫
a

f(x)dx ≤ f (a)

[
f(b)

f (a)

](1−s)εs
1∫
0

[
f(b)

f (a)

]sεs−1t

dt

= f (a)

[
f(b)

f (a)

](1−s)εs

[
f(b)
f(a)

]sεs−1

− 1

sεs−1 ln
[
f(b)
f(a)

]
 . (22)

From (19), (21) and (22), we get the desired result. The proof is completed.
Remark. If we take s = 1, in Theorem 14, we obtain Theorem 6 from [30].
Moreover if we choose r = 0 we obtain Theorem 2.8 from [21].
Theorem 15. Let f, g : [a, a+ η (b, a)] → R+ be (s1, r1) and (s2, r2)-preinvex
functions in the first sense respectively with respect to η with η (b, a) > 0, and
let (s1, r1), (s2, r2) ∈ (0, 1] × (0, 2]. If fg ∈ L1 ([a, a+ η (b, a)]), then the following
inequality is valid

1

η (b, a)

a+η(b,a)∫
a

f(x)g(x)dx

≤ 1

2

[
fr1 (a)

s1

(
β
(

1
s1
, 2
r1

+ 1
)) r1

2

+
(

r1
2s1+r1

) r1
2

fr1 (b)

] 2
r1

+
1

2

[
gr2 (a)

s2

(
β
(

1
s2
, 2
r2

+ 1
)) r2

2

+
(

r2
2s2+r2

) r2
2

gr2 (b)

] 2
r2

. (23)

Proof. Since f and g are (s1, r1) and (s2, r2)-preinvex functions in the first sense
respectively, we have

1

η (b, a)

a+η(b,a)∫
a

f(x)g(x)dx =

1∫
0

f(a+ tη (b, a))g(a+ tη (b, a))dt

≤
1∫
0

[
[(1− ts1) fr1 (a) + ts1fr1(b)]

1
r1

× [(1− ts2) gr2 (a) + ts2gr2(b)]
1
r2

]
dt. (24)
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Applying the AG inequality, we get

1∫
0

[(1− ts1) fr1 (a) + ts1fr1(b)]
1
r1 [(1− ts2) gr2 (a) + ts2gr2(b)]

1
r2 dt

≤ 1

2

1∫
0

[(1− ts1) fr1 (a) + ts1fr1(b)]
2
r1 dt

+
1

2

1∫
0

[(1− ts2) gr2 (a) + ts2gr2(b)]
2
r2 dt. (25)

Now, using Minkowski’s inequality, we obtain

1

2

1∫
0

[(1− ts1) fr1 (a) + ts1fr1(b)]
2
r1 dt+

1

2

1∫
0

[(1− ts2) gr2 (a) + ts2gr2(b)]
2
r2 dt

≤ 1

2


 1∫

0

(1− ts1)
2
r1 f2 (a) dt


r1
2

+

 1∫
0

t
2s1
r1 f2 (b) dt


r1
2


2
r1

+
1

2


 1∫

0

(1− ts2)
2
r2 g2 (a) dt


r2
2

+

 1∫
0

t
2s2
r2 g2 (b) dt


r2
2


2
r2

=
1

2

fr1 (a)

 1∫
0

(1− ts1)
2
r1

dt


r1
2

+ fr1 (b)

 1∫
0

t
2s1
r1 dt


r1
2


2
r1

+
1

2

gr2 (a)
 1∫

0

(1− ts2)
2
r2 dt


r2
2

+ gr2 (b)

 1∫
0

t
2s2
r2 dt


r2
2


2
r2

=
1

2

fr1 (a)

s1

 1∫
0

(1− u)
2
r1 u

1−s1
s1 dt


r1
2

+ fr1 (b)

 1∫
0

t
2s1
r1 dt


r1
2


2
r1

+
1

2

gr2 (a)

s2

 1∫
0

(1− u)
2
r2 u

1−s2
s2 dt


r2
2

+ gr2 (b)

 1∫
0

t
2s2
r2 dt


r2
2


2
r2

=
1

2

[
fr1 (a)

s1

(
β

(
1

s1
,
2

r1
+ 1

)) r1
2

+

(
r1

2s1 + r1

) r1
2

fr1 (b)

] 2
r1

+
1

2

[
gr2 (a)

s2

(
β

(
1

s2
,
2

r2
+ 1

)) r2
2

+

(
r2

2s2 + r2

) r2
2

gr2 (b)

] 2
r2

.
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The proof is completed.
Remark. In Theorem 15, if we choose η (b, a) = b− a, and s1 = s2 = 1, we obtain
Theorem 2.3 from [23].
Theorem 16. Let f, g : [a, a+ η (b, a)] → R+ be (s1, r1) and (s2, r2)-preinvex
functions in the first sense respectively with respect to η with η (b, a) > 0, and
let (s1, r1), (s2, r2) ∈ (0, 1] × R+. If fg ∈ L1 ([a, a+ η (b, a)]), then the following
inequality

1

η (b, a)

a+η(b,a)∫
a

f(x)g(x)dx ≤
[

1

1 + s1
[f (b)]

r1

+

(
s1

1 + s1

)
[f (a)]

r1

] 1
r1

×
[

1

1 + s2
[g (b)]

r2

+
s2

1 + s2
[g (a)]

r2

] 1
r2

(26)

holds for r1 > 1, and 1
r1

+ 1
r2

= 1.

Proof. Since f and g are (s1, r1) and (s2, r2)-preinvex functions in the first sense
respectively, we have

1

η (b, a)

a+η(b,a)∫
a

f(x)g(x)dx =

1∫
0

f(a+ tη (b, a))g(a+ tη (b, a))dt

≤
1∫
0

[[
(1− ts1) [f (a)]

r1

+ ts1 [f (b)]
r1
] 1

r1

×
[
(1− ts2) [g (a)]

r2

+ ts2 [g (b)]
r2
] 1

r2

]
dt,

(27)

using Hölder’s inequality, we obtain

1∫
0

[
(1− ts1) [f (a)]

r1

+ ts1 [f (b)]
r1
] 1

r1
[
(1− ts2) [g (a)]

r2

+ ts2 [g (b)]
r2
] 1

r2
dt

≤

 1∫
0

[
(1− ts1) [f (a)]

r1

+ ts1 [f (b)]
r1
]
dt


1
r1

×

 1∫
0

[
(1− ts2) [g (a)]

r2

+ ts2 [g (b)]
r2
]
dt


1
r2

=

 1∫
0

[
[f (a)]

r1

+
(
[f (b)]

r1 − [f (a)]
r1
)
ts1

]
dt


1
r1
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×

 1∫
0

[
[g (a)]

r2

+
(
[g (b)]

r2 − [g (a)]
r2
)
ts2

]
dt


1
r2

=

[
1

1 + s1
[f (b)]

r1

+

(
s1

1 + s1

)
[f (a)]

r1

] 1
r1

[
1

1 + s2
[g (b)]

r2

+
s2

1 + s2
[g (a)]

r2

] 1
r2

.

The proof is achieved.
Remark. In Theorem 16, if we choose η (b, a) = b− a, and s1 = s2 = 1, we obtain
Theorem 2.6 from [18].
Theorem 17. Let f, g : [a, a+ η (b, a)] → R+ be (s1, r1) and (s2, r2)-preinvex
functions in the first sense respectively with respect to η with η (b, a) > 0, and let
(s1, r1) ∈ (0, 1] × (0, 2], and (s2, r2) ∈ (0, 1] × [2,∞). If fg ∈ L1 ([a, a+ η (b, a)]),
then the following inequality is valid

1

η (b, a)

a+η(b,a)∫
a

f(x)g(x)dx

≤ 2
2
r1

−1
[
f2 (a)

s1
β

(
1

s1
,
r1
2

+ 1

)
+

r1
2s1 + r1

f2(b)

]
+
1

2

[
g2 (a)

s2
β

(
1

s2
,
r2
2

+ 1

)
+

r2
2s2 + r2

g2(b)

]
. (28)

Proof. Since f and g are (s1, r1) and (s2, r2)-preinvex functions in the first sense
respectively, we have

1

η (b, a)

a+η(b,a)∫
a

f(x)g(x)dx =

1∫
0

f(a+ tη (b, a))g(a+ tη (b, a))dt

≤
1∫
0

[
[(1− ts1) fr1 (a) + ts1fr1(b)]

1
r1

× [(1− ts2) gr2 (a) + ts2gr2(b)]
1
r2

]
dt. (29)

Applying the AG inequality, we get

1∫
0

[(1− ts1) fr1 (a) + ts1fr1(b)]
1
r1 [(1− ts2) gr2 (a) + ts2gr2(b)]

1
r2 dt

≤ 1

2

1∫
0

[(1− ts1) fr1 (a) + ts1fr1(b)]
2
r1 dt

+
1

2

1∫
0

[(1− ts2) gr2 (a) + ts2gr2(b)]
2
r1 dt. (30)
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Now, using Lemma 1, we get

1

2

1∫
0

[(1− ts1) fr1 (a) + ts1fr1(b)]
2
r1 dt+

1

2

1∫
0

[(1− ts2) gr2 (a) + ts2gr2(b)]
2
r1 dt

≤ 2
2
r1

−1

f2 (a)

1∫
0

(1− ts1)
2
r1 dt+ f2(b)

1∫
0

t
2s1
r1 dt


+
1

2

1∫
0

g2 (a) 1∫
0

(1− ts2)
2
r1 dt+ g2(b)

1∫
0

t
2s2
r2 dt


= 2

2
r1

−1
[
f2 (a)

s1
β

(
1

s1
,
r1
2

+ 1

)
+

r1
2s1 + r1

f2(b)

]
+
1

2

[
g2 (a)

s2
β

(
1

s2
,
r2
2

+ 1

)
+

r2
2s2 + r2

g2(b)

]
. (31)

The proof is achieved.
Theorem 18. Let f, g : [a, a+ η (b, a)] → R+ be (s1, r1)-preinvex function in
the first sense and (s2, 0)- preinvex function respectively with respect to η with
η (b, a) > 0, and let (s1, r1) ∈ (0, 1] × [2,∞) and s2 ∈ (0, 1] and g(a) ̸= 0, and
g(b) ̸= 0. If fg ∈ L1 ([a, a+ η (b, a)]), then the following inequality is valid

1

η (b, a)

a+η(b,a)∫
a

f(x)g(x)dx ≤



[f(a)]2

2s1
β( 1

s1
, 2
r1

+ 1) + r1[f(b)]
2

4s1+2r1

+ [g(a)]2

2

(
g(b)
g(a)

)2(1−s2)ε
s2 ( g(b)

g(a) )
2s2εs2−1

−1

ln( g(b)
g(a) )

2s2εs2−1

if g(a) ̸= g(b),
[f(a)]2

2s1
β( 1

s1
, 2
r1

+ 1) + r1[f(b)]
2

4s1+2r1

+ [g(a)]2

2 if g(a) = g(b).

(32)

Proof. Since f and g are (s1, r1), (s2, 0)-preinvex functions in the first sense
respectively, we have

1

η (b, a)

a+η(b,a)∫
a

f(x)g(x)dx =

1∫
0

f(a+ tη (b, a))g(a+ tη (b, a))dt

≤
1∫
0

[(1− ts1) fr1 (a) + ts1fr1(b)]
1
r1 [g (a)]

(1−ts2 )
[g(b)]

ts2
dt,

(33)

applying the AG inequality, we get

1

η (b, a)

a+η(b,a)∫
a

f(x)g(x)dx ≤ 1

2

1∫
0

[(1− ts1) fr1 (a) + ts1fr1(b)]
2
r1 dt

+
[g (a)]

2

2

1∫
0

[(
g(b)

g (a)

)2
]ts2

dt. (34)
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In the case where g(b) ̸= g(a), using Lemma 2 and Lemma 1, (34) gives

1

2

1∫
0

[(1− ts1) fr1 (a) + ts1fr1(b)]
2
r1 dt+

[g (a)]
2

2

1∫
0

[(
g(b)
g(a)

)2
]ts2

dt

≤ [f(a)]2

2

1∫
0

(1− ts1)
2
r1 dt+ [f(b)]2

2

1∫
0

t
2s1
r1 dt+ [g(a)]2

2

1∫
0

[(
g(b)
g(a)

)2
]ts2

dt

= [f(a)]2

2s1
β( 1

s1
, 2
r1

+ 1) + [f(b)]2

2
r1

2s1+r1
+ [g(a)]2

2

1∫
0

[(
g(b)
g(a)

)2
]s2εs2−1t+(1−s2)ε

s2

dt

≤ [f(a)]2

2s1
β( 1

s1
, 2
r1

+ 1) + [f(b)]2

2
r1

2s1+r1

+ [g(a)]2

2

(
g(b)
g(a)

)2(1−s2)ε
s2

1∫
0

[(
g(b)
g(a)

)2s2ε
s2−1]t

dt

= [f(a)]2

2s1
β( 1

s1
, 2
r1

+ 1) + r1[f(b)]
2

4s1+2r1
+ [g(a)]2

2

(
g(b)
g(a)

)2(1−s2)ε
s2 ( g(b)

g(a) )
2s2εs2−1

−1

ln( g(b)
g(a) )

2s2εs2−1 .

(35)

In the case where g(b) = g(a), (34) becomes

1

η (b, a)

a+η(b,a)∫
a

f(x)g(x)dx ≤ 1

2

1∫
0

[(1− ts1) fr1 (a) + ts1fr1(b)]
2
r1 dt

+
[g (a)]

2

2

1∫
0

dt, (36)

using Lemma 1 for (36), we get

1

η (b, a)

a+η(b,a)∫
a

f(x)g(x)dx ≤ [f (a)]
2

2s1
β(

1

s1
,
2

r1
+ 1) +

r1 [f (b)]
2

4s1 + 2r1

+
[g (a)]

2

2
. (37)

The proof is achieved.
Remark. If we take s1 = s2 = 1, in Theorem 18, we obtain Theorem 11 from [30].
Theorem 19. Let f, g : [a, a+ η (b, a)] → (0,+∞) be (s1, 0) and (s2, 0)-preinvex

functions in the first sense respectively with respect to η with η (b, a) > 0, and let
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s1, s2 ∈ (0, 1]. If fg ∈ L1 ([a, a+ η (b, a)]), then the following inequality is valid

1

η (b, a)

a+η(b,a)∫
a

f(x)g(x)dx ≤



(
f(b)
f(a)

)(s1−1)εs1 (
g(b)
g(a)

)(s2−1)εs2

f (a) g (a)

× ( f(b)
f(a) )

s1εs1−1

( g(b)
g(a) )

s2εs2−1

−1

ln

[
( f(b)

f(a) )
s1εs1−1

( g(b)
g(a) )

s2εs2−1
]

if f(b) ̸= f(a) and g(b) ̸= g(a),(
g(b)
g(a)

)(s2−1)εs2

f (a) g (a)
( g(b)

g(a) )
s2εs2−1

−1

ln( g(b)
g(a) )

s2εs2−1

if f(b) = f(a) and g(b) ̸= g(a),(
f(b)
f(a)

)(s1−1)εs1

f (a) g (a)
( f(b)

f(a) )
s1εs1−1

−1

ln( f(b)
f(a) )

s1εs1−1

if f(b) ̸= f(a) and g(b) = g(a),
f (a) g (a) if f(b) = f(a) and g(b) = g(a),

(38)

where ε > 0.
Proof. Since f and g are (s1, 0) and (s2, 0)-preinvex functions in the first sense
respectively, we have

1

η (b, a)

a+η(b,a)∫
a

f(x)g(x)dx =

1∫
0

f(a+ tη (b, a))g(a+ tη (b, a))dt

≤
1∫
0

[f (a)]
(1−ts1 )

[f(b)]
ts1

[g (a)]
(1−ts2 )

[g(b)]
ts2

dt

= f (a) g (a)

1∫
0

[
f(b)
f(a)

]ts1 [
g(b)
g(a)

]ts2
dt. (39)

If f(b) ̸= f(a) and g(b) ̸= g(a), from Lemma 2, (39) gives

f (a) g (a)

1∫
0

[
f(b)
f(a)

]ts1 [
g(b)
g(a)

]ts2
dt

≤
(

f(b)
f(a)

)(s1−1)εs1 (
g(b)
g(a)

)(s2−1)εs2

f (a) g (a)

1∫
0

[(
f(b)
f(a)

)s1ε
s1−1 (

g(b)
g(a)

)s2ε
s2−1]t

dt

=
(

f(b)
f(a)

)(s1−1)εs1 (
g(b)
g(a)

)(s2−1)εs2

f (a) g (a)
( f(b)

f(a) )
s1εs1−1

( g(b)
g(a) )

s2εs2−1

−1

ln

[
( f(b)

f(a) )
s2εs2−1

( g(b)
g(a) )

s2εs2−1
] . (40)
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In the case where f(b) = f(a), and g(b) ̸= g(a), we obtain

1

η (b, a)

a+η(b,a)∫
a

f(x)g(x)dx ≤ f (a) g (a)

1∫
0

[
g(b)
g(a)

]ts2
dt

=
(

g(b)
g(a)

)(s2−1)εs2

f (a) g (a)
( g(b)

g(a) )
s2εs2−1

−1

ln( g(b)
g(a) )

s2εs2−1 .

(41)

In the case where f(b) ̸= f(a) and g(b) = g(a), we have

1

η (b, a)

a+η(b,a)∫
a

f(x)g(x)dx ≤ f (a) g (a)

1∫
0

[
f(b)
f(a)

]ts1
dt

=
(

f(b)
f(a)

)(s1−1)εs1

f (a) g (a)
( f(b)

f(a) )
s1εs1−1

−1

ln( f(b)
f(a) )

s1εs1−1 .

(42)

In the case where f(b) = f(a), and g(b) = g(a), we deduce

1

η (b, a)

a+η(b,a)∫
a

f(x)g(x)dx = f (a) g (a) . (43)

From (40)-(43), we get the desired result. The proof is completed.
Theorem 20. Let f, g : [a, a+ η (b, a)] → R+ be (s1, r1) and (s2, r2)- preinvex
functions in the first sense respectively with respect to η with η (b, a) > 0, and
let (s1, r1), (s2, r2) ∈ (0, 1] × (0,∞) and f(b) ̸= f(a), and g(b) ̸= g(a). If fg ∈
L1 ([a, a+ η (b, a)]), then the following inequality is valid

1

η (b, a)

a+η(b,a)∫
a

f(x)g(x)dx

≤ r1
2s1εs1−1[fr1 (b)−fr1 (a)](2+r1)

[[
s1ε

s1−1 [fr1(b)− fr1 (a)] + fr1 (a)

+(s1 − 1)εs1 [fr1(b)− fr1 (a)]]
2+r1
r1 − [fr1 (a) + (s1 − 1)εs1 [fr1(b)− fr1 (a)]]

2+r1
r1

]
+ r2

2s2εs2−1[gr2 (b)−gr2 (a)](2+r2)

[[
s2ε

s2−1 [gr2(b)− gr2 (a)] + gr2 (a)

+(s2 − 1)εs2 [gr2(b)− gr2 (a)]]
2+r2
r2 − [gr2 (a) + (s2 − 1)εs2 [gr2(b)− gr2 (a)]]

2+r2
r2

]
,

(44)

where ε > 0.
Proof. Since f and g are (s1, r1) and (s2, r2)-preinvex functions in the first sense
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respectively, we have

1

η (b, a)

a+η(b,a)∫
a

f(x)g(x)dx =

1∫
0

f(a+ tη (b, a))g(a+ tη (b, a))dt

≤
1∫
0

[
[(1− ts1) fr1 (a) + ts1fr1(b)]

1
r1

× [(1− ts2) gr2 (a) + ts2gr2(b)]
1
r2

]
dt. (45)

Applying the AG inequality, we get

1∫
0

[(1− ts1) fr1 (a) + ts1fr1(b)]
1
r1 [(1− ts2) gr2 (a) + ts2gr2(b)]

1
r2 dt

≤ 1

2

1∫
0

[(1− ts1) fr1 (a) + ts1fr1(b)]
2
r1 dt

+
1

2

1∫
0

[(1− ts2) gr2 (a) + ts2gr2(b)]
2
r1 dt

=
1

2

1∫
0

[[fr1(b)− fr1 (a)] ts1 + fr1 (a)]
2
r1 dt

+
1

2

1∫
0

[[gr2(b)− gr2 (a)] ts2 + gr2 (a)]
2
r1 dt. (46)

From Lemma 2, we can restate (46) as follows

1

2

1∫
0

[[fr1(b)− fr1 (a)] ts1 + fr1 (a)]
2
r1 dt+

1

2

1∫
0

[[gr2(b)− gr2 (a)] ts2 + gr2 (a)]
2
r1 dt

≤ 1

2

1∫
0

[
s1ε

s1−1 [fr1(b)− fr1 (a)] t+ fr1 (a) + (s1 − 1)εs1 [fr1(b)− fr1 (a)]
] 2

r1 dt

+
1

2

1∫
0

[
s2ε

s2−1 [gr2(b)− gr2 (a)] t+ gr2 (a) + (s2 − 1)εs2 [gr2(b)− gr2 (a)]
] 2

r2 dt

= r1
2s1εs1−1[fr1 (b)−fr1 (a)](2+r1)

[[
s1ε

s1−1 [fr1(b)− fr1 (a)] + fr1 (a)

+ (s1 − 1)εs1 [fr1(b)− fr1 (a)]]
2+r1
r1 − [fr1 (a) + (s1 − 1)εs1 [fr1(b)− fr1 (a)]]

2+r1
r1

]
+ r2

2s2εs2−1[gr2 (b)−gr2 (a)](2+r2)

[[
s2ε

s2−1 [gr2(b)− gr2 (a)] + gr2 (a)

+ (s2 − 1)εs2 [gr2(b)− gr2 (a)]]
2+r2
r2 − [gr2 (a) + (s2 − 1)εs2 [gr2(b)− gr2 (a)]]

2+r2
r2

]
,

(47)
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which is the desired result.
Remark. If we take s1 = s2 = 1, in Theorem 20 we obtain Theorem 11 from [30].
Moreover if η (b, a) = b− a then we obtain Theorem 2.8 from [36].
Theorem 21. Let f, g : [a, a+ η (b, a)] → R+ be (s1, 0) and (s2, 0)-preinvex func-
tions in the first sense respectively with respect to η with η (b, a) > 0, and let
s1, s2 ∈ (0, 1]. If fg ∈ L1 ([a, a+ η (b, a)]), then the following inequality is valid

1
η(b,a)

a+η(b,a)∫
a

f(x)g(x)dx ≤ [f(a)]2

2

(
f(b)
f(a)

)2(1−s1)ε
s1 ( f(b)

f(a) )
2s1ε1−s1

−1

ln( f(b)
f(a) )

2s1ε1−s1

+ [g(a)]2

2

(
g(b)
g(a)

)2(1−s2)ε
s2 ( g(b)

g(a) )
2s2ε1−s2

−1

ln( g(b)
g(a) )

2s2ε1−s2
, (48)

where ε > 0.
Proof. Since f and g are (s1, 0) and (s2, 0)-preinvex functions in the first sense
respectively, we have

1

η (b, a)

a+η(b,a)∫
a

f(x)g(x)dx =

1∫
0

f(a+ tη (b, a))g(a+ tη (b, a))dt

≤
1∫
0

[f (a)]
(1−ts1 )

[f(b)]
ts1

[g (a)]
(1−ts2 )

[g(b)]
ts2

dt

= f (a) g (a)

1∫
0

[
f(b)
f(a)

]ts1 [
g(b)
g(a)

]ts2
dt. (49)

Applying the AG inequality, we obtain

1

η (b, a)

a+η(b,a)∫
a

f(x)g(x)dx ≤ 1

2

1∫
0

[
[f (a)]

(1−ts1 )
[f(b)]

ts1
]2

dt

+
1

2

1∫
0

[
[g (a)]

(1−ts2 )
[g(b)]

ts2
]2

dt. (50)
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Using Lemma 2 for (50) yields

1

η (b, a)

a+η(b,a)∫
a

f(x)g(x)dx

≤ [f(a)]2

2

1∫
0

[(
f(b)
f(a)

)2
]s1ε1−s1 t+(1−s1)ε

s1

dt

+ [g(a)]2

2

1∫
0

[(
g(b)
g(a)

)2
]s2ε1−s2 t+(1−s2)ε

s2

dt

= [f(a)]2

2

(
f(b)
f(a)

)2(1−s1)ε
s1

1∫
0

[(
f(b)
f(a)

)2s1ε
1−s1

]t
dt

+ [g(a)]2

2

(
g(b)
g(a)

)2(1−s2)ε
s2

1∫
0

[(
g(b)
g(a)

)2s2ε
1−s2

]t
dt

= [f(a)]2

2

(
f(b)
f(a)

)2(1−s1)ε
s1 ( f(b)

f(a) )
2s1ε1−s1

−1

ln( f(b)
f(a) )

2s1ε1−s1

+ [g(a)]2

2

(
g(b)
g(a)

)2(1−s2)ε
s2 ( g(b)

g(a) )
2s2ε1−s2

−1

ln( g(b)
g(a) )

2s2ε1−s2
. (51)

The proof is achieved.
Remark. If we take s1 = s2 = 1, in Theorem 21, we obtain Theorem 3.1 from [22].
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[25] C. E. M. Pearce, J Pečarić, V. Šimić, Stolarsky means and Hadamard’s inequality. J. Math.
Anal. Appl. 220 (1998), no. 1, 99–109.

[26] J. Pečarić, F. Proschan and Y. L. Tong, Convex functions, partial orderings, and statistical
applications. Mathematics in Science and Engineering, 187. Academic Press, Inc., Boston,
MA, 1992.

[27] R. Pini, Invexity and generalized convexity. Optimization 22 (1991), no. 4, 513–525.

[28] F. Qi, Z. -L. Wei and Q. Yang, Generalizations and refinements of Hermite-Hadamard’s
inequality. Rocky Mountain J. Math. 35 (2005), no. 1, 235–251.

[29] A. Saglam, M. Z. Sarikaya and H. Yildirim, Some new inequalities of Hermite-Hadamard’s
type. Kyungpook Math. J. 50 (2010), no. 3, 399–410.

[30] W. Ul-Haq, , and J. Iqbal, Hermite-Hadamard-type inequalities for r-preinvex functions. J.
Appl. Math. 2013, Art. ID 126457, 5 pp.

[31] Y. Wang - S. H. Wang - F. Qi, Simpson type integral inequalities in which the power of the

absolute value of the first derivative of the integrand is s-preinvex. Facta Univ. Ser. Math.
Inform. 28 (2013), no. 2, 151–159.

[32] Y. Wang, M.-M. Zheng and F. Qi, Integral inequalities of Hermite-Hadamard type for func-
tions whose derivatives are α-preinvex. J. Inequal. Appl. 2014, 2014:97, 10 pp.

[33] S. Wang and X. Liu, New Hermite-Hadamard type inequalities for n-times differentiable and
s-logarithmically preinvex functions. Abstr. Appl. Anal. 2014, Art. ID 725987, 11 pp.

[34] T. Weir and B. Mond, Pre-invex functions in multiple objective optimization. J. Math. Anal.
Appl. 136 (1988), no. 1, 29–38.

[35] X. -M. Yang and D. Li, On properties of preinvex functions. J. Math. Anal. Appl. 256 (2001),
no. 1, 229–241.
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