# HADAMARD TYPE INEQUALITIES FOR $(s, r)$-PREINVEX FUNCTIONS IN THE FIRST SENSE 

B. MEFTAH, K. BOUKERRIOUA AND T. CHIHEB


#### Abstract

In this paper we study a new concept of $(s, r)$ - preinvex functions in the first sens. Some new Hadamard-type integral inequalities are introduced. Which are compared with some existing inequalities in the literature.


## 1. Introduction

It is well-known that if the function $f:[a, b] \rightarrow \mathbb{R}$ is convex then

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1}
\end{equation*}
$$

If the function $f$ is concave, then (1) is reversed (see [26]).
The inequality (1) is called Hermite-Hadamard integral inequality in the literature. The above inequality has attracted many researchers, various generalizations, refinements, extensions and variants have appeared in the literature we can mention the works $[1,4,5,8,9,12,13,16,18,21-25,28-33,36]$ and the references cited therein.

In recent years, lot of efforts have been made by many mathematicians to generalize the classical convexity. Hanson [10], introduced a new class of generalized convex functions, called invex functions. In [6], the authors gave the concept of preinvex function which is special case of invexity. Pini [27], Noor [19, 20], Yang and $\mathrm{Li}[35]$ and Weir [34], have studied the basic properties of the preinvex functions and their role in optimization, variational inequalities and equilibrium problems.

In [18] Ngoc et al. proved the following theorem for $r$-convex functions
Theorem 1.[18, Theorem 2.1] Let $f:[a, b] \rightarrow(0, \infty)$ be $r$-convex function on $[a, b]$ with $a<b$, then the following inequality holds for $0<r \leq 1$ :

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x \leq\left(\frac{r}{r+1}\right)\left\{f^{r}(a)+f^{r}(b)\right\}^{\frac{1}{r}}
$$

In [23] Park gave the following theorems

[^0]Theorem 2.[23, Theorem 2.2] Let $f:[a, b] \rightarrow(0, \infty)$ be an $(s, r)$-convex function in the first sense on $[a, b]$ with $a<b$, then for $r, s \in(0,1]$ the following inequality holds:

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x \leq\left\{\left(\frac{r}{s+r}\right)^{\frac{1}{r}} f^{r}(a)+\frac{\Gamma\left(1+\frac{1}{r}\right) \Gamma\left(1+\frac{1}{s}\right)}{\Gamma\left(1+\frac{1}{r}+\frac{1}{s}\right)} f^{r}(b)\right\}^{\frac{1}{r}}
$$

Theorem 3.[23, Theorem 2.3] Let $f, g:[a, b] \rightarrow(0, \infty)$ be, respectively $\left(s_{1}, r_{1}\right)$ convex and $\left(s_{2}, r_{2}\right)$-convex functions in the first sense on $[a, b]$ with $a<b$, then for $0<r_{1}, r_{2} \leq 2$ the following inequality holds:

$$
\begin{aligned}
\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x \leq & \frac{1}{2}\left[\left\{\left(\frac{r_{1}}{r_{1}+2 s_{1}}\right)^{\frac{r_{1}}{2}} f^{r_{1}}(a)+\left(\frac{\Gamma\left(1+\frac{2}{r_{1}}\right) \Gamma\left(1+\frac{1}{s_{1}}\right)}{\Gamma\left(1+\frac{2}{r_{1}}+\frac{1}{s_{1}}\right)}\right)^{\frac{r_{1}}{2}} f^{r_{1}}(b)\right\}^{\frac{2}{r_{1}}}\right. \\
& \left.+\left\{\left(\frac{r_{2}}{r_{2}+2 s_{2}}\right)^{\frac{r_{2}}{2}} g^{r_{2}}(a)+\left(\frac{\Gamma\left(1+\frac{2}{r_{2}}\right) \Gamma\left(1+\frac{1}{s_{2}}\right)}{\Gamma\left(1+\frac{2}{r_{2}}+\frac{1}{s_{2}}\right)}\right)^{\frac{r_{2}}{2}} g^{r_{2}}(b)\right\}^{\frac{2}{r_{2}}}\right]
\end{aligned}
$$

In [36] Zabandan et al. proved the following theorems
Theorem 4.[36, Theorem 2.1] Let $f:[a, b] \rightarrow(0, \infty)$ be $r$-convex and $r \geq 1$. Then the following inequality holds:

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x \leq\left\{\frac{f^{r}(a)+f^{r}(b)}{2}\right\}^{\frac{1}{r}}
$$

Theorem 5.[36, Theorem 2.8] Let $f, g:[a, b] \rightarrow(0, \infty)$ be $r$-convex and $s$-convex functions respectively on $[a, b]$ and $r, s>0$. Then for the following inequality holds:

$$
\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x \leq \frac{1}{2}\left(\frac{r}{r+2}\right) \frac{f^{r+2}(b)-f^{r+2}(a)}{f^{r}(b)-f^{r}(a)}+\frac{1}{2}\left(\frac{s}{s+2}\right) \frac{g^{s+2}(b)-g^{s+2}(a)}{g^{s}(b)-g^{s}(a)},
$$

with $f(b) \neq f(a)$ and $g(b) \neq g(a)$.
In [30] W. Ul-Haq and J. Iqbal proved the following Hadamard's inequalities for $r$-preinvex function

Theorem 6.[30, Theorem 4] Let $f: K=[a, a+\eta(b, a)] \rightarrow(0, \infty)$ be an $r$ preinvex function on the interval of real numbers $K^{\circ}$ (interior of $K$ ) and $a, b \in K^{\circ}$ with $a<a+\eta(b, a)$, then the following inequality holds:

$$
\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x \leq\left[\frac{f^{r}(a)+f^{r}(b)}{2}\right]^{\frac{1}{r}}, r \geq 1
$$

Theorem 7.[30, Theorem 6] Let $f: K=[a, a+\eta(b, a)] \rightarrow(0, \infty)$ be an $r$ preinvex function with $(r \geq 0)$ on the interval of real numbers $K^{\circ}$ (interior of $K$ ) and $a, b \in K^{\circ}$ with $a<a+\eta(b, a)$, then the following inequality holds:

$$
\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x \leq \begin{cases}\frac{r}{r+1}\left[\frac{f^{r+1}(a)-f^{r+1}(b)}{f^{r}(a)-f^{r}(b)}\right], & r \neq 0 \\ \frac{f(a)-f(b)}{\ln f(a)-\ln f(b)}, & r=0\end{cases}
$$

with $f(b) \neq f(a)$.

Theorem 8.[30, Theorem 11] Let $f, g: K=[a, a+\eta(b, a)] \rightarrow(0, \infty)$ be an $r$-preinvex and $s$-preinvex functions respectively with $r, s>0$ on the interval of real numbers $K^{\circ}$ (interior of $K$ ) and $a, b \in K^{\circ}$ with $a<a+\eta(b, a)$, then the following inequality holds:

$$
\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) g(x) d x \leq \frac{1}{2} \frac{r}{r+2}\left[\frac{f^{r+2}(a)-f^{r+2}(b)}{f^{r}(a)-f^{r}(b)}\right]+\frac{1}{2} \frac{s}{s+2}\left[\frac{g^{s+2}(a)-g^{s+2}(b)}{g^{s}(a)-g^{s}(b)}\right]
$$

with $f(b) \neq f(a)$ and $g(b) \neq g(a)$.
In [21, 22] Noor proved the following Hadamard's inequality for log-preinvex function and product of two log-preinvex functions

Theorem 9.[22, Theorem 2.8] Let $f$ be a $l o g$-preinvex function on the interval $[a, a+\eta(b, a)]$, then

$$
\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x \leq \frac{f(a)-f(b)}{\ln f(a)-\ln f(b)}
$$

with $f(b) \neq f(a)$.
Theorem 10.[21, Theorem 3.1] Let $f, g: K=[a, a+\eta(b, a)] \rightarrow(0, \infty)$ be preinvex functions on the interval of real numbers $K^{\circ}$ ( the interior of $K$ ) and $a, b \in K^{\circ}$ with $a<a+\eta(b, a)$, then the following inequality holds.

$$
\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) g(x) d x \leq \frac{1}{4}\left(\frac{\left[f^{2}(b)-f^{2}(a)\right]}{\ln f(b)-\ln f(a)}+\frac{\left[g^{2}(b)-g^{2}(a)\right]}{\ln g(b)-\ln g(a)}\right)
$$

with $f(b) \neq f(a)$ and $g(b) \neq g(a)$.
Motivated by the above results, in this paper we introduce a new class of preinvex functions which is called ( $s, r$ )-preinvex functions in the first sense, then we establish some new Hadamard type inequalities where the function $f$ be in this novel class of functions.

## 2. Preliminaries

In this section we recall some concepts of convexity which are well known in the literature. Throughout this section $I$ is an interval of $\mathbb{R}$.

Definition 1.[26] A function $f: I \rightarrow \mathbb{R}$ is said to be convex, if

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)
$$

holds for all $x, y \in I$ and all $t \in[0,1]$.
Definition 2.[26] A positive function $f: I \rightarrow \mathbb{R}$ is said to logarithmically convex, if

$$
f(t x+(1-t) y) \leq[f(x)]^{t}[f(y)]^{(1-t)}
$$

holds for all $x, y \in I$ and all $t \in[0,1]$.
Definition 3.[24] A nonnegative function $f: I \subset[0, \infty) \rightarrow \mathbb{R}$ is said to be $s$-convex in the first sense for some fixed $s \in(0,1]$, if

$$
f(t x+(1-t) y) \leq t^{s} f(x)+\left(1-t^{s}\right) f(y)
$$

holds for all $x, y \in I$ and $t \in[0,1]$.

Definition 4.[1] A positive function $f: I \subset[0, \infty) \rightarrow \mathbb{R}$ is said to be $s$ logarithmically convex in the first sense on $I$, for some $s \in(0,1]$, if

$$
f(t x+(1-t) y) \leq[f(x)]^{t^{s}}[f(y)]^{\left(1-t^{s}\right)}
$$

holds for all $x, y \in I$ and $t \in[0,1]$.
Definition 5.[25] A positive function $f: I \rightarrow \mathbb{R}$ is said to be $r$-convex on $I$, where $r \geq 0$, if

$$
f(t x+(1-t) y) \leq \begin{cases}{\left[t f^{r}(x)+(1-t) f^{r}(y)\right]^{\frac{1}{r}}} & , r \neq 0 \\ {[f(x)]^{1-t}[f(y)]^{t},} & r=0\end{cases}
$$

holds for all $x, y \in I$ and $t \in[0,1]$.
Let $K$ be a subset in $\mathbb{R}^{n}$ and let $f: K \rightarrow \mathbb{R}$ and $\eta: K \times K \rightarrow \mathbb{R}^{n}$ be continuous functions.

Definition 6.[34] A set $K$ is said to be invex at $x$ with respect to $\eta$, if

$$
x+t \eta(y, x) \in K
$$

holds for all $x, y \in K$ and $t \in[0,1]$.
$K$ is said to be an invex set with respect to $\eta$ if $K$ is invex at each $x \in K$.
Definition 7.[34] A function $f$ on the invex set $K$ is said to be preinvex with respect to $\eta$, if

$$
f(x+t \eta(y, x)) \leq(1-t) f(x)+t f(y)
$$

holds for all $x, y \in K$ and $t \in[0,1]$.
Definition 8.[19] A positive function $f$ on the invex set $K$ is said to be logarithmically preinvex with respect to $\eta$, if

$$
f(x+t \eta(y, x)) \leq[f(x)]^{(1-t)}[f(y)]^{t}
$$

holds for all $x, y \in K$ and $t \in[0,1]$.
Definition 9.[32] A nonnegative function $f$ on the invex set $K$ is said to be $s$-preinvex in the first sense with respect to $\eta$, if

$$
f(x+t \eta(y, x)) \leq\left(1-t^{s}\right) f(x)+t^{s} f(y)
$$

for some fixed $s \in(0,1]$ and all $x, y \in K$ and $t \in[0,1]$.
Definition 10.[33] The function $f$ on the invex set $K$ is said to be $s$-log-preinvex in the first sense with respect to $\eta$, if

$$
f(x+t \eta(y, x)) \leq[f(x)]^{\left(1-t^{s}\right)}[f(y)]^{s^{s}}
$$

for some fixed $s \in(0,1]$ and all $x, y \in K$ and $t \in[0,1]$.
Definition 11.[2] A positive function $f$ on the invex set $K$ is said to be $r$ preinvex with respect to $\eta$, where $r \geq 0$, if

$$
f(x+t \eta(y, x)) \leq \begin{cases}{\left[(1-t) f^{r}(x)+t f^{r}(y)\right]^{\frac{1}{r}},} & r \neq 0 \\ {[f(x)]^{1-t}[f(y)]^{t},} & r=0\end{cases}
$$

holds for all $x, y \in K$ and $t \in[0,1]$.
Lemma 1.[15] For $a \geq 0$ and $b \geq 0$, the following algebraic inequalities are true

$$
(a+b)^{\lambda} \leq 2^{\lambda-1}\left(a^{\lambda}+b^{\lambda}\right), \quad \text { for } \lambda \geq 1
$$

and

$$
(a+b)^{\lambda} \leq a^{\lambda}+b^{\lambda}, \quad \text { for } \quad 0 \leq \lambda \leq 1
$$

Lemma 2.[11] Assume that $a \geq 0, p \geq q \geq 0$ and $p \neq 0$, then for any $\varepsilon>0$ we have

$$
a^{\frac{q}{p}} \leq \frac{q}{p} \varepsilon^{\frac{q-p}{p}} a+\frac{p-q}{p} \varepsilon^{\frac{q}{p}} .
$$

We also recall that the Euler Beta function is defined as follows

$$
\beta(x, y)=\int_{0}^{1} t^{x-1}(1-t)^{y-1} d t=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}
$$

## 3. Main Results

In the following definition, we introduce a new concept of $(s, r)$-preinvex function in the first sense.

Definition 12. A positive function $f$ on the invex set $K$, is said to be $(s, r)$ preinvex function in the first sense, if

$$
f(x+t \eta(y, x)) \leq \begin{cases}{\left[\left(1-t^{s}\right) f^{r}(x)+t^{s} f^{r}(y)\right]^{\frac{1}{r}},} & r \neq 0 \\ {[f(x)]^{\left(1-t^{s}\right)}[f(y)]^{t^{s}},} & r=0\end{cases}
$$

holds for some fixed $s \in(0,1], r \in \mathbb{R}$ and all $x, y \in K$, and $t \in[0,1]$.
Now we set off to establish some Hadamard type inequalities for $(s, r)$-preinvex functions in the first sense.

Theorem 11. Let $f:[a, a+\eta(b, a)] \rightarrow \mathbb{R}^{+}$be $(s, r)$-preinvex function in the first sense with respect to $\eta$ with $\eta(b, a)>0$, If $f \in L_{1}([a, a+\eta(b, a)])$, then the following inequality

$$
\begin{equation*}
\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x \leq\left[\left(1-\frac{1}{s+1}\right) f^{r}(a)+\frac{1}{s+1} f^{r}(b)\right]^{\frac{1}{r}} \tag{2}
\end{equation*}
$$

holds for some fixed $s \in(0,1]$, and $r \geq 1$.
Proof. For $x=a+t \eta(b, a)$, we have

$$
\begin{equation*}
\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x=\int_{0}^{1} f(a+t \eta(b, a)) d t \tag{3}
\end{equation*}
$$

Let $\varphi(x)=x^{r}$, obviously $\varphi$ is convex function since $r \geq 1$, then

$$
\begin{equation*}
\varphi\left(\int_{0}^{1} f(a+t \eta(b, a)) d t\right) \leq \int_{0}^{1} \varphi(f(a+t \eta(b, a))) d t \tag{4}
\end{equation*}
$$

we can restate (4) as

$$
\begin{equation*}
\left[\int_{0}^{1} f(a+t \eta(b, a)) d t\right]^{r} \leq \int_{0}^{1}(f(a+t \eta(b, a)))^{r} d t \tag{5}
\end{equation*}
$$

Now using the $(s, r)$-preinvexity in the first sense of $f$, we deduce

$$
\begin{align*}
\int_{0}^{1}(f(a+t \eta(b, a)))^{r} d t & \leq \int_{0}^{1}\left[\left(1-t^{s}\right) f^{r}(a)+t^{s} f^{r}(b)\right] d t \\
& =f^{r}(a) \int_{0}^{1}\left(1-t^{s}\right) d t+f^{r}(b) \int_{0}^{1} t^{s} d t \\
& =\left(1-\frac{1}{s+1}\right) f^{r}(a)+\frac{1}{s+1} f^{r}(b) \tag{6}
\end{align*}
$$

The substitution of (6) into (5), gives the desired result. The proof is completed.
Remark 1. For $s=1$, Theorem 11 becomes Theorem 4 from [30]. Moreover if we choose $\eta(b, a)=b-a$, we obtain Theorem 2.1 from [36].

Theorem 12. Let $f:[a, a+\eta(b, a)] \rightarrow \mathbb{R}^{+}$be $(s, r)$-preinvex function in the first sense with respect to $\eta$, with $\eta(b, a)>0$. If $f \in L_{1}([a, a+\eta(b, a)])$, then the following inequality

$$
\begin{equation*}
\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x \leq\left[\frac{1}{s^{r}} f^{r}(a)\left(\beta\left(\frac{1}{s}, \frac{1}{r}+1\right)\right)^{r}+\left(\frac{r}{s+r}\right)^{r} f^{r}(b)\right]^{\frac{1}{r}} \tag{7}
\end{equation*}
$$

holds for all $a, b \in K$ and $s, r \in(0,1]$.
Proof. From the $(s, r)$-preinvexity in the first sense of $f$, we have

$$
\begin{align*}
\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x & =\int_{0}^{1} f(a+t \eta(b, a)) d t \\
& \leq \int_{0}^{1}\left[\left(1-t^{s}\right) f^{r}(a)+t^{s} f^{r}(b)\right]^{\frac{1}{r}} d t \tag{8}
\end{align*}
$$

Since $0<r \leq 1$, using Minkowski's inequality, we get

$$
\begin{gather*}
\int_{0}^{1}\left[(1-t)^{s} f^{r}(a)+t^{s} f^{r}(b)\right]^{\frac{1}{r}} d t \leq\left[\left(\int_{0}^{1}\left(1-t^{s}\right)^{\frac{1}{r}} f(a) d t\right)^{r}+\left(\int_{0}^{1} t^{\frac{s}{r}} f(b) d t\right)^{r}\right]^{\frac{1}{r}} \\
=\left[f^{r}(a)\left(\int_{0}^{1}\left(1-t^{s}\right)^{\frac{1}{r}} d t\right)+f^{r}(b)\left(\int_{0}^{1} t^{\frac{s}{r}} d t\right)^{r}\right]^{\frac{1}{r}} \\
=\left[f^{r}(a)\left(\frac{1}{s} \int_{0}^{1}(1-u)^{\frac{1}{r}} u^{\frac{1}{s}-1} d u\right)^{r}+\left(\frac{r}{s+r}\right)^{r} f^{r}(b)\right]^{\frac{1}{r}} \\
=\left[\frac{1}{s^{r}} f^{r}(a)\left(\beta\left(\frac{1}{s}, \frac{1}{r}+1\right)\right)^{r}+\left(\frac{r}{s+r}\right)^{r} f^{r}(b)\right]^{\frac{1}{r}} \tag{9}
\end{gather*}
$$

which is the desired result. The proof is achieved.
Remark. If we choose $\eta(b, a)=b-a$ in Theorem 12, we obtain Theorem 2.2 from [23]. Moreover if we take $s=1$ then we obtain Theorem 2.1 from [18].
Theorem 13. Let $f:[a, a+\eta(b, a)] \rightarrow \mathbb{R}^{+}$be $(s, r)$-preinvex function in the first sense with respect to $\eta$ with $\eta(b, a)>0$. If $f \in L_{1}([a, a+\eta(b, a)])$, then the following inequality

$$
\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x \leq\left\{\begin{array}{cl}
\frac{2^{\frac{1-r}{r}}}{s} f(a) \beta\left(\frac{1}{s}, \frac{1}{r}+1\right)+2^{\frac{1-r}{r}} \frac{r}{s+r} f(b) & \text { if } 0<r \leq 1  \tag{10}\\
\frac{1}{s} f(a) \beta\left(\frac{1}{s}, \frac{1}{r}+1\right)+\frac{r}{s+r} f(b) & \text { if } r \geq 1
\end{array}\right.
$$

holds for some fixed $s \in(0,1]$, and $r>0$.
Proof. Since $f$ is $(s, r)$-preinvex function in the first sense, we have

$$
\begin{align*}
\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x & =\int_{0}^{1} f(a+t \eta(b, a)) d t \\
& \leq \int_{0}^{1}\left[\left(1-t^{s}\right) f^{r}(a)+t^{s} f^{r}(b)\right]^{\frac{1}{r}} d t \tag{11}
\end{align*}
$$

From Lemma 1, we have

$$
\left[\left(1-t^{s}\right) f^{r}(a)+t^{s} f^{r}(b)\right]^{\frac{1}{r}} \leq\left\{\begin{array}{c}
2^{\frac{1-r}{r}}\left(\left(1-t^{s}\right)^{\frac{1}{r}} f(a)+t^{\frac{s}{r}} f(b)\right) \text { if } 0<r \leq 1  \tag{12}\\
\left(1-t^{s}\right)^{\frac{1}{r}} f(a)+t^{\frac{s}{r}} f(b) \quad \text { if } r \geq 1
\end{array}\right.
$$

integrating (12) with respect to $t$ on $[0,1]$, we get

$$
\begin{align*}
\int_{0}^{1}\left[\left(1-t^{s}\right) f^{r}(a)+t^{s} f^{r}(b)\right]^{\frac{1}{r}} d t & \leq\left\{\begin{array}{cl}
2^{\frac{1-r}{r}} f(a) \int_{0}^{1}\left(1-t^{s}\right)^{\frac{1}{r}} d t+2^{\frac{1-r}{r}} f(b) \int_{0}^{1} t^{\frac{s}{r}} d t & \text { if } 0<r \leq 1 \\
f(a) \int_{0}^{1}\left(1-t^{s}\right)^{\frac{1}{r}} d t+f(b) \int_{0}^{1} t^{\frac{s}{r}} d t & \text { if } r \geq 1
\end{array}\right. \\
& =\left\{\begin{array}{cl}
\frac{2^{\frac{1-r}{r}}}{s} f(a) \beta\left(\frac{1}{s}, \frac{1}{r}+1\right)+2^{\frac{1-r}{r}} \frac{r}{s+r} f(b) & \text { if } 0<r \leq 1 \\
\frac{1}{s} f(a) \beta\left(\frac{1}{s}, \frac{1}{r}+1\right)+\frac{r}{s+r} f(b) & \text { if } r \geq 1,
\end{array}\right. \tag{13}
\end{align*}
$$

which is the desired result. The proof is completed.
Theorem 14. Let $f:[a, a+\eta(b, a)] \rightarrow(0, \infty)$ be $(s, r)$-preinvex function in the first sense with respect to $\eta$ with $\eta(b, a)>0$. If $f \in L_{1}([a, a+\eta(b, a)])$, then the following inequality

$$
\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x \leq\left\{\begin{array}{cc}
\frac{r}{(r+1) \theta}\left[(\alpha+\theta)^{\frac{1+r}{r}}-\alpha^{\frac{1+r}{r}}\right] & \text { if } r>0  \tag{14}\\
f(a) \quad \text { if } r=0 \text { and } f(a)=f(b) \\
f(a)\left[\frac{f(b)}{f(a)}\right]^{(1-s) \varepsilon^{s}}\left[\frac{\left[\frac{f(b)}{f(a)}\right]^{s s^{s-1}}-1}{s \varepsilon^{s-1} \ln \left[\frac{f(b)}{f(a)}\right]}\right] & \text { if } r=0 \text { and } f(a) \neq f(b)
\end{array}\right.
$$

holds for some fixed $s \in(0,1]$ and $r \geq 0$, where

$$
\begin{align*}
\alpha & =f^{r}(a)+(1-s) \varepsilon^{s}\left[f^{r}(b)-f^{r}(a)\right] \\
\theta & =s \varepsilon^{s-1}\left[f^{r}(b)-f^{r}(a)\right] \tag{15}
\end{align*}
$$

and $\varepsilon>0$.
Proof. Case 1: $r>0$.
Since $f$ is $(s, r)$-preinvex function in the first sense, we get

$$
\begin{align*}
\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x & =\int_{0}^{1} f(a+t \eta(b, a)) d t \\
& \leq \int_{0}^{1}\left[\left(1-t^{s}\right) f^{r}(a)+t^{s} f^{r}(b)\right]^{\frac{1}{r}} d t \\
& =\int_{0}^{1}\left[f^{r}(a)+t^{s}\left[f^{r}(b)-f^{r}(a)\right]\right]^{\frac{1}{r}} d t \tag{16}
\end{align*}
$$

From Lemma 2, we have

$$
\begin{equation*}
t^{s} \leq s \varepsilon^{s-1} t+(1-s) \varepsilon^{s}, \varepsilon>0 \tag{17}
\end{equation*}
$$

Substituting (17) into (16), we obtain

$$
\begin{equation*}
\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x \leq \int_{0}^{1}(\alpha+\theta t)^{\frac{1}{r}} d t \tag{18}
\end{equation*}
$$

where $\alpha$ and $\theta$ are are given by (15).
Let $z=\alpha+\theta t$, then (18) becomes

$$
\begin{align*}
\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x & \leq \frac{1}{\theta} \int_{\alpha}^{\alpha+\theta} z^{\frac{1}{r}} d z \\
& =\frac{r}{(r+1) \theta}\left[(\alpha+\theta)^{\frac{1+r}{r}}-\alpha^{\frac{1+r}{r}}\right] \tag{19}
\end{align*}
$$

Case 2 :
If $r=0$, then $f$ is $s$-log-preinvex in the first sense, we have

$$
\begin{align*}
\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x & =\int_{0}^{1} f(a+t \eta(b, a)) d t \\
& \leq \int_{0}^{1}[f(a)]^{\left(1-t^{s}\right)}[f(b)]^{s^{s}} d t \\
& =f(a) \int_{0}^{1}\left[\frac{f(b)}{f(a)}\right]^{t^{s}} d t \tag{20}
\end{align*}
$$

If $f(a)=f(b),(20)$ gives

$$
\begin{equation*}
\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x \leq f(a) \tag{21}
\end{equation*}
$$

and if $f(a) \neq f(b)$, using (17), (20) becomes

$$
\begin{align*}
\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) d x & \leq f(a)\left[\frac{f(b)}{f(a)}\right]^{(1-s) \varepsilon^{s}} \int_{0}^{1}\left[\frac{f(b)}{f(a)}\right]^{s \varepsilon^{s-1} t} d t \\
& =f(a)\left[\frac{f(b)}{f(a)}\right]^{(1-s) \varepsilon^{s}}\left[\frac{\left[\frac{f(b)}{f(a)}\right]^{s \varepsilon^{s-1}}-1}{s \varepsilon^{s-1} \ln \left[\frac{f(b)}{f(a)}\right]}\right] . \tag{22}
\end{align*}
$$

From (19), (21) and (22), we get the desired result. The proof is completed.
Remark. If we take $s=1$, in Theorem 14, we obtain Theorem 6 from [30]. Moreover if we choose $r=0$ we obtain Theorem 2.8 from [21].
Theorem 15. Let $f, g:[a, a+\eta(b, a)] \rightarrow \mathbb{R}_{+}$be $\left(s_{1}, r_{1}\right)$ and $\left(s_{2}, r_{2}\right)$-preinvex functions in the first sense respectively with respect to $\eta$ with $\eta(b, a)>0$, and let $\left(s_{1}, r_{1}\right),\left(s_{2}, r_{2}\right) \in(0,1] \times(0,2]$. If $f g \in L_{1}([a, a+\eta(b, a)])$, then the following inequality is valid

$$
\begin{align*}
& \frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) g(x) d x \\
\leq & \frac{1}{2}\left[\frac{f^{r_{1}}(a)}{s_{1}}\left(\beta\left(\frac{1}{s_{1}}, \frac{2}{r_{1}}+1\right)\right)^{\frac{r_{1}}{2}}+\left(\frac{r_{1}}{2 s_{1}+r_{1}}\right)^{\frac{r_{1}}{2}} f^{r_{1}}(b)\right]^{\frac{2}{r_{1}}} \\
& +\frac{1}{2}\left[\frac{g^{r_{2}}(a)}{s_{2}}\left(\beta\left(\frac{1}{s_{2}}, \frac{2}{r_{2}}+1\right)\right)^{\frac{r 2}{2}}+\left(\frac{r_{2}}{2 s_{2}+r_{2}}\right)^{\frac{r_{2}}{2}} g^{r_{2}}(b)\right]^{\frac{2}{r_{2}}} . \tag{23}
\end{align*}
$$

Proof. Since $f$ and $g$ are $\left(s_{1}, r_{1}\right)$ and $\left(s_{2}, r_{2}\right)$-preinvex functions in the first sense respectively, we have

$$
\begin{align*}
\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) g(x) d x= & \int_{0}^{1} f(a+t \eta(b, a)) g(a+t \eta(b, a)) d t \\
\leq & \int_{0}^{1}\left[\left[\left(1-t^{s_{1}}\right) f^{r_{1}}(a)+t^{s_{1}} f^{r_{1}}(b)\right]^{\frac{1}{r_{1}}}\right. \\
& \left.\times\left[\left(1-t^{s_{2}}\right) g^{r_{2}}(a)+t^{s_{2}} g^{r_{2}}(b)\right]^{\frac{1}{r_{2}}}\right] d t . \tag{24}
\end{align*}
$$

Applying the AG inequality, we get

$$
\begin{align*}
& \int_{0}^{1}\left[\left(1-t^{s_{1}}\right) f^{r_{1}}(a)+t^{s_{1}} f^{r_{1}}(b)\right]^{\frac{1}{r_{1}}}\left[\left(1-t^{s_{2}}\right) g^{r_{2}}(a)+t^{s_{2}} g^{r_{2}}(b)\right]^{\frac{1}{r_{2}}} d t \\
\leq & \frac{1}{2} \int_{0}^{1}\left[\left(1-t^{s_{1}}\right) f^{r_{1}}(a)+t^{s_{1}} f^{r_{1}}(b)\right]^{\frac{2}{r_{1}}} d t \\
& +\frac{1}{2} \int_{0}^{1}\left[\left(1-t^{s_{2}}\right) g^{r_{2}}(a)+t^{s_{2}} g^{r_{2}}(b)\right]^{\frac{2}{r_{2}}} d t . \tag{25}
\end{align*}
$$

Now, using Minkowski's inequality, we obtain

$$
\begin{aligned}
& \frac{1}{2} \int_{0}^{1}\left[\left(1-t^{s_{1}}\right) f^{r_{1}}(a)+t^{s_{1}} f^{r_{1}}(b)\right]^{\frac{2}{r_{1}}} d t+\frac{1}{2} \int_{0}^{1}\left[\left(1-t^{s_{2}}\right) g^{r_{2}}(a)+t^{s_{2}} g^{r_{2}}(b)\right]^{\frac{2}{r_{2}}} d t \\
& \leq \frac{1}{2}\left[\left(\int_{0}^{1}\left(1-t^{s_{1}}\right)^{\frac{2}{r_{1}}} f^{2}(a) d t\right)^{\frac{r_{1}}{2}}+\left(\int_{0}^{1} t^{\frac{2 s_{1}}{r_{1}}} f^{2}(b) d t\right)^{\frac{r_{1}}{2}}\right]^{\frac{2}{r_{1}}} \\
& +\frac{1}{2}\left[\left(\int_{0}^{1}\left(1-t^{s_{2}}\right)^{\frac{2}{r_{2}}} g^{2}(a) d t\right)^{\frac{r 2}{2}}+\left(\int_{0}^{1} t^{\frac{2 s_{2}}{r_{2}}} g^{2}(b) d t\right)^{\frac{r_{2}}{2}}\right]^{\frac{2}{r_{2}}} \\
& =\frac{1}{2}\left[f^{r_{1}}(a)\left(\int_{0}^{1}\left(1-t^{s_{1}}\right)^{\frac{2}{r_{1}}} d t\right)^{\frac{r_{1}}{2}}+f^{r_{1}}(b)\left(\int_{0}^{1} t^{\frac{2 s_{1}}{r_{1}}} d t\right)^{\frac{r_{1}}{2}}\right]^{\frac{2}{r_{1}}} \\
& +\frac{1}{2}\left[g^{r_{2}}(a)\left(\int_{0}^{1}\left(1-t^{s_{2}}\right)^{\frac{2}{r_{2}}} d t\right)^{\frac{r 2}{2}}+g^{r_{2}}(b)\left(\int_{0}^{1} t^{\frac{2 s_{2}}{r_{2}}} d t\right)^{\frac{r_{2}}{2}}\right]^{\frac{2}{r_{2}}} \\
& =\frac{1}{2}\left[\frac{f^{r_{1}}(a)}{s_{1}}\left(\int_{0}^{1}(1-u)^{\frac{2}{r_{1}}} u^{\frac{1-s_{1}}{s_{1}}} d t\right)^{\frac{r_{1}}{2}}+f^{r_{1}}(b)\left(\int_{0}^{1} t^{\frac{2 s_{1}}{r_{1}}} d t\right)^{\frac{r_{1}}{2}}\right]^{\frac{2}{r_{1}}} \\
& +\frac{1}{2}\left[\frac{g^{r_{2}}(a)}{s_{2}}\left(\int_{0}^{1}(1-u)^{\frac{2}{r_{2}}} u^{\frac{1-s_{2}}{s_{2}}} d t\right)^{\frac{r 2}{2}}+g^{r_{2}}(b)\left(\int_{0}^{1} t^{\frac{2 s_{2}}{r_{2}}} d t\right)^{\frac{r_{2}}{2}}\right]^{\frac{2}{r_{2}}} \\
& =\frac{1}{2}\left[\frac{f^{r_{1}}(a)}{s_{1}}\left(\beta\left(\frac{1}{s_{1}}, \frac{2}{r_{1}}+1\right)\right)^{\frac{r_{1}}{2}}+\left(\frac{r_{1}}{2 s_{1}+r_{1}}\right)^{\frac{r_{1}}{2}} f^{r_{1}}(b)\right]^{\frac{2}{r_{1}}} \\
& +\frac{1}{2}\left[\frac{g^{r_{2}}(a)}{s_{2}}\left(\beta\left(\frac{1}{s_{2}}, \frac{2}{r_{2}}+1\right)\right)^{\frac{r 2}{2}}+\left(\frac{r_{2}}{2 s_{2}+r_{2}}\right)^{\frac{r_{2}}{2}} g^{r_{2}}(b)\right]^{\frac{2}{r_{2}}} .
\end{aligned}
$$

The proof is completed.
Remark. In Theorem 15, if we choose $\eta(b, a)=b-a$, and $s_{1}=s_{2}=1$, we obtain Theorem 2.3 from [23].
Theorem 16. Let $f, g:[a, a+\eta(b, a)] \rightarrow \mathbb{R}^{+}$be $\left(s_{1}, r_{1}\right)$ and $\left(s_{2}, r_{2}\right)$-preinvex functions in the first sense respectively with respect to $\eta$ with $\eta(b, a)>0$, and let $\left(s_{1}, r_{1}\right),\left(s_{2}, r_{2}\right) \in(0,1] \times \mathbb{R}^{+}$. If $f g \in L_{1}([a, a+\eta(b, a)])$, then the following inequality

$$
\begin{align*}
\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) g(x) d x \leq & {\left[\frac{1}{1+s_{1}}[f(b)]^{r_{1}}+\left(\frac{s_{1}}{1+s_{1}}\right)[f(a)]^{r_{1}}\right]^{\frac{1}{r_{1}}} } \\
& \times\left[\frac{1}{1+s_{2}}[g(b)]^{r_{2}}+\frac{s_{2}}{1+s_{2}}[g(a)]^{r_{2}}\right]^{\frac{1}{r_{2}}} \tag{26}
\end{align*}
$$

holds for $r_{1}>1$, and $\frac{1}{r_{1}}+\frac{1}{r_{2}}=1$.
Proof. Since $f$ and $g$ are $\left(s_{1}, r_{1}\right)$ and $\left(s_{2}, r_{2}\right)$-preinvex functions in the first sense respectively, we have

$$
\begin{align*}
\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) g(x) d x= & \int_{0}^{1} f(a+t \eta(b, a)) g(a+t \eta(b, a)) d t \\
\leq & \int_{0}^{1}\left[\left[\left(1-t^{s_{1}}\right)[f(a)]^{r_{1}}+t^{s_{1}}[f(b)]^{r_{1}}\right]^{\frac{1}{r_{1}}}\right. \\
& \left.\times\left[\left(1-t^{s_{2}}\right)[g(a)]^{r_{2}}+t^{s_{2}}[g(b)]^{r_{2}}\right]^{\frac{1}{r_{2}}}\right] d t \tag{27}
\end{align*}
$$

using Hölder's inequality, we obtain

$$
\begin{aligned}
& \int_{0}^{1}\left[\left(1-t^{s_{1}}\right)[f(a)]^{r_{1}}+t^{s_{1}}[f(b)]^{r_{1}}\right]^{\frac{1}{r_{1}}}\left[\left(1-t^{s_{2}}\right)[g(a)]^{r_{2}}+t^{s_{2}}[g(b)]^{r_{2}}\right]^{\frac{1}{r_{2}}} d t \\
\leq & {\left[\int_{0}^{1}\left[\left(1-t^{s_{1}}\right)[f(a)]^{r_{1}}+t^{s_{1}}[f(b)]^{r_{1}}\right] d t\right]^{\frac{1}{r_{1}}} } \\
& \times\left[\int_{0}^{1}\left[\left(1-t^{s_{2}}\right)[g(a)]^{r_{2}}+t^{s_{2}}[g(b)]^{r_{2}}\right] d t\right]^{\frac{1}{r_{2}}} \\
= & {\left[\int_{0}^{1}\left[[f(a)]^{r_{1}}+\left([f(b)]^{r_{1}}-[f(a)]^{r_{1}}\right) t^{s_{1}}\right] d t\right]^{\frac{1}{r_{1}}} }
\end{aligned}
$$

$$
\begin{aligned}
& \times\left[\int_{0}^{1}\left[[g(a)]^{r_{2}}+\left([g(b)]^{r_{2}}-[g(a)]^{r_{2}}\right) t^{s_{2}}\right] d t\right]^{\frac{1}{r_{2}}} \\
= & {\left[\frac{1}{1+s_{1}}[f(b)]^{r_{1}}+\left(\frac{s_{1}}{1+s_{1}}\right)[f(a)]^{r_{1}}\right]^{\frac{1}{r_{1}}}\left[\frac{1}{1+s_{2}}[g(b)]^{r_{2}}+\frac{s_{2}}{1+s_{2}}[g(a)]^{r_{2}}\right]^{\frac{1}{r_{2}}} . }
\end{aligned}
$$

The proof is achieved.
Remark. In Theorem 16, if we choose $\eta(b, a)=b-a$, and $s_{1}=s_{2}=1$, we obtain Theorem 2.6 from [18].
Theorem 17. Let $f, g:[a, a+\eta(b, a)] \rightarrow \mathbb{R}_{+}$be $\left(s_{1}, r_{1}\right)$ and $\left(s_{2}, r_{2}\right)$-preinvex functions in the first sense respectively with respect to $\eta$ with $\eta(b, a)>0$, and let $\left(s_{1}, r_{1}\right) \in(0,1] \times(0,2]$, and $\left(s_{2}, r_{2}\right) \in(0,1] \times[2, \infty)$. If $f g \in L_{1}([a, a+\eta(b, a)])$, then the following inequality is valid

$$
\begin{align*}
& \frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) g(x) d x \\
\leq & 2^{\frac{2}{r_{1}}-1}\left[\frac{f^{2}(a)}{s_{1}} \beta\left(\frac{1}{s_{1}}, \frac{r_{1}}{2}+1\right)+\frac{r_{1}}{2 s_{1}+r_{1}} f^{2}(b)\right] \\
& +\frac{1}{2}\left[\frac{g^{2}(a)}{s_{2}} \beta\left(\frac{1}{s_{2}}, \frac{r_{2}}{2}+1\right)+\frac{r_{2}}{2 s_{2}+r_{2}} g^{2}(b)\right] . \tag{28}
\end{align*}
$$

Proof. Since $f$ and $g$ are $\left(s_{1}, r_{1}\right)$ and $\left(s_{2}, r_{2}\right)$-preinvex functions in the first sense respectively, we have

$$
\begin{align*}
\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) g(x) d x= & \int_{0}^{1} f(a+t \eta(b, a)) g(a+t \eta(b, a)) d t \\
\leq & \int_{0}^{1}\left[\left[\left(1-t^{s_{1}}\right) f^{r_{1}}(a)+t^{s_{1}} f^{r_{1}}(b)\right]^{\frac{1}{r_{1}}}\right. \\
& \left.\times\left[\left(1-t^{s_{2}}\right) g^{r_{2}}(a)+t^{s_{2}} g^{r_{2}}(b)\right]^{\frac{1}{r_{2}}}\right] d t . \tag{29}
\end{align*}
$$

Applying the AG inequality, we get

$$
\begin{align*}
& \int_{0}^{1}\left[\left(1-t^{s_{1}}\right) f^{r_{1}}(a)+t^{s_{1}} f^{r_{1}}(b)\right]^{\frac{1}{r_{1}}}\left[\left(1-t^{s_{2}}\right) g^{r_{2}}(a)+t^{s_{2}} g^{r_{2}}(b)\right]^{\frac{1}{r_{2}}} d t \\
\leq & \frac{1}{2} \int_{0}^{1}\left[\left(1-t^{s_{1}}\right) f^{r_{1}}(a)+t^{s_{1}} f^{r_{1}}(b)\right]^{\frac{2}{r_{1}}} d t \\
& +\frac{1}{2} \int_{0}^{1}\left[\left(1-t^{s_{2}}\right) g^{r_{2}}(a)+t^{s_{2}} g^{r_{2}}(b)\right]^{\frac{2}{r_{1}}} d t . \tag{30}
\end{align*}
$$

Now, using Lemma 1, we get

$$
\begin{align*}
& \frac{1}{2} \int_{0}^{1}\left[\left(1-t^{s_{1}}\right) f^{r_{1}}(a)+t^{s_{1}} f^{r_{1}}(b)\right)^{\frac{2}{r_{1}}} d t+\frac{1}{2} \int_{0}^{1}\left[\left(1-t^{s_{2}}\right) g^{r_{2}}(a)+t^{s_{2}} g^{r_{2}}(b)\right]^{\frac{2}{r_{1}}} d t \\
& \leq 2^{\frac{2}{r_{1}}-1}\left[f^{2}(a) \int_{0}^{1}\left(1-t^{s_{1}}\right)^{\frac{2}{r_{1}}} d t+f^{2}(b) \int_{0}^{1} t^{\frac{2 s_{1}}{r_{1}}} d t\right] \\
&= 2^{\frac{2}{r_{1}}-1}\left[\frac { 1 } { 2 } \int _ { 0 } ^ { 1 } \left[g^{2}(a) \int_{0}^{1}(a)\right.\right. \\
& s_{1} \\
& 0  \tag{31}\\
&\left.\left(1-t^{s_{2}}\right)^{\frac{2}{r_{1}}} d t+g^{2}(b) \int_{0}^{s_{1}} t^{\frac{2 s_{2}}{r_{2}}} d t\right] \\
&\left.+\frac{1}{2}\left[\frac{r_{1}}{2}+1\right)+\frac{r_{1}}{2 s_{1}+r_{1}} f^{2}(b)\right] \\
& s_{2} \\
&\left.\left(\frac{1}{s_{2}}, \frac{r_{2}}{2}+1\right)+\frac{r_{2}}{2 s_{2}+r_{2}} g^{2}(b)\right]
\end{align*}
$$

The proof is achieved.
Theorem 18. Let $f, g:[a, a+\eta(b, a)] \rightarrow \mathbb{R}^{+}$be $\left(s_{1}, r_{1}\right)$-preinvex function in the first sense and $\left(s_{2}, 0\right)$ - preinvex function respectively with respect to $\eta$ with $\eta(b, a)>0$, and let $\left(s_{1}, r_{1}\right) \in(0,1] \times[2, \infty)$ and $s_{2} \in(0,1]$ and $g(a) \neq 0$, and $g(b) \neq 0$. If $f g \in L_{1}([a, a+\eta(b, a)])$, then the following inequality is valid

$$
\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) g(x) d x \leq\left\{\begin{array}{c}
\frac{[f(a)]^{2}}{2 s_{1}} \beta\left(\frac{1}{s_{1}}, \frac{2}{r_{1}}+1\right)+\frac{r_{1}[f(b)]^{2}}{4 s_{1}+2 r_{1}}  \tag{32}\\
+\frac{[g(a)]^{2}}{2}\left(\frac{g(b)}{g(a)}\right)^{2\left(1-s_{2}\right) \varepsilon^{s_{2}}} \frac{\left(\frac{g(b)}{g(a)}\right)^{2 s_{2} \varepsilon^{s_{2}-1}}-1}{\ln \left(\frac{g(b)}{g(a)}\right)^{2 s_{2} \varepsilon^{s_{2}-1}}} \\
\text { if } g(a) \neq g(b), \\
\frac{[f(a)]^{2}}{2 s_{1}} \beta\left(\frac{1}{s_{1}}, \frac{2}{r_{1}}+1\right)+\frac{r_{1}[f(b)]^{2}}{4 s_{1}+2 r_{1}} \\
+\frac{[g(a)]^{2}}{2} \text { if } g(a)=g(b) .
\end{array}\right.
$$

Proof. Since $f$ and $g$ are $\left(s_{1}, r_{1}\right),\left(s_{2}, 0\right)$-preinvex functions in the first sense respectively, we have

$$
\begin{align*}
\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) g(x) d x & =\int_{0}^{1} f(a+t \eta(b, a)) g(a+t \eta(b, a)) d t \\
& \leq \int_{0}^{1}\left[\left(1-t^{s_{1}}\right) f^{r_{1}}(a)+t^{s_{1}} f^{r_{1}}(b)\right]^{\frac{1}{r_{1}}}[g(a)]^{\left(1-t^{s_{2}}\right)}[g(b)]^{t^{s_{2}}} d t \tag{33}
\end{align*}
$$

applying the AG inequality, we get

$$
\begin{align*}
\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) g(x) d x \leq & \frac{1}{2} \int_{0}^{1}\left[\left(1-t^{s_{1}}\right) f^{r_{1}}(a)+t^{s_{1}} f^{r_{1}}(b)\right]^{\frac{2}{r_{1}}} d t \\
& +\frac{[g(a)]^{2}}{2} \int_{0}^{1}\left[\left(\frac{g(b)}{g(a)}\right)^{2}\right]^{t^{s_{2}}} d t \tag{34}
\end{align*}
$$

In the case where $g(b) \neq g(a)$, using Lemma 2 and Lemma 1, (34) gives

$$
\begin{align*}
& \frac{1}{2} \int_{0}^{1}\left[\left(1-t^{s_{1}}\right) f^{r_{1}}(a)+t^{s_{1}} f^{r_{1}}(b)\right]^{\frac{2}{r_{1}}} d t+\frac{[g(a)]^{2}}{2} \int_{0}^{1}\left[\left(\frac{g(b)}{g(a)}\right)^{2}\right]^{t^{s_{2}}} d t \\
\leq & \frac{[f(a)]^{2}}{2} \int_{0}^{1}\left(1-t^{s_{1}}\right)^{\frac{2}{r_{1}}} d t+\frac{[f(b)]^{2}}{2} \int_{0}^{1} t^{\frac{2 s_{1}}{r_{1}}} d t+\frac{[g(a)]^{2}}{2} \int_{0}^{1}\left[\left(\frac{g(b)}{g(a)}\right)^{2}\right]^{t^{s_{2}}} d t \\
= & \frac{[f(a)]^{2}}{2 s_{1}} \beta\left(\frac{1}{s_{1}}, \frac{2}{r_{1}}+1\right)+\frac{[f(b)]^{2}}{2} \frac{r_{1}}{2 s_{1}+r_{1}}+\frac{[g(a)]^{2}}{2} \int_{0}^{1}\left[\left(\frac{g(b)}{g(a)}\right)^{2}\right]^{s_{2} \varepsilon^{s_{2}-1} t+\left(1-s_{2}\right) \varepsilon^{s_{2}}} d t \\
\leq \quad & \frac{[f(a)]^{2}}{2 s_{1}} \beta\left(\frac{1}{s_{1}}, \frac{2}{r_{1}}+1\right)+\frac{[f(b)]^{2}}{2} \frac{r_{1}}{2 s_{1}+r_{1}} \\
& +\frac{[g(a)]^{2}}{2}\left(\frac{g(b)}{g(a)}\right)^{2\left(1-s_{2}\right) \varepsilon^{s_{2}}} \int_{0}^{1}\left[\left(\frac{g(b)}{g(a)}\right)^{2 s_{2} \varepsilon^{s_{2}-1}}\right]^{t} d t \\
= & \frac{[f(a)]^{2}}{2 s_{1}} \beta\left(\frac{1}{s_{1}}, \frac{2}{r_{1}}+1\right)+\frac{r_{1}[f(b)]^{2}}{4 s_{1}+2 r_{1}}+\frac{[g(a)]^{2}}{2}\left(\frac{g(b)}{g(a)}\right)^{2\left(1-s_{2}\right) \varepsilon^{s_{2}}} \frac{\left(\frac{g(b)}{g(a)}\right)^{2 s_{2} \varepsilon^{s_{2}-1}}-1}{\ln \left(\frac{g(b)}{g(a)}\right)^{2 s_{2} \varepsilon^{s_{2}-1}} .} \tag{35}
\end{align*}
$$

In the case where $g(b)=g(a),(34)$ becomes

$$
\begin{align*}
\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) g(x) d x \leq & \frac{1}{2} \int_{0}^{1}\left[\left(1-t^{s_{1}}\right) f^{r_{1}}(a)+t^{s_{1}} f^{r_{1}}(b)\right]^{\frac{2}{r_{1}}} d t \\
& +\frac{[g(a)]^{2}}{2} \int_{0}^{1} d t \tag{36}
\end{align*}
$$

using Lemma 1 for (36), we get

$$
\begin{align*}
\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) g(x) d x \leq & \frac{[f(a)]^{2}}{2 s_{1}} \beta\left(\frac{1}{s_{1}}, \frac{2}{r_{1}}+1\right)+\frac{r_{1}[f(b)]^{2}}{4 s_{1}+2 r_{1}} \\
& +\frac{[g(a)]^{2}}{2} \tag{37}
\end{align*}
$$

The proof is achieved.
Remark. If we take $s_{1}=s_{2}=1$, in Theorem 18, we obtain Theorem 11 from [30]. Theorem 19. Let $f, g:[a, a+\eta(b, a)] \rightarrow(0,+\infty)$ be $\left(s_{1}, 0\right)$ and $\left(s_{2}, 0\right)$-preinvex
functions in the first sense respectively with respect to $\eta$ with $\eta(b, a)>0$, and let
$s_{1}, s_{2} \in(0,1]$. If $f g \in L_{1}([a, a+\eta(b, a)])$, then the following inequality is valid

$$
\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) g(x) d x \leq\left\{\begin{array}{c}
\left(\frac{f(b)}{f(a)}\right)^{\left(s_{1}-1\right) \varepsilon^{s_{1}}}\left(\frac{g(b)}{g(a)}\right)^{\left(s_{2}-1\right) \varepsilon^{s_{2}}} f(a) g(a) \\
\times \frac{\left(\frac{f(b)}{f(a)}\right)^{s_{1} \varepsilon^{s_{1}-1}}\left(\frac{g(b)}{g(a)}\right)^{s_{2} \varepsilon^{s_{2}-1}}-1}{\ln \left[\left(\frac{f(b)}{f(a)}\right)^{s_{1} \varepsilon^{s_{1}-1}}\left(\frac{g(b)}{g(a)}\right)^{s_{2} \varepsilon^{s_{2}-1}}\right]} \\
\text { if } f(b) \neq f(a) \text { and } g(b) \neq g(a), \\
\left(\frac{g(b)}{g(a)}\right)^{\left(s_{2}-1\right) \varepsilon^{s_{2}}} f(a) g(a) \frac{\left(\frac{g(b)}{g(a)}\right)^{s_{2} \varepsilon^{s_{2}-1}}-1}{\ln \left(\frac{g(b)}{g g a)}\right)^{s_{2} \varepsilon^{s_{2}-1}}} \\
\text { if } f(b)=f(a) \text { and } g(b) \neq g(a), \\
\left(\frac{f(b)}{f(a)}\right)^{\left(s_{1}-1\right) \varepsilon^{s_{1}}} f(a) g(a) \frac{\left(\frac{f(b)}{f(a)}\right)^{s_{1} \varepsilon^{s_{1}-1}}-1}{\ln \left(\frac{f(b)}{f(a)}\right)^{s_{1} \varepsilon^{s}-1}} \\
\text { if } f(b) \neq f(a) \text { and } g(b)=g(a), \\
f(a) g(a) \text { if } f(b)=f(a) \text { and } g(b)=g(a),
\end{array}\right.
$$

where $\varepsilon>0$.
Proof. Since $f$ and $g$ are $\left(s_{1}, 0\right)$ and $\left(s_{2}, 0\right)$-preinvex functions in the first sense respectively, we have

$$
\begin{align*}
\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) g(x) d x & =\int_{0}^{1} f(a+t \eta(b, a)) g(a+t \eta(b, a)) d t \\
& \leq \int_{0}^{1}[f(a)]^{\left(1-t^{s_{1}}\right)}[f(b)]^{t_{1}}[g(a)]^{\left(1-t^{s_{2}}\right)}[g(b)]^{t^{s_{2}}} d t \\
& =f(a) g(a) \int_{0}^{1}\left[\frac{f(b)}{f(a)}\right]^{t^{s_{1}}}\left[\frac{g(b)}{g(a)}\right]^{t^{s_{2}}} d t \tag{39}
\end{align*}
$$

If $f(b) \neq f(a)$ and $g(b) \neq g(a)$, from Lemma 2, (39) gives

$$
\begin{align*}
& f(a) g(a) \int_{0}^{1}\left[\frac{f(b)}{f(a)}\right]^{t_{1}}\left[\frac{g(b)}{g(a)}\right]^{t^{s_{2}}} d t \\
\leq & \left(\frac{f(b)}{f(a)}\right)^{\left(s_{1}-1\right) \varepsilon^{s_{1}}}\left(\frac{g(b)}{g(a)}\right)^{\left(s_{2}-1\right) \varepsilon^{s_{2}}} f(a) g(a) \int_{0}^{1}\left[\left(\frac{f(b)}{f(a)}\right)^{s_{1} \varepsilon^{s_{1}-1}}\left(\frac{g(b)}{g(a)}\right)^{s_{2} \varepsilon^{s_{2}-1}}\right]^{t} d t \\
= & \left(\frac{f(b)}{f(a)}\right)^{\left(s_{1}-1\right) \varepsilon^{s_{1}}}\left(\frac{g(b)}{g(a)}\right)^{\left(s_{2}-1\right) \varepsilon^{s_{2}}} f(a) g(a) \frac{\left(\frac{f(b)}{f(a)}\right)^{s_{1} \varepsilon^{s_{1}-1}}\left(\frac{g(b)}{g(a)}\right)^{s_{2} \varepsilon^{s_{2}-1}}-1}{\ln \left[\left(\frac{f(b)}{f(a)}\right)^{s_{2} \varepsilon^{s_{2}-1}}\left(\frac{g(b)}{g(a)}\right)^{s_{2} \varepsilon^{s_{2}-1}}\right]} . \tag{40}
\end{align*}
$$

In the case where $f(b)=f(a)$, and $g(b) \neq g(a)$, we obtain

$$
\begin{align*}
\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) g(x) d x & \leq f(a) g(a) \int_{0}^{1}\left[\frac{g(b)}{g(a)}\right]^{t^{s_{2}}} d t \\
& =\left(\frac{g(b)}{g(a)}\right)^{\left(s_{2}-1\right) \varepsilon^{s_{2}}} f(a) g(a) \frac{\left(\frac{g(b)}{g(a)}\right)^{s_{2} \varepsilon^{s_{2}-1}}-1}{\ln \left(\frac{g(b)}{g(a)}\right)^{s_{2} \varepsilon^{s_{2}-1}}} \tag{41}
\end{align*}
$$

In the case where $f(b) \neq f(a)$ and $g(b)=g(a)$, we have

$$
\begin{align*}
\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) g(x) d x & \leq f(a) g(a) \int_{0}^{1}\left[\frac{f(b)}{f(a)}\right]^{t^{s_{1}}} d t \\
& =\left(\frac{f(b)}{f(a)}\right)^{\left(s_{1}-1\right) \varepsilon^{s_{1}}} f(a) g(a) \frac{\left(\frac{f(b)}{f(a)}\right)^{s_{1} \varepsilon^{s_{1}-1}}-1}{\ln \left(\frac{f(b)}{f(a)}\right)^{s_{1} \varepsilon^{s_{1}-1}}} \tag{42}
\end{align*}
$$

In the case where $f(b)=f(a)$, and $g(b)=g(a)$, we deduce

$$
\begin{equation*}
\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) g(x) d x=f(a) g(a) \tag{43}
\end{equation*}
$$

From (40)-(43), we get the desired result. The proof is completed.
Theorem 20. Let $f, g:[a, a+\eta(b, a)] \rightarrow \mathbb{R}^{+}$be $\left(s_{1}, r_{1}\right)$ and $\left(s_{2}, r_{2}\right)$ - preinvex functions in the first sense respectively with respect to $\eta$ with $\eta(b, a)>0$, and let $\left(s_{1}, r_{1}\right),\left(s_{2}, r_{2}\right) \in(0,1] \times(0, \infty)$ and $f(b) \neq f(a)$, and $g(b) \neq g(a)$. If $f g \in$ $L_{1}([a, a+\eta(b, a)])$, then the following inequality is valid

$$
\begin{align*}
& \frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) g(x) d x \\
\leq & \frac{r_{1}}{2 s_{1} \varepsilon^{s_{1}-1}\left[f^{r_{1}}(b)-f^{r_{1}}(a)\right]\left(2+r_{1}\right)}\left[\left[s_{1} \varepsilon^{s_{1}-1}\left[f^{r_{1}}(b)-f^{r_{1}}(a)\right]+f^{r_{1}}(a)\right.\right. \\
& \left.\left.+\left(s_{1}-1\right) \varepsilon^{s_{1}}\left[f^{r_{1}}(b)-f^{r_{1}}(a)\right]\right]^{\frac{2+r_{1}}{r_{1}}}-\left[f^{r_{1}}(a)+\left(s_{1}-1\right) \varepsilon^{s_{1}}\left[f^{r_{1}}(b)-f^{r_{1}}(a)\right]\right]^{\frac{2+r_{1}}{r_{1}}}\right] \\
& +\frac{r_{2}}{2 s_{2} \varepsilon^{s_{2}-1}\left[g ^ { r _ { 2 } ( b ) - g ^ { r _ { 2 } } ( a ) ] ( 2 + r _ { 2 } ) } \left[\left[s_{2} \varepsilon^{s_{2}-1}\left[g^{r_{2}}(b)-g^{r_{2}}(a)\right]+g^{r_{2}}(a)\right.\right.\right.} \\
& \left.\left.+\left(s_{2}-1\right) \varepsilon^{s_{2}}\left[g^{r_{2}}(b)-g^{r_{2}}(a)\right]\right]^{\frac{2+r_{2}}{r_{2}}}-\left[g^{r_{2}}(a)+\left(s_{2}-1\right) \varepsilon^{s_{2}}\left[g^{r_{2}}(b)-g^{r_{2}}(a)\right]\right]^{\frac{2+r_{2}}{r_{2}}}\right], \tag{44}
\end{align*}
$$

where $\varepsilon>0$.
Proof. Since $f$ and $g$ are $\left(s_{1}, r_{1}\right)$ and $\left(s_{2}, r_{2}\right)$-preinvex functions in the first sense
respectively, we have

$$
\begin{align*}
\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) g(x) d x= & \int_{0}^{1} f(a+t \eta(b, a)) g(a+t \eta(b, a)) d t \\
\leq & \int_{0}^{1}\left[\left[\left(1-t^{s_{1}}\right) f^{r_{1}}(a)+t^{s_{1}} f^{r_{1}}(b)\right]^{\frac{1}{r_{1}}}\right. \\
& \left.\times\left[\left(1-t^{s_{2}}\right) g^{r_{2}}(a)+t^{s_{2}} g^{r_{2}}(b)\right]^{\frac{1}{r_{2}}}\right] d t \tag{45}
\end{align*}
$$

Applying the AG inequality, we get

$$
\begin{align*}
& \int_{0}^{1}\left[\left(1-t^{s_{1}}\right) f^{r_{1}}(a)+t^{s_{1}} f^{r_{1}}(b)\right]^{\frac{1}{r_{1}}}\left[\left(1-t^{s_{2}}\right) g^{r_{2}}(a)+t^{s_{2}} g^{r_{2}}(b)\right]^{\frac{1}{r_{2}}} d t \\
& \leq \frac{1}{2} \int_{0}^{1}\left[\left(1-t^{s_{1}}\right) f^{r_{1}}(a)+t^{s_{1}} f^{r_{1}}(b)\right]^{\frac{2}{r_{1}}} d t \\
&+\frac{1}{2} \int_{0}^{1}\left[\left(1-t^{s_{2}}\right) g^{r_{2}}(a)+t^{s_{2}} g^{r_{2}}(b)\right]^{\frac{2}{r_{1}}} d t \\
&= \frac{1}{2} \int_{0}^{1}\left[\left[f^{r_{1}}(b)-f^{r_{1}}(a)\right] t^{s_{1}}+f^{r_{1}}(a)\right]^{\frac{2}{r_{1}}} d t \\
& \quad+\frac{1}{2} \int_{0}^{1}\left[\left[g^{r_{2}}(b)-g^{r_{2}}(a)\right] t^{s_{2}}+g^{r_{2}}(a)\right]^{\frac{2}{r_{1}}} d t . \tag{46}
\end{align*}
$$

From Lemma 2, we can restate (46) as follows

$$
\begin{align*}
& \frac{1}{2} \int_{0}^{1}\left[\left[f^{r_{1}}(b)-f^{r_{1}}(a)\right] t^{s_{1}}+f^{r_{1}}(a)\right]^{\frac{2}{r_{1}}} d t+\frac{1}{2} \int_{0}^{1}\left[\left[g^{r_{2}}(b)-g^{r_{2}}(a)\right] t^{s_{2}}+g^{r_{2}}(a)\right]^{\frac{2}{r_{1}}} d t \\
\leq & \frac{1}{2} \int_{0}^{1}\left[s_{1} \varepsilon^{s_{1}-1}\left[f^{r_{1}}(b)-f^{r_{1}}(a)\right] t+f^{r_{1}}(a)+\left(s_{1}-1\right) \varepsilon^{s_{1}}\left[f^{r_{1}}(b)-f^{r_{1}}(a)\right]\right]^{\frac{2}{r_{1}}} d t \\
= & \frac{r_{1}}{2 s_{1} \varepsilon^{s_{1}-1}\left[f^{r_{1}}(b)-f^{r_{1}}(a)\right]\left(2+r_{1}\right)}\left[\left[s_{1} \varepsilon^{s_{1}-1}\left[f^{r_{1}}(b)-f^{r_{1}}(a)\right]+f^{r_{1}}(a)\right.\right. \\
& \left.\left.+\left(s_{1}-1\right) \varepsilon^{s_{1}}\left[f^{r_{1}}(b)-f^{r_{1}}(a)\right]\right]^{\frac{2+r_{1}}{r_{1}}}-\left[f^{r_{1}}(a)+\left(s_{1}-1\right) \varepsilon^{s_{1}}\left[f^{r_{1}}(b)-f^{r_{1}}(a)\right]\right]^{\frac{2+r_{1}}{r_{1}}}\right] \\
+ & \frac{r_{2}}{2 s_{2} \varepsilon^{s_{2}-1}\left[g^{r_{2}}(b)-g^{r_{2}}(a)\right]\left(2+r_{2}\right)}\left[\left[s_{2} \varepsilon^{s_{2}-1}\left[g^{r_{2}}(b)-g^{r_{2}}(a)\right]+g^{r_{2}}(a)\right.\right. \\
+ & \left.\left.\left(s_{2}-1\right) \varepsilon^{s_{2}}\left[g^{r_{2}}(b)-g^{r_{2}}(a)\right]\right]^{\frac{2+r_{2}}{r_{2}}}-\left[g^{r_{2}}(a)+\left(s_{2}-1\right) \varepsilon^{s_{2}}\left[g^{r_{2}}(b)-g^{r_{2}}(a)\right]\right]^{\frac{2+r_{2}}{r_{2}}}\right]
\end{align*}
$$

which is the desired result.
Remark. If we take $s_{1}=s_{2}=1$, in Theorem 20 we obtain Theorem 11 from [30]. Moreover if $\eta(b, a)=b-a$ then we obtain Theorem 2.8 from [36].
Theorem 21. Let $f, g:[a, a+\eta(b, a)] \rightarrow \mathbb{R}^{+}$be $\left(s_{1}, 0\right)$ and $\left(s_{2}, 0\right)$-preinvex functions in the first sense respectively with respect to $\eta$ with $\eta(b, a)>0$, and let $s_{1}, s_{2} \in(0,1]$. If $f g \in L_{1}([a, a+\eta(b, a)])$, then the following inequality is valid

$$
\begin{align*}
& \frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) g(x) d x \leq \frac{[f(a)]^{2}}{2}\left(\frac{f(b)}{f(a)}\right)^{2\left(1-s_{1}\right) \varepsilon^{s_{1}}} \frac{\left(\frac{f(b)}{f(a)}\right)^{2 s_{1} \varepsilon^{1-s_{1}}}-1}{\ln \left(\frac{f(b)}{f(a)}\right)^{2 s_{1} \varepsilon^{1-s_{1}}}} \\
& +\frac{[g(a)]^{2}}{2}\left(\frac{g(b)}{g(a)}\right)^{2\left(1-s_{2}\right) \varepsilon^{s_{2}}} \frac{\left(\frac{g(b)}{g(a)}\right)^{2 s_{2} \varepsilon^{1-s_{2}}}-1}{\ln \left(\frac{g(b)}{g(a)}\right)^{2 s_{2} \varepsilon^{1-s_{2}}}} \tag{48}
\end{align*}
$$

where $\varepsilon>0$.
Proof. Since $f$ and $g$ are $\left(s_{1}, 0\right)$ and ( $\left.s_{2}, 0\right)$-preinvex functions in the first sense respectively, we have

$$
\begin{align*}
\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) g(x) d x & =\int_{0}^{1} f(a+t \eta(b, a)) g(a+t \eta(b, a)) d t \\
& \leq \int_{0}^{1}[f(a)]^{\left(1-t^{s_{1}}\right)}[f(b)]^{t^{s_{1}}}[g(a)]^{\left(1-t^{s_{2}}\right)}[g(b)]^{t^{s_{2}}} d t \\
& =f(a) g(a) \int_{0}^{1}\left[\frac{f(b)}{f(a)}\right]^{t_{1}}\left[\frac{g(b)}{g(a)}\right]^{t^{s_{2}}} d t \tag{49}
\end{align*}
$$

Applying the AG inequality, we obtain

$$
\begin{align*}
\frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) g(x) d x \leq & \frac{1}{2} \int_{0}^{1}\left[[f(a)]^{\left(1-t^{s_{1}}\right)}[f(b)]^{t^{s_{1}}}\right]^{2} d t \\
& +\frac{1}{2} \int_{0}^{1}\left[[g(a)]^{\left(1-t^{s_{2}}\right)}[g(b)]^{t^{s_{2}}}\right]^{2} d t \tag{50}
\end{align*}
$$

Using Lemma 2 for (50) yields

$$
\begin{align*}
& \frac{1}{\eta(b, a)} \int_{a}^{a+\eta(b, a)} f(x) g(x) d x \\
\leq & \frac{[f(a)]^{2}}{2} \int_{0}^{1}\left[\left(\frac{f(b)}{f(a)}\right)^{2}\right]^{s_{1} \varepsilon^{1-s_{1}}} t+\left(1-s_{1}\right) \varepsilon^{s_{1}} \\
0 & \frac{[g(a)]^{2}}{2} \int_{0}^{1}\left[\left(\frac{g(b)}{g(a)}\right)^{2}\right]^{s_{2} \varepsilon^{1-s_{2}}} t+\left(1-s_{2}\right) \varepsilon^{s_{2}} \\
= & \frac{[f(a)]^{2}}{2}\left(\frac{f(b)}{f(a)}\right)^{2\left(1-s_{1}\right) \varepsilon^{s_{1}}} \int_{0}^{1}\left[\left(\frac{f(b)}{f(a)}\right)^{2 s_{1} \varepsilon^{1-s_{1}}}\right]^{t} d t \\
= & \frac{\left[\frac{[g(a)]^{2}}{2}\left(\frac{g(b)}{g(a)}\right)^{2\left(1-s_{2}\right) \varepsilon^{s_{2}}} \int_{0}^{1}\left[\left(\frac{g(b)}{g(a)}\right)^{2 s_{2} \varepsilon^{1-s_{2}}}\right]^{t} d t\right.}{2} d t \\
= & +\frac{[g(a)]^{2}}{2}\left(\frac{f(b)]^{2}}{f(a)}\right)^{2\left(1-s_{1}\right) \varepsilon^{s_{1}}} \frac{\left(\frac{f(b)}{f(a)}\right)^{2 s_{1} \varepsilon^{1-s_{1}}}-1}{\ln \left(\frac{f(b)}{f(a)}\right)^{2 s_{1} \varepsilon^{1-s_{1}}}} \\
= & \frac{\left(\frac{g(b)}{g(a)}\right)^{2 s_{2} \varepsilon^{1-s_{2}}}-1}{\ln \left(\frac{g(b)}{g(a)}\right)^{2 s_{2} \varepsilon^{1-s_{2}}}} \tag{51}
\end{align*}
$$

The proof is achieved.
Remark. If we take $s_{1}=s_{2}=1$, in Theorem 21, we obtain Theorem 3.1 from [22].

## References

[1] A. O. Akdemir and M. Tunc, On some integral inequalities for s-logarithmically convex functions and their applications, arXiv: 1212.1584v1[math.FA] 7 Dec 2012.
[2] T. Antczak, $r$-preinvexity and $r$-invexity in mathematical programming. Comput. Math. Appl. 50 (2005), no. 3-4, 551-566.
[3] M. Avriel, $r$-convex functions. Math. Programming 2 (1972), 309-323.
[4] F. Bai, F.Qi, B.Xi, Hermite-Hadamard type inequalities for the $m$ - and ( $\alpha, m$ )-logarithmically convex functions. Filomat 27 (2013), no. 1, 1-7.
[5] A. Barani, A.G. Ghazanfari and S.S. Dragomir, Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex. J. Inequal. Appl. 2012, 2012:247, 9 pp.
[6] A. Ben-Israel and B. Mond, What is invexity? J. Austral. Math. Soc. Ser. B 28 (1986), no. 1, 1-9.
[7] W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen. (German) Publ. Inst. Math. (Beograd) (N.S.) 23 (1978), no. 37, 13-20.
[8] S. S. Dragomir, J. E. Pečarić and L. E. Persson, Some inequalities of Hadamard type. Soochow J. Math. 21 (1995), no. 3, 335-341.
[9] S. S. Dragomir, S. Fitzpatrik, The Hadamard inequalities for $s$-convex functions in the second sense. Demonstratio Math. 32 (1999), no. 4, 687-696.
[10] M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 80 (1981), no. 2, 545-550.
[11] F. Jiang and F. Meng, Explicit bounds on some new nonlinear integral inequalities with delay. J. Comput. Appl. Math. 205 (2007), no. 1, 479-486.
[12] M. A. Latif and M. Shoaib, Hermite-Hadamard type integral inequalities for differentiable $m$-preinvex and ( $\alpha, m$ )-preinvex functions. J. Egyptian Math. Soc. 23 (2015), no. 2, 236-241.
[13] J.-Y. Li, On Hadamard-type inequalities for $s$-preinvex functions, Journal of Chongqing Normal University (Natural Science) 27 (2010). [http://en.cnki.com.cn/Article_en/CJFDTotalCQSF201004003.htm].
[14] V. G. Miheşan, A generalization of the convexity, Seminar on Functional Equations, Approx. Convex, ClujNapoca, 1993. (Romania) 1.
[15] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Classical and new inequalities in analysis. Mathematics and its Applications (East European Series), 61. Kluwer Academic Publishers Group, Dordrecht, 1993.
[16] D. S. Mitrinović and I. B. Lacković, Hermite and convexity. Aequationes Math. 28 (1985), no. 3, 229-232.
[17] S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions. J. Math. Anal. Appl. 189 (1995), no. 3, 901-908.
[18] N. P. G. Ngoc, N. V. Vinh and P. T. T. Hien, Integral inequalities of Hadamard type for $r$-convex functions. Int. Math. Forum 4 (2009), no. 33-36, 1723-1728.
[19] M. A. Noor, Variational-like inequalities. Optimization 30 (1994), no. 4, 323-330.
[20] M. A. Noor, Invex equilibrium problems. J. Math. Anal. Appl. 302 (2005), no. 2, 463-475.
[21] M. A. Noor, On Hadamard integral inequalities involving two log-preinvex functions. JIPAM. J. Inequal. Pure Appl. Math. 8 (2007), no. 3, Article 75, 6 pp.
[22] M. A. Noor, Hermite-Hadamard integral inequalities for $l o g$-preinvex functions. J. Math. Anal. Approx. Theory 2 (2007), no. 2, 126-131.
[23] J. Park, On the Hermite-Hadamard-like type inequalities for co-ordinated ( $s, r$ )-convex mappings in the first sense, Inter. J. of Pure and Applied Math. 74 (2012), no. 2, 251-263.
[24] J. Park, New integral inequalities for products of similar s-convex functions in the first sense, International Journal of Pure and Applied Mathematics, 80 (2012), no. 4, 585-596.
[25] C. E. M. Pearce, J Pečarić, V. Šimić, Stolarsky means and Hadamard's inequality. J. Math. Anal. Appl. 220 (1998), no. 1, 99-109.
[26] J. Pečarić, F. Proschan and Y. L. Tong, Convex functions, partial orderings, and statistical applications. Mathematics in Science and Engineering, 187. Academic Press, Inc., Boston, MA, 1992.
[27] R. Pini, Invexity and generalized convexity. Optimization 22 (1991), no. 4, 513-525.
[28] F. Qi, Z. -L. Wei and Q. Yang, Generalizations and refinements of Hermite-Hadamard's inequality. Rocky Mountain J. Math. 35 (2005), no. 1, 235-251.
[29] A. Saglam, M. Z. Sarikaya and H. Yildirim, Some new inequalities of Hermite-Hadamard's type. Kyungpook Math. J. 50 (2010), no. 3, 399-410.
[30] W. Ul-Haq,, and J. Iqbal, Hermite-Hadamard-type inequalities for $r$-preinvex functions. J. Appl. Math. 2013, Art. ID 126457, 5 pp.
[31] Y. Wang - S. H. Wang - F. Qi, Simpson type integral inequalities in which the power of the absolute value of the first derivative of the integrand is $s$-preinvex. Facta Univ. Ser. Math. Inform. 28 (2013), no. 2, 151-159.
[32] Y. Wang, M.-M. Zheng and F. Qi, Integral inequalities of Hermite-Hadamard type for functions whose derivatives are $\alpha$-preinvex. J. Inequal. Appl. 2014, 2014:97, 10 pp.
[33] S. Wang and X. Liu, New Hermite-Hadamard type inequalities for $n$-times differentiable and $s$-logarithmically preinvex functions. Abstr. Appl. Anal. 2014, Art. ID 725987, 11 pp.
[34] T. Weir and B. Mond, Pre-invex functions in multiple objective optimization. J. Math. Anal. Appl. 136 (1988), no. 1, 29-38.
[35] X. -M. Yang and D. Li, On properties of preinvex functions. J. Math. Anal. Appl. 256 (2001), no. 1, 229-241.
[36] G. Zabandan, A. Bodaghi and A. Kiliçman, The Hermite-Hadamard inequality for $r$-convex functions. J. Inequal. Appl. 2012, 2012:215, 8 pp.
B. Meftah

Laboratoire des télécommunications, Faculté des Sciences et de la Technologie, University of 8 Mai 1945 Guelma. Algeria.

E-mail address: badrimeftah@yahoo.fr
K. Boukerrioua

Lanos Laboratory, University of Badji-Mokhtar, Annaba, Algeria.
E-mail address: khaledv2004@yahoo.fr
T. Chineb

University of 8 Mai 1945 Guelma. Algeria.
E-mail address: tchiheb@yahoo.fr


[^0]:    2010 Mathematics Subject Classification. 26D15, 26D20.
    Key words and phrases. Hermite-Hadamard inequality, preinvex $(s, r)$ - preinvex functions. Submitted Aug. 16, 2016.

