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EXISTENCE OF POSITIVE SOLUTIONS FOR ITERATIVE

SYSTEMS OF NONLINEAR m-POINT BOUNDARY VALUE

PROBLEMS ON TIME SCALES

N. SREEDHAR, K. R. PRASAD

Abstract. In this paper, we establish the existence of positive solutions for
the iterative system of nonlinear dynamic equations on time scales

y∆∆
i (t) + pi(t)fi(yi+1(t)) = 0, 1 ≤ i ≤ n, t ∈ [t1, σ(tm)]T,

yn+1(t) = y1(t), t ∈ [t1, σ(tm)]T,

satisfying the m-point boundary conditions

yi(t1) = 0,

αyi(σ(tm)) + βy∆i (σ(tm)) =

m−1∑
k=2

y∆i (tk), 1 ≤ i ≤ n,

by applying Guo–Krasnosel’skii fixed point theorem.

1. Introduction

The theory of time scales was introduced by Hilger [18] not only to unify contin-
uous and discrete theory, but also to provide an accurate information of phenomena
that manifest themselves partly in continuous time and partly in discrete time. This
theory [1, 5, 6] can be applied to various real life situations like epidemic models,
stock markets and mathematical modeling of physical and biological systems.

The existence of positive solutions of boundary value problems have created a
great deal of interest due to wide applicability in both theory and applications. By
using fixed point theorems in cones, Fink and Gatica [7], Wang [27], Zhou and Xu
[28], Henderson et al. [9, 10, 11, 12] have studied existence of positive solutions
for system of nonlinear boundary value problems associated with ordinary differ-
ential equations. Agarwal and O’Regan [2], Sun et al. [25, 26], Henderson et al.
[13, 14, 15, 16, 17] considered the system of nonlinear boundary value problems
associated with difference equations and established the existence of positive so-
lutions to boundary value problems by using various techniques. In recent years,
much attention is paid in establishing the existence of positive solutions for iterative
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systems of nonlinear boundary value problems on time scales by the researchers.
For some recent contributions, we refer to [3, 4, 19, 21, 22, 23, 24].

Motivated by the papers mentioned above, in this paper, we establish the ex-
istence of positive solutions for the iterative systems of second order nonlinear
dynamic equations on time scales

y∆∆
i (t) + pi(t)fi(yi+1(t)) = 0, 1 ≤ i ≤ n, t ∈ [t1, σ(tm)]T,

yn+1(t) = y1(t), t ∈ [t1, σ(tm)]T,

}
(1)

satisfying the m-point boundary conditions

yi(t1) = 0,

αyi(σ(tm)) + βy∆i (σ(tm)) =
m−1∑
k=2

y∆i (tk), 1 ≤ i ≤ n,

 (2)

where T is the time scale with t1, t2, · · ·, tm−1, σ(tm), σ2(tm) ∈ T, 0 ≤ t1 < t2 <
· · · < tm−1 < σ(tm), α > 0, β > m − 2 are real numbers and m ≥ 3. We assume
the following conditions hold through out the paper:

(A1) fi : R+ → R+
is continuous for 1 ≤ i ≤ n,

(A2) pi : [t1, σ(tm)]T → R+
is continuous and pi does not vanish identically on

any closed subinterval of [t1, σ(tm)]T for 1 ≤ i ≤ n,

(A3) α and β are positive constants such that α > β
t2−t1

and β > m− 2.

We define the nonnegative extended real numbers fi0 and fi∞ by

fi0 = lim
x→0+

fi(x)

x
and fi∞ = lim

x→∞

fi(x)

x
, for 1 ≤ i ≤ n,

and assume that they will exist. When fi0 = 0 and fi∞ = ∞ for 1 ≤ i ≤ n is the
called super linear case and fi0 = ∞ and fi∞ = 0 for 1 ≤ i ≤ n is called the sub
linear case.

The rest of the paper is organized as follows. In Section 2, we construct the
Green’s function for the homogeneous problem corresponding to (1)-(2) and esti-
mate bounds for the Green’s function. In Section 3, we establish the existence of
at least one positive solution of the boundary value problem (1)-(2) by using the
Guo–Krasnosel’skii fixed point theorem for operators on a cone in a Banach space.
Finally as an application, we demonstrate our results with an example.

2. Green’s Function and Bounds

In this section, we construct the Green’s function for the homogeneous problem
corresponding to (1)-(2) and estimate bounds for the Green’s function.

Let G(t, s) be the Green’s function for the homogeneous boundary value problem

−y∆∆
1 (t) = 0, t ∈ [t1, σ(tm)]T, (3)

y1(t1) = 0,

αy1(σ(tm)) + βy∆1 (σ(tm)) =
m−1∑
k=2

y∆1 (tk), m ≥ 3.

 (4)
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Lemma 1. [22, 24] Let d = α(σ(tm) − t1) + β − m + 2 ̸= 0. Then the Green’s
function G(t, s) for the homogeneous boundary value problem (3)-(4) is given by

G(t, s) =



G1(t, s), t1 ≤ s ≤ σ(s) ≤ t2,
G2(t, s), t2 ≤ s ≤ σ(s) ≤ t3,
·
·
·
Gm−2(t, s), tm−2 ≤ s ≤ σ(s) ≤ tm−1,
Gm−1(t, s), tm−1 ≤ s ≤ σ(s) ≤ σ(tm),

(5)

where

Gj(t, s) =


1

d
[(α1(σ(tm)− t) + β1 −m+ j + 1)(σ(s)− t1) + (j − 1)(t− σ(s))],

σ(s) ≤ t,
1

d
(t− t1)[α1(σ(tm)− σ(s)) + β1 −m+ j + 1], t ≤ s,

for j = 1, 2, · · ·,m− 1.

Lemma 2. [22, 24] Assume that the condition (A3) is satisfied. Then the Green’s
function G(t, s) of (3)-(4) is positive, for all (t, s) ∈ (t1, σ(tm))T × (t1, tm)T.

Theorem 3. [22, 24] Assume that the condition (A3) is satisfied. Then the Green’s
function G(t, s) in (5) satisfies the following inequality,

g(t)G(σ(s), s) ≤ G(t, s) ≤ G(σ(s), s), for all (t, s) ∈ [t1, σ(tm)]T × [t1, tm]T, (6)

where

g(t) = min

{
σ(tm)− t

σ(tm)− t1
,

t− t1
σ(tm)− t1

}
.

Lemma 4. [22, 24] Assume that the condition (A3) is satisfied and s ∈ [t1, tm]T.

Then the Green’s function G(t, s) in (5) satisfies

min
t∈[tm−1,σ(tm)]T

G(t, s) ≥ kG(σ(s), s),

where

k =
β −m+ 2

α(σ(tm)− t1) + β −m+ 2
< 1. (7)

Now, we express the solution of the boundary value problem (1)-(2) in to an
equivalent integral equation, see [3]. Therefore, an n-tuple (y1(t), y2(t), · · ·, yn(t))
is a solution of the boundary value problem (1)-(2) if and only if

yi(t) =

∫ σ(tm)

t1

G(t, s)pi(s)fi(yi+1(s))∆s, 1 ≤ i ≤ n, t ∈ [t1, σ(tm)]T,

where

yn+1(t) = y1(t), t ∈ [t1, σ(tm)]T.
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In particular

y1(t) =

∫ σ(tm)

t1

G(t, s1)p1(s1)f1

(∫ σ(tm)

t1

G(s1, s2)p2(s2) · ··

fn−1

(∫ σ(tm)

t1

G(sn−1, sn)pn(sn)fn(y1(sn))∆sn

)
· · ·∆s2

)
∆s1,

t ∈ [t1, σ(tm)]T.

To establish the existence of positive solutions for the boundary value problem
(1)-(2), we will employ the following Guo–Krasnosel’skii fixed point theorem [8, 20].

Theorem 5. [8, 20] Let X be a Banach Space, κ ⊆ X be a cone and suppose
that Ω1,Ω2 are open subsets of X with 0 ∈ Ω1 and Ω1 ⊂ Ω2. Suppose further that
T : κ ∩ (Ω2\Ω1) → κ is completely continuous operator such that either

(i) ∥Tu∥ ≤ ∥u∥, u ∈ κ ∩ ∂Ω1 and ∥Tu∥ ≥ ∥u∥, u ∈ κ ∩ ∂Ω2, or
(ii) ∥Tu∥ ≥ ∥u∥, u ∈ κ ∩ ∂Ω1 and ∥Tu∥ ≤ ∥u∥, u ∈ κ ∩ ∂Ω2 holds.

Then T has a fixed point in κ ∩ (Ω2\Ω1).

3. Positive Solutions in a Cone

In this section, we establish criteria for the existence of at least one positive
solution of the boundary value problem (1)-(2).

For our construction, let B = {x | x ∈ C[t1, σ(tm)]T} with the norm

∥x∥ = sup
t∈[t1,σ(tm)]T

|x(t)|.

Then (B, ∥ · ∥) is a Banach space, we refer [8, 13]. Define a cone P ⊂ B by

P =
{
x ∈ B | x(t) ≥ 0 on [t1, σ(tm)]T and min

t∈[tm−1,σ(tm)]T
x(t) ≥ k∥x∥

}
,

where k is given in (7).
Now, we define an integral operator T : P → B, for y1 ∈ P , by

Ty1(t) =

∫ σ(tm)

t1

G(t, s1)p1(s1)f1

(∫ σ(tm)

t1

G(s1, s2)p2(s2) · ··

fn−1

(∫ σ(tm)

t1

G(sn−1, sn)pn(sn)fn(y1(sn))∆sn

)
· · ·∆s2

)
∆s1.

(8)

Notice from (A1), (A2) and Lemma 2 that, for y1 ∈ P , Ty1(t) ≥ 0 on [t1, σ(tm)]T.

Also, for y1 ∈ P , we have from Theorem 3, that

Ty1(t) ≤
∫ σ(tm)

t1

G(σ(s1), s1)p1(s1)f1

(∫ σ(tm)

t1

G(s1, s2)p2(s2) · ··

fn−1

(∫ σ(tm)

t1

G(sn−1, sn)pn(sn)fn(y1(sn))∆sn

)
· · ·∆s2

)
∆s1
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so that

∥Ty1∥ ≤
∫ σ(tm)

t1

G(σ(s1), s1)p1(s1)f1

(∫ σ(tm)

t1

G(s1, s2)p2(s2) · ··

fn−1

(∫ σ(tm)

t1

G(sn−1, sn)pn(sn)fn(y1(sn))∆sn

)
· · ·∆s2

)
∆s1.

(9)

Next, if y1 ∈ P , we have from Lemma 4 and (9) that

min
t∈[tm−1,σ(tm)]T

Ty1(t) =

min
t∈[tm−1,σ(tm)]T

{∫ σ(tm)

t1

G(t, s1)p1(s1)f1

(∫ σ(tm)

t1

G(s1, s2)p2(s2) · ··

fn−1

(∫ σ(tm)

t1

G(sn−1, sn)pn(sn)fn(y1(sn))∆sn

)
· · ·∆s2

)
∆s1

}

≥ k

∫ σ(tm)

t1

G(σ(s1), s1)p1(s1)f1

(∫ σ(tm)

t1

G(s1, s2)p2(s2) · ··

fn−1

(∫ σ(tm)

t1

G(sn−1, sn)pn(sn)fn(y1(sn))∆sn

)
· · ·∆s2

)
∆s1

≥ k∥Ty1∥.

Hence, Ty1 ∈ P and so T : P → P . Further, the operator T is completely
continuous operator by an application of the Ascoli-Arzela Theorem.

Theorem 6. Assume that the conditions (A1)-(A3) are satisfied. If fi0 = 0 and
fi∞ = ∞, for 1 ≤ i ≤ n hold, then the boundary value problem (1)-(2) has at least
one positive solution.

Proof. Let T be the cone preserving, completely continuous operator that was de-
fined in (8). From the definitions of fi0 = 0, 1 ≤ i ≤ n, there exist η1 > 0 and
H1 > 0 such that, for each 1 ≤ i ≤ n,

fi(x) ≤ η1x, 0 < x ≤ H1,

where η1 satisfies

η1

∫ σ(tm)

t1

G(σ(s), s)pi(s)∆s ≤ 1. (10)
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Let y1 ∈ P with ∥y1∥ = H1. Then from Theorem 3, for t1 ≤ sn−1 ≤ σ(tm), we
have ∫ σ(tm)

t1

G(sn−1, sn)pn(sn)fn(y1(sn))∆sn

≤
∫ σ(tm)

t1

G(σ(sn), sn)pn(sn)fn(y1(sn))∆sn

≤
∫ σ(tm)

t1

G(σ(sn), sn)pn(sn)η1y1(sn)∆sn

≤ η1

∫ σ(tm)

t1

G(σ(sn), sn)pn(sn)∥y1∥∆sn

≤ ∥y1∥ = H1.

It follows in a similar manner from Theorem 3, for t1 ≤ sn−2 ≤ σ(tm),∫ σ(tm)

t1

G(sn−2, sn−1)pn−1(sn−1)

fn−1

(∫ σ(tm)

t1

G(sn−1, sn)pn(sn)fn(y1(sn))∆sn

)
∆sn−1

≤
∫ σ(tm)

t1

G(σ(sn−1), sn−1)pn−1(sn−1)η1H1∆sn−1 ≤ H1.

Continuing with this bootstrapping argument, we have, for t1 ≤ t ≤ σ(tm),∫ σ(tm)

t1

G(t, s1)p1(s1)f1

(∫ σ(tm)

t1

G(s1, s2)p2(s2) · ··

fn(y1(sn))∆sn · · ·∆s2

)
∆s1 ≤ H1,

so that, for t1 ≤ t ≤ σ(tm),

Ty1(t) ≤ H1.

Hence, ∥Ty1∥ ≤ H1 = ∥y1∥. If we set

Ω1 = {x ∈ B | ∥x∥ < H1},

then

∥Ty1∥ ≤ ∥y1∥, for y1 ∈ P ∩ ∂Ω1. (11)

Further, since fi∞ = ∞, 1 ≤ i ≤ n, there exist η2 > 0 and H2 > 0 such that, for
each 1 ≤ i ≤ n,

fi(x) ≥ η2x, x ≥ H2,

where η2 satisfies

k2η2

∫ σ(tm)

tm−1

G(σ(s), s)pi(s)∆s ≥ 1. (12)

Let

H2 = max

{
2H1,

H2

k

}
.
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Choose y1 ∈ P and ∥y1∥ = H2. Then,

min
t∈[tm−1,σ(tm)]T

y1(t) ≥ k∥y1∥ ≥ H2.

From Lemma 4, for t1 ≤ sn−1 ≤ σ(tm), we have∫ σ(tm)

t1

G(sn−1, sn)pn(sn)fn(y1(sn))∆sn

≥
∫ σ(tm)

tm−1

G(sn−1, sn)pn(sn)fn(y1(sn))∆sn

≥ k

∫ σ(tm)

tm−1

G(σ(sn), sn)pn(sn)η2y1(sn)∆sn

≥ k2η2

∫ σ(tm)

tm−1

G(σ(sn), sn)pn(sn)∥y1∥∆sn

≥ ∥y1∥ = H2.

It follows in a similar manner from Lemma 4, for t1 ≤ sn−2 ≤ σ(tm),∫ σ(tm)

t1

G(sn−2, sn−1)pn−1(sn−1)

fn−1

(∫ σ(tm)

t1

G(sn−1, sn)pn(sn)fn(y1(sn))∆sn

)
∆sn−1

≥ k

∫ σ(tm)

tm−1

G(σ(sn−1), sn−1)pn−1(sn−1)η2H2∆sn−1

≥ k2η2H2

∫ σ(tm)

tm−1

G(σ(sn−1), sn−1)pn−1(sn−1)∆sn−1 ≥ H2.

Again, using a bootstrapping argument, we have∫ σ(tm)

t1

G(t, s1)p1(s1)f1

(∫ σ(tm)

t1

G(s1, s2)p2(s2) · ··

fn(y1(sn))∆sn · · ·∆s2

)
∆s1 ≥ H2,

so that

Ty1(t) ≥ H2 = ∥y1∥.
Hence, ∥Ty1∥ ≥ ∥y1∥. So, if we set

Ω2 = {x ∈ B | ∥x∥ < H2},

then

∥Ty1∥ ≥ ∥y1∥, for y1 ∈ P ∩ ∂Ω2. (13)

Applying Theorem 5 to (11) and (13), it follows that T has a fixed point y1 ∈
P∩(Ω2\Ω1). As such, setting yn+1 = y1, we obtain a positive solution (y1, y2, ···, yn)
of (1)-(2). �
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Theorem 7. Assume that the conditions (A1)-(A3) are satisfied. If fi0 = ∞ and
fi∞ = 0, for 1 ≤ i ≤ n hold, then the boundary value problem (1)-(2) has at least
one positive solution.

Proof. Let T be the cone preserving, completely continuous operator that was de-
fined in (8). Since fi0 = ∞, 1 ≤ i ≤ n, there exist η3 > 0 and H3 > 0 such that,
for each 1 ≤ i ≤ n,

fi(x) ≥ η3x, 0 < x ≤ H3,

where η3 ≥ η2 and η2 is given in (12).
Let y1 ∈ P with ∥y1∥ = H3. Then from Lemma 4, for t1 ≤ sn−1 ≤ σ(tm), we

have ∫ σ(tm)

t1

G(sn−1, sn)pn(sn)fn(y1(sn))∆sn

≥
∫ σ(tm)

tm−1

G(sn−1, sn)pn(sn)fn(y1(sn))∆sn

≥ k

∫ σ(tm)

tm−1

G(σ(sn), sn)pn(sn)η3y1(sn)∆sn

≥ k2η3

∫ σ(tm)

tm−1

G(σ(sn), sn)pn(sn)∥y1∥∆sn

≥ ∥y1∥ = H3.

It follows in a similar manner from Lemma 4, for t1 ≤ sn−2 ≤ σ(tm),∫ σ(tm)

t1

G(sn−2, sn−1)pn−1(sn−1)

fn−1

(∫ σ(tm)

t1

G(sn−1, sn)pn(sn)fn(y1(sn))∆sn

)
∆sn−1

≥ k

∫ σ(tm)

tm−1

G(σ(sn−1), sn−1)pn−1(sn−1)η3H3∆sn−1

≥ k2η3H3

∫ σ(tm)

tm−1

G(σ(sn−1), sn−1)pn−1(sn−1)∆sn−1 ≥ H3.

Continuing with this bootstrapping argument, it follows that∫ σ(tm)

t1

G(t, s1)p1(s1)f1

(∫ σ(tm)

t1

G(s1, s2)p2(s2) · ··

fn(y1(sn))∆sn · · ·∆s2

)
∆s1 ≥ H3,

so that

Ty1(t) ≥ H3 = ∥y1∥.
Hence, ∥Ty1∥ ≥ ∥y1∥. So, if we set

Ω3 = {x ∈ B | ∥x∥ < H3},

then

∥Ty1∥ ≥ ∥y1∥, for y1 ∈ P ∩ ∂Ω3. (14)
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Next, since fi∞ = 0, 1 ≤ i ≤ n, there exist η4 > 0 and H4 > 0 such that, for each
1 ≤ i ≤ n,

fi(x) ≤ η4x, x ≥ H4,

where η4 ≤ η1 and η1 is given in (10).
For each 1 ≤ i ≤ n, set

f∗
i (x) = sup

0≤s≤x
fi(s).

Then, it is straightforward that, for each 1 ≤ i ≤ n, f∗
i is a nondecreasing real-

valued function, fi ≤ f∗
i and

lim
x→∞

f∗
i (x)

x
= 0.

It follows that there exists H4 > max{2H3,H4} such that, for each 1 ≤ i ≤ n,

f∗
i (x) ≤ f∗

i (H4), 0 < x ≤ H4.

Choose y1 ∈ P with ∥y1∥ = H4. Then, using the usual bootstrapping argument,
we have

Ty1(t) =

∫ σ(tm)

t1

G(t, s1)p1(s1)f1

(∫ σ(tm)

t1

G(s1, s2)p2(s2) · · ·∆s2

)
∆s1

≤
∫ σ(tm)

t1

G(t, s1)p1(s1)f
∗
1

(∫ σ(tm)

t1

G(s1, s2)p2(s2) · · ·∆s2

)
∆s1

≤
∫ σ(tm)

t1

G(σ(s1), s1)p1(s1)f
∗
1 (H4)∆s1

≤
∫ σ(tm)

t1

G(σ(s1), s1)p1(s1)η4H4∆s1

≤ H4 = ∥y1∥.

Hence, ∥Ty1∥ ≤ ∥y1∥. So, if we set

Ω4 = {x ∈ B | ∥x∥ < H4},

then

∥Ty1∥ ≤ ∥y1∥, for y1 ∈ P ∩ ∂Ω4. (15)

Applying Theorem 5 to (14) and (15), we obtain that T has a fixed point y1 ∈
P ∩ (Ω4\Ω3), which in turn with yn+1 = y1, yields an n-tuple (y1, y2, · · ·, yn)
satisfying (1)-(2). The proof is completed. �

4. Examples

Let us consider the examples to illustrate our results.

Example 1. Let T = {( 12 )
p : p ∈ N0} ∪ [1, 3], n = 2, m = 3, α = 5, β = 2, t1 = 1

2 ,
t2 = 1 and t3 = 2. Now, consider the iterative systems of nonlinear dynamic
equations on time scales

y∆∆
1 (t) + p1(t)f1(y2(t)) = 0, t ∈

[
1

2
, σ(2)

]
T

,

y∆∆
2 (t) + p2(t)f2(y1(t)) = 0, t ∈

[
1

2
, σ(2)

]
T

,

 (16)
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satisfying three-point boundary conditions

y1

(
1

2

)
= 0, 5y1(σ(2)) + 2y∆1 (σ(2)) = y∆1 (1),

y2

(
1

2

)
= 0, 5y2(σ(2)) + 2y∆2 (σ(2)) = y∆2 (1),

 (17)

where p1(t) = p2(t) = t, f1(y2) = y22(1 + e−2y2) and f2(y1) = y21(1− 3e−y1).
Then all the conditions of Theorem 6 are satisfied and hence, the boundary value
problem (16)-(17) has at least one positive solution.

Example 2. Let Let T = {( 12 )
p : p ∈ N0} ∪ [1, 3], n = 2, m = 3, α = 5, β = 2,

t1 = 1
2 , t2 = 1 and t3 = 2. Now, consider the iterative systems of nonlinear dynamic

equations on time scales

y∆∆
1 (t) + p1(t)f1(y2(t)) = 0, t ∈

[
1

2
, σ(2)

]
T

,

y∆∆
2 (t) + p2(t)f2(y1(t)) = 0, t ∈

[
1

2
, σ(2)

]
T

,

 (18)

satisfying three-point boundary conditions

y1

(
1

2

)
= 0, 5y1(σ(2)) + 2y∆1 (σ(2)) = y∆1 (1),

y2

(
1

2

)
= 0, 5y2(σ(2)) + 2y∆2 (σ(2)) = y∆2 (1),

 (19)

where p1(t) = p2(t) =
t
2 , f1(y2) = y

2
3
2 and f2(y1) = y

3
4
1 .

Then all the conditions of Theorem 7 are satisfied and hence, the boundary value
problem (18)-(19) has at least one positive solution.

Acknowledgments: The authors thank the referees for their valuable suggestions
and comments.
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