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MODIFIED EXPONENTIAL CHEBYSHEV OPERATIONAL

MATRICES OF DERIVATIVES FOR SOLVING HIGH-ORDER

PARTIAL DIFFERENTIAL EQUATIONS IN UNBOUNDED

DOMAINS

M. A. RAMADAN, K. R. MOHAMED, T. S. EL DANAF, M. A. ABD EL SALAM

Abstract. In this paper, a modified type of exponential Chebyshev opera-
tional matrices of derivatives is presented. The introduced operational ma-
trices were employed for solving high-order linear partial differential equa-

tions (PDEs) with variable coefficients under general form of conditions by
collocation method. The method is based on the approximation by the trun-
cated double exponential Chebyshev (EC) series. The PDEs and conditions
are transformed into block matrix equations, which correspond to a system

of linear algebraic equations with the unknown EC coefficients, by using EC
collocation points. Combining these matrix equations and then solving the
system yields the EC coefficients of the solution function. Numerical examples

are included to demonstrate the validity and applicability of the method.

1. Introduction

It is well known that the numerical methods have played an important role in
solving PDEs. Some of the most known numerical methods that widely applied to
solving PDEs are finite differences and finit element methods [22], [6]. Recently,
various approximate methods are discussed, such as differential transform method,
Adomian decomposition method and Homotopy analysis method see [25, 3, 23, 11,
13, 8, 20].

In addition, spectral methods are one of the principal methods for solving differ-
ential equations. The main idea of spectral methods is to approximate the solutions
of differential equations by means of truncated series of orthogonal polynomials.
The most used versions of spectral methods are tau, collocation, and Galerkin
methods [9, 5, 1, 24, 14]. One of the most important orthogonal polynomials is
Chebyshev polynomials. Mehamet Sezer [21] and Akyuz-Dascioglu [7] used the
Chebyshev matrix method which is based on the Chebyshev coefficients for high
order partial differential equations with complicated conditions, and most of them
were on bounded intervals.
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Koc and Kurnaz [10] have proposed modified type of Chebyshev polynomials as
an alternative to the solutions of PDEs given in all real domain. In their studies,
the basis functions called exponential Chebyshev (EC) functions En(x) that are or-
thogonal in (−∞, ∞) and applied to solve PDEs. This kind of extension tackles the
problems over the whole real domain. In our previous reports [15] and [16] we in-
troduced a modified form of the operational matrix of the derivatives by processing
the truncation made by Koc [10] and applied it to ordinary and systems differential
equations defined in whole rang. Recently, we reported a new operational matrix
of derivatives of EC functions for solving ODEs in unbounded domains [17]. Also
a new operational matrix of derivatives based on exponential Chebyshev of the
second kind (ESC) functions introduced by us and employed to solve ordinary and
partial differential equations with variable coefficients in unbounded domains using
the collocation method [18] and [19]. In this paper, we introduce a modification of
the operational matrices of the partial derivaties given in [10], that based on the
relations between EC functions and their derivatives. It is very effective method for
direct solution of PDEs with complicated conditions and it is also useful to obtain
the approximate solution in whole domain.

The rest of the paper is organized as follows; in section 2, the definition, proper-
ties and the operational matrices of EC functions are listed, in section 3, the form
of high-order linear non-homogeneous partial differential equations is presented,
in section 4, we formulated the fundamental matrix relation based on collocation
points, in section 5, method of solution is presented and finally, section 6 contains
numerical illustrations and results that are compared with the exact solutions to
demonstrate the applicability and accuracy of the present method.

2. Properties of double EC functions

Basu [4], has given the product Tr,s(x, y) = Tr(x) · Ts(x),which is a private
form of Chebyshev polynomials. Mason [12] also has used a Chebyshev polynomial
expression for an infinitely differentiable function u(x, y) defined on the square S
(−∞ < x, y < ∞), where Tr(x) and Ts(y) are Chebyshev polynomials of the first
kind.

2.1. Definition. The double functions are in the following form

Er,s(x, y) = Er(x) · Es(y), (1)

where Er(x) and Es(y) are EC functions of the form

Er(x) = Tr

(
ex − 1

ex + 1

)
, Es(y) = Ts

(
ey − 1

ey + 1

)
.

The recurrence relation takes the form

Er+1,s(x, y) =
{
2
(

ex−1
ex+1

)
Er(x)− Er−1 (x)

}
· Es(y), r ≥ 1

Er,s+1(x, y) = Er(x) ·
{
2
(

ey−1
ey+1

)
Es(y)− Es−1 (y)

}
. s ≥ 1

(2)

2.2. Orthogonality of double EC functions. If the function f(x, y) is contin-
uous in S, then Er,s(x, y) are orthogonal with respect to the weight function

w(x, y) =
√
ex+y/ (ex + 1) (ey + 1) ,
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with the orthogonality condition [10, 15, 16]

∫ ∞

−∞

∫ ∞

−∞
Ei,j(x, y)Ek,l(x, y)w(x, y)dxdy =


π2 i = j = k = l = 0
π2

4 i = k ̸= 0, j = l ̸= 0
π2

2 i = k = 0, j = l ̸= 0
or i = k ̸= 0, j = l = 0

0 other wise

.

(3)
Also the product relation of double EC functions used in the partial derivatives

relations is given by

Em,n(x, y)·Ei,j(x, y) =
1

4
[Em+i,n+j(x, y)+Em+i,|n−j|(x, y)+E|m−i|,n+j(x, y)+E|m−i|,|n−j|(x, y)].

2.3. Function expansion in terms of double EC functions. A function u(x, y)
well defined over the square S, can be expanded as [12]

u(x, y) =
∞∑
r=0

∞∑
s=0

ar,sEr,s(x, y), (4)

where

ar,s =

∫∞
−∞

∫∞
−∞ u(x, y)Er,s(x, y)w(x, y)dxdy∫∞

−∞
∫∞
−∞ E2

r,s(x, y)w(x, y)dxdy
.

If u(x, y) in expression (4) is truncated to n, m < ∞ in terms of the double EC
functions, it will take the form

U(x, y) ∼=
m∑
r=0

n∑
s=0

ar,sEr,s(x, y) = E(x, y) ·A, (5)

where E(x, y) is 1 × (m + 1)(n + 1) vector with elements Er,s(x, y) and A is an
unknown coefficient column vector are of the form

E(x, y) = [E0,0(x, y) E0,1(x, y) .... E0,n(x, y) E1,0(x, y) E1,1(x, y) .... E1,n(x, y)
..... Em,0(x, y) Em,1(x, y) .... Em,n(x, y)],

(6)

A = [a0,0(x, y) a0,1(x, y) .... a0,n(x, y) a1,0(x, y) a1,1(x, y) .... a1,n(x, y)
..... am,0(x, y) am,1(x, y) .... am,n(x, y)]

T .
(7)

2.4. The derivatives of double EC functions.

Proposition 1. The relation between the row vector E(x, y) and its (k)th-order
derivative is given as

E(i,j)(x, y) ∼= E(x, y)(Dx)
i(Dy)

j , (8)

where, Dx and Dy are the (m+1)(n+1)× (m+1)(n+1)operational matrices for
the derivatives, and the general form of them is

Dx = diag

(
α

4
I, 0,

−α

4
I

)T

, α = 0, 1, ..., m (9)
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and

Dy =


µ 0 · · · 0
0 µ · · · 0
...

...
. . .

...
0 0 · · · µ


T

, µ = diag

(
β

4
, 0,

−β

4

)
, β = 0, 1, ..., n. (10)

We note that I and 0 are (n+ 1)× (n+ 1) identity and zero matrices in the block
matrix Dx which is (m+ 1)× (m+ 1). Also µ is matrix is (n+ 1)× (n+ 1) in the
block matrix Dy which is (m+ 1)× (m+ 1).

For more details for definition 2.1 and the properties mentioned in subsections
2.2, 2.3, 2.4, proposition.1 and its proof we refer the reader to [10], [15] and [16].

Now we have noted that, in [17] Koc and Kurnaz considered that E
(1,0)
r,s (x, y) =

E
(0,0)
r,s (x, y) = 0 for r > m and E

(0,1)
r,s (x, y) = E

(0,0)
r,s (x, y) = 0 for s > n in their work.

This consideration based on truncation in the operational matricesDx andDy to be
square matrices and the matrix multiplication become possible. Now we introduce
a modification to the operational matrices of EC functions to include the neglected
terms that processes this truncation in Dx and Dy in the next proposition.

Proposition 2. The (i, j)-th partial derivatives of the row vector E(x, y) is given
as

E(i,j)(x, y) = E(x, y)(Dx)
i(Dy)

j +
∑j−1

l=0 B
(0,−l+j−1)
2 (x, y)(Dy)

l(Dx)
i

+
∑i−1

k=0 B
(−k+i−1,0)
1 (x, y) (Dx)

k(Dy)
j .

(11)

where, Dx and Dy are given as before in (9), (10), where B1(x, y), B2(x, y) are
1× (m+ 1)(n+ 1) row vectors:

B1(x, y) = [0 0 ... 0
−m

4
Em+1,0(x, y)

−m

4
Em+1,1(x, y) ...

−m

4
Em+1,n(x, y)],

(12)

B2(x, y)[0 0 ...
−n

4
E0,n+1(x, y) 0 0 ...

−n

4
E2,n+1(x, y) ... 0 0 ...

−n

4
Em,n+1(x, y)].

(13)

Before we prove our proposition we note that the two summations in (11) are
actual terms to get the equality sign that was truncated in (8). These added terms
will improve the obtained approximate solutions as will be shown in the numerical
examples in section 6.

Proof. The first partial derivatives of the E(x, y) can be expressed with equality
sign by

E(1,0)(x, y) = E(x, y)Dx +B1(x, y), E(0,1)(x, y) = E(x, y)Dy +B2(x, y), (14)

consequently, to obtain the matrix E(i,j)(x, y), we can use the relation (14) as

E(1,0)(x, y) = E(x, y)Dx +B1(x, y),

E(2,0)(x, y) = E(1,0)(x, y)Dx +B
(1,0)
1 (x, y) = (E(x, y)Dx +B1(x, y))Dx +B

(1,0)
1 (x, y),

then, by induction we get i-th partial derivative with respect to x as

E(i,0)(x, y) = E(x, y)(Dx)
i +

i−1∑
k=0

B
(−k+i−1,0)
1 (x, y) (Dx)

k , i ≥ 1 (15)
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whereB
(i,0)
1 (x, y) = [0 0 ........ 0 −m

4 E
(i,0)
m+1,0(x, y)

−m
4 E

(i,0)
m+1,1(x, y) ....

−m
4 E

(i,0)
m+1,n(x, y)].

Now, we will find the j-th partial derivative of the relation (15) with respect to
the variable y as

E(i,1)(x, y) = E(0,1)(x, y)(Dx)
i +
∑i−1

k=0 B
(−k+i−1,1)
1 (x, y) (Dx)

k

= E(x, y)Dy(Dx)
i +B2(x, y)(Dx)

i +
∑i−1

k=0 B
(−k+i−1,1)
1 (x, y) (Dx)

k,

and

E(i,2)(x, y) = E(x, y)(Dy)
2(Dx)

i +B
(0,1)
2 (x, y)(Dx)

i +
i−1∑
k=0

B
(−k+i−1,2)
1 (x, y) (Dx)

k,

finally, by induction we get (i, j )-th partial derivatives as

E(i,j)(x, y) = E(x, y)(Dy)
j(Dx)

i +
∑j−1

l=0 B
(0,−l+j−1)
2 (x, y)(Dy)

l (Dx)
i

+
∑i−1

k=0 B
(−k+i−1,j)
1 (x, y) (Dx)

k.
(16)

Similarly, if we begin with the partial derivative of the variable y then we find the
(i, j )-th partial derivatives as

E(i,j)(x, y) = E(x, y)(Dx)
i(Dy)

j +
∑j−1

l=0 B
(i,l+j−1)
2 (x, y)(Dy)

l

+
∑i−1

k=0 B
(−k+i−1,0)
1 (x, y) (Dx)

k(Dy)
j .

(17)

Then from (16) and (17) we find that

E(i,j)(x, y) = E(x, y)(Dx)
i(Dy)

j +
∑j−1

l=0 B
(0,−l+j−1)
2 (x, y)(Dy)

l(Dx)
i

+
∑i−1

k=0 B
(−k+i−1,0)
1 (x, y) (Dx)

k(Dy)
j .

(18)

which end the proof. �

3. Application of the introduced modified version of derivatives for
high-order PDEs

The form of high-order linear non-homogeneous partial differential equations
with variable coefficients in unbounded domains is

p∑
i=0

r∑
j=0

qi,j(x, y)u
(i,j)(x, y) = f(x, y),−∞ < x, y < ∞, (19)

with the complicated conditions [21], [7], [10]
ρ∑

t=1

p∑
k=0

r∑
j=0

bti,ju
(i,j) (ωt, ηt) = λ ,

and / or
ν∑

t=1

p∑
k=0

r∑
j=0

cti,j(x)u
(i,j) (x, γt) = g(x) , (20)

and / or
θ∑

t=1

p∑
k=0

r∑
j=0

dti,j(y)u
(i,j) (εt, y) = h(y) ,

where the u(0,0)(x, y)=u(x, y), u(i,j)(x, y) = ∂i+j

∂xi∂yj u(x, y) and qi,j(x, y), f(x, y),

cti,j(x), g(x), d
k
ij , h(y) are known functions on the square S (−∞ < x, y < ∞, ),

and ωt, ηt, γt, εt are constant ∈ (∞,−∞) and may be one or more of them tends
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to infinity. Now, we consider that the approximate solution U(x, y) to the ex-
act solution u(x, y) of Eq. (19) defined by expression (5) and its (i, j)-th partial
derivatives defined by Eq. (18) as

U(x, y) =
m∑
r=0

n∑
s=0

ar,sEr,s(x, y),= E(x, y) ·A, (21)

and

U (i,j)(x, y) = [E(x, y)(Dx)
i(Dy)

j +
∑j−1

l=0 B
(0,−l+j−1)
2 (x, y)(Dy)

l(Dx)
i

+
∑i−1

k=0 B
(−k+i−1,0)
1 (x, y) (Dx)

k(Dy)
j ]A.

. (22)

4. Fundamental Matrix Relations

Let us define the collocation points [10], [15] and [16], so that −∞ < xi, yi < ∞,
as

xk = Ln

(
1+cos( kπ

m )
1−cos( kπ

m )

)
, yl = Ln

(
1+cos( lπ

n )
1−cos( lπ

n )

)
,

(k = 1, ..., m− 1, l = 1, ..., n− 1)
(23)

and at the boundaries

(k = 0, k = m) x0 → ∞, xm → −∞, (l = 0, l = n) y0 → ∞, yn → −∞,

since the double EC functions are convergent at both boundaries ±∞, namely their
values are ±1. The appearance of infinity in the collocation points does not cause
a loss or divergence in the method. Then, we substitute the collocation points (23)
into Eq. (19) to obtain

p∑
i=0

r∑
j=0

qi,j(xk, yl)u
(i,j)(xk, yl) = f(xk, yl), (24)

The system (24) can be written in the matrix form
p∑

i=0

r∑
j=0

Qi,j U(i,j) = F p ≤ m, r ≤ n, (25)

where Qi,j denotes the diagonal matrix with inner elements are qi,j(xk, yl) and F
denotes the column matrix with the elements f(xk, yl) where k = 0, 1, 2, ..., m ; l =
0, 1, 2, ..., n, by substituting the collocation points (23) into derivatives of the
unknown function as in Eq. (22) yields

U(i,j) =



U (i,j)(x0, y0)
...

U (i,j)(x0, yn)
U (i,j)(x1, y0)

...
U (i,j)(x1, yn)

...
U (i,j)(xn, ym)


=

[E(Dx)
i(Dy)

j+∑j−1
l=0 B

(0,−l+j−1)
2 (Dy)

l(Dx)
i+∑i−1

k=0 B
(−k+i−1,0)
1 (Dx)

k(Dy)
j ]A

, (26)

where

E = [E(x0, y0) E(x0, y1) ... E(x0, yn) E(x1, y0) E(x1, y1) ... E(x1, yn)
... E(xm, y0) E(xm, y1) ... E(xm, yn)]

T ,
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and

B1 = [B1(x0, y0) B1(x0, y1) ... B1(x0, yn) B1(x1, y0) B1(x1, y1) ... B1(x1, yn)
... B1(xm, y0) B1(xm, y1) ... B1(xm, yn)]

T ,

B2 = [B2(x0, y0) B2(x0, y1) ... B2(x0, yn) B2(x1, y0) B2(x1, y1) ... B2(x1, yn)
... B2(xm, y0) B2(xm, y1) ... B2(xm, yn)]

T .

Therefore, from Eq. (25), we get a system of equations ”fundamental matrix” for
the PDE will be in the form p∑

i=0

r∑
j=0

Qi,j


E(x, y)(Dx)

i(Dy)
j+∑j−1

l=0 B
(0,−l+j−1)
2 (x, y)(Dy)

l(Dx)
i+∑i−1

k=0 B
(−k+i−1,0)
1 (x, y) (Dx)

k(Dy)
j


A = F , (27)

which corresponds to a system of (m + 1)(n + 1) linear algebraic equations with
(m+1)(n+1) double EC coefficients ar,s unknowns. By substituting the collocation
points (23) in the conditions (20) by same procedure before we get the fundamental
matrices for conditions as

∑ρ
l=1

∑p
k=0

∑r
j=0 b

t
i,j(xk)


E (ωt, ηt) (Dx)

i(Dy)
j+∑j−1

l=0 B
(0,−l+j−1)
2 (ωt, ηt)(Dy)

l(Dx)
i+∑i−1

k=0 B
(−k+i−1,0)
1 (ωt, ηt) (Dx)

k(Dy)
j

A = λ,

∑ν
t=1

∑p
k=0

∑r
j=0 c

t
i,j(xk)


E (xk, γt) (Dx)

i(Dy)
j+∑j−1

l=0 B
(0,−l+j−1)
2 (xk, γt)(Dy)

l(Dx)
i+∑i−1

k=0 B
(−k+i−1,0)
1 (xk, γt) (Dx)

k(Dy)
j

A = g(xk)

∑θ
t=1

∑p
k=0

∑r
j=0 d

t
i,j(yl)


E (εt, y) (Dx)

i(Dy)
j+∑j−1

l=0 B
(0,−l+j−1)
2 (εt, y) (Dy)

l(Dx)
i+∑i−1

k=0 B
(−k+i−1,0)
1 (εt, y) (Dx)

k(Dy)
j

A = h(yl) .

(28)
It is also noted that the structure of matrices Qi,jand F vary according to the
number of collocation points and the structure of the problem. However,E, B1,
B2, Dx and Dy do not change their nature for fixed values of m and n which are
truncation limits of the EC series. In other words, the changes in E, B1, B2, Dx

and Dy are just dependent on the number of collocation points.

5. Method of Solution

The fundamental matrix (27) for Eq. (19) corresponding to a system of (m +
1)(n+ 1) algebraic equations for the (m+ 1)(n+ 1) unknown coefficients
[a0,0, a0,1, ... a0,n, a1,0, a1,1, ;... a1,n, .... , am,0, am,1, ... am,n]. We can write the
matrix (27) as

W A=F or [W; F], (29)

and we can obtain the matrix form for the conditions by means of (28) in a compact
form as

V A = R or [V;R] , (30)

where V is a h× (m+ 1)(n+ 1) matrix and R is a h× 1 matrix, so that h is the
rank of the all row matrices as in (28) belong to the given conditions.
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Then (29) together with (30) can be written following compact form:

W∗A = F∗, or [W∗;F∗] . (31)

Furthermore, the system (31) can be formed by appending the rows (30) on
conditions to the system (29). Then the size of the system of algebraic equations
increases and thereforeW∗ becomes a rectangular matrix. To solve this new system,
the generalized inverse of W∗ can be used [7], and so the double EC coefficients
can be found as

A = geninv(W∗)·F∗.

The method procedure can be summarized by the following algorithm:
1. Calculating the matrix W
2. Forming the matrix W∗ by adding V
3. Solving the system of algebraic equations and gitting the unnkwon coefficients

6. Test examples

We consider some numerical examples that are numerically treated by the above
mentioned method. The numerical computations are carried out by the Mathemat-
ica. 7.0, with usual PC (Intel processor CORE i3 2.53 GHz, 2.00 GB RAM).

Example: 6.1
Consider the following differential equation

u(2,1) +
1

1 + ex
u(1,0) = f(x, y), x, y ∈ (−∞, ∞) , (32)

to be the test problem, with exact solution

u(x, y) =

(
1 +

4

1− Coshx

)(
Tanh

y

2

)
,

where, the function f(x, y)takes the form

f(x, y) =
1

4
Sech4

(x
2

)
Sech2

(y
2

)
(4 + (1 + Sinhx) Sinhy − Coshx (2 + Sinhy)) ,

and the conditions for this test example are

u(x, y) = −3+Coshx
1+Coshx , at y → ∞,

u(x, y) = −1 at x → ∞ and at y → −∞,
u(0, 0) = 0, and u(x, 0) = 0 at x → −∞ .

The fundamental matrix takes the form{
Q1,0

[
E(Dx)

1
+B1

]
+Q2,1

[
E(Dx)

2
(Dy)

1
+B2(Dx)

2
+B1DyDx +B

(1,0)
1 Dy

]}
A = F,

We take m=n=8, where, the approximate solution given by

U(x, y) = a0,0E,00(x, y) + a0,1E0,1(x, y) + · · ·+ a8,8E8,8(x, y),

then, by using the algorithm of the method we get the matrix of coefficinets as,

a0,0 = a0,1 = ... = a0,8 = 0,
a1,0 = 0, a1,1 = .... = a1,8 = 0,
a2,0 = 0, a2,1 = 1, a2,2 = ... = a2,8 = 0,

...
a8,0 = a8,1 = ... = a8,8 = 0,
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then, U(x, y) = E2,1(x, y), that is close to

U(x, y) =

(
−1 + 2

(
ex − 1

ex + 1

)2
)(

ey − 1

ey + 1

)
=

(
1 +

4

1− Coshx

)(
Tanh

y

2

)
,

which represent the exact solution of the problem, the CPU time used by the
program is 55.068 seconds.

Example: 6.2
Consider the following differential equation [10] and [19]

uxy −
2

1 + ex
uy =

4ey

(1 + ex)2(1 + ey)2
, x, y ∈ (−∞, ∞) , (33)

with conditions

uy(0, y) = 0, u(x, 0) = 0.

The fundamental matrix takes the form{
Q0,1

[
E(Dy)

1
+B2

]
+Q1,1

[
E(Dx)

1
(Dy)

1
+B2Dx +B1Dy

]}
A = F,

We take m=n=8, where, the approximate solution given by

U(x, y) = a0,0E,00(x, y) + a0,1E0,1(x, y) + · · ·+ a8,8E8,8(x, y),

then, after the augmented matrix of the system and conditions are computed, we
obtain the solution as,

a0,0 = a0,1 = ... = a0,8 = 0,
a1,0 = 0, a1,1 = 1, a1,2 = a1,3 = .... = a1,8 = 0,
a2,0 = a2,1 = ... = a2,8 = 0,

...
a8,0 = a8,1 = ... = a8,8 = 0,

then, U(x, y) = E1,1(x, y), that is close to

U(x, y) =

(
ex − 1

ex + 1

)(
ey − 1

ey + 1

)
=

(
ex+y − ex − ey + 1

(ex + 1) (ey + 1)

)
,

which represent the exact solution of the problem. On the other hand, solution
given in [10] at n = m = 15 the approximate solution doesn’t give the exact
solution, also the time used is 44.898 seconds.

Example: 6.3
The Cauchy problem [21], for the one-dimensional homogeneous wave equation

is given by

uyy − c2uxx = 0, −∞ < x < ∞, y ∈ [0, ∞),
u (x, 0) = f(x), uy(x, 0) = g(x), −∞ < x < ∞.

(34)

The solution of this problem can be interpreted as the amplitude of a sound wave
propagating in very long and narrow pipe, which in practice can be considered as
one-dimensional infinite medium. The initial conditions f , g are given functions
that represent the amplitude u and the velocity uy of the string at time y = 0. The
exact solution of (34) is given by D’Alembert’s formula

u(x, y) =
1

2
[f(x+ cy) + f(x− cy)] +

1

2c

∫ x+cy

x−cy

g(s)ds
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Thus, if we take f(x) = Sech(x) and g(x) = 0, we use our present method to
solve (34), at n = m = 8, 10 by using double EC collocation points, we obtain the
approximate solution U(x, y).

In Table.1, the exact and approximate solutions are listed according to different

values of x, y. The calculation of L2 norm

(
L2 =

√
h
∑I

i=0 (u
i − U i)

2

)
presented

in Table.2, shows that the grater n, m give good accuracy at step size h = 0.1, x ∈
[−2, 2], y ∈ [0, 1] and, that our proposed method is accurate more than method
presented in [10].

Table.3 compares between the CPU time of our method and the method given
in [10], and shows that our method takes more time because of the truncation in
the other algorithim. ”The time is mentioned by seconds”.

In Figure.1 we seek the contour plots of the exact, approximate solutions (n=m=8, 10)
and the approximate solution by the method given in [10], such that x ∈ [−2, 2], y ∈
[0, 1]. In Figure.2 the error function of exact and approximate solutions for example
6.3 given where x ∈ [0, 1], y ∈ [0, 1].

Table. 1 comparing the approximate and exact solution
x y Exact Our method Abs error Our method Abs error

solution n=m=8 n=m=10
0 1 0.648054 0.64752 5.34×10−4 0.647913 1.41×10−4

0.1 0.9 0.697877 0.697648 2.28×10−4 0.697785 9.19×10−5

0.2 0.5 0.876667 0.876798 1.131×10−4 0.876665 1.76×10−6

0.3 0.7 0.786531 0.78637 1.161×10−4 0.786684 1.52×10−4

0.4 0.6 0.814191 0.8137 4.91×10−4 0.814417 2.25×10−4

0.5 0.5 0.824027 0.823361 6.66×10−4 0.824273 2.46×10−4

0.6 0.3 0.827211 0.826981 2.30×10−4 0.827267 5.62×10−5

0.7 0.4 0.777981 0.777705 2.76×10−4 0.778422 4.41×10−4

0.8 0.7 0.710058 0.711906 1.84×10−3 0.712759 2.7×10−3

0.9 0.2 0.69802 0.697918 1.01×10−4 0.698057 3.74×10−5

1 1 0.632901 0.641166 8.26×10−3 0.635261 2.36×10−3

Table. 2 comparing the L2norm
our method L2 Method [10] L2

n=m=8 1.57006×10−3 3.58864×10−2

n=m=10 1.116309×10−3 1.4611×10−2

Table. 3 comparing the CPU time (seconds)
our method Method [10]

n = m = 8 69.403 7.785
n = m = 10 102.821 14.946

contour plot exact solution contour plot [10] n = m = 8
contour plot present method n = m = 10 contour plot present method

n = m = 10
Figure .1 contour plots for example 6.3 x ∈ [−2, 2], y ∈ [0, 1]

Error functions for n = m = 10 Error functions for n = m = 8
Figure .2 error function of exact and approximate solutions for example 6.3

x ∈ [0, 1], y ∈ [0, 1]

Example: 6.4
Let us consider the Poisson equation [21], [19] and [2]
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▽2 u = f (x, y) , 0 ≤ x, y ≤ 1 (35)

Poisson equation arises in steady state heat problems with time independent
heat sources, where the Dirichlet boundary conditions in general form is

u(0, y) = f1(y), u(x, 0) = g1(x),
u(1, y) = f2(y), u(x, 1) = g2(x).

If we chose the exact solution to be as

u(x, y) = (1 + ex)
−1

(1 + ey)
−1

,

then, we find

f1(y) =
1

2
(1 + ey)

−1
, g1(x) =

1

2
(1 + ex)

−1
,

f2(y) = (1 + ey)
−1

(1 + e)
−1

, g2(x) = (1 + e)
−1

(1 + ex)
−1

.

Appling our present method to solve (35), at n = m = 8 by using double EC
collocation points, we obtain the approximate solution

U(x, y) = 0.25E0,0(x, y)− 0.25E0,1(x, y)− 0.25E1,0(x, y) + 0.25E1,1(x, y).

By simplifying the previous relation we reach to

U(x, y) = (1 + ex)
−1

(1 + ey)
−1

,

which represent the exact solution of Poisson equation (35) with the connected
conditions. In figure 3 we seek the contour plots of the exact and approximate
solutions where, x, y ∈ [0, 1] .

contour plot exact solution contour plot approximate solution
Figure .3 contour plots for example 6.4 x ∈ [0, 1], y ∈ [0, 1]

7. Conclusion

In this paper, a modified type of collocation method for solving high-order linear
partial differential equations with variable coefficients under most general form
of conditions is investigated. The method based on the approximation by the
truncated double exponential Chebyshev (EC) series, and modified definition of the
partial derivatives are presented. All principles and properties of this modification
type are derived and introduced by us as a new definition. The PDEs and conditions
are transformed into block matrix equations, which correspond to a system of linear
algebraic equations with the unknown EC coefficients, by using EC collocation
points. The generalized inverse is used to solve this linear system and finding the
EC coefficients. Illustrative examples are used to demonstrate the applicability,
effectiveness and the accuracy of the proposed technique. In addition, an interesting
feature of this method is to find the analytical exact solution if the equation has
an exact solution of rational exponential form. The method can also be extended
to high-order nonlinear partial differential equation with variable coefficients, but
some modifications are required.
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