Electronic Journal of Mathematical Analysis and Applications Vol. 5(2) July 2017, pp. 250-259. ISSN: 2090-729X(online) http://fcag-egypt.com/Journals/EJMAA/

ON h-TRANSFORMATION OF SOME SPECIAL FINSLER SPACE

MANOJ KUMAR SINGH AND SAMIDHA YADAV

ABSTRACT. The purpose of the present paper is to find the relation between the v-curvature tensor with respect to Cartan's connection of Finsler space $F^n=(M^n,L)$ and $\overline{F^n}=(M^n,\bar{L})$ where $\bar{L}(x,y)$ is obtained from L(x,y) by the transformation $\bar{L}(x,y)=e^{\sigma}L(x,y)+b_i(x,y)y^i$ and $b_i(x,y)$ is an h-vector in (M^n,L) . we shall also study the properties of Finsler space $\bar{F^n}$ under the condition that F^n is some special Finsler space . In particular of $e^{\sigma}L(x,y)$ is conformal change then (v)h and (v)hv torsion tensors of (M^n,\bar{L}) have been obtained .

1. INTRODUCTION

Let $F^n = (M^n, L)$ be an n-dimensional Finsler space , where M^n is an n-dimensional differentiable manifold and L(x, y) is the Finsler fundamental, function. Matsumoto [1] introduced transformation of Finsler metric

$$\bar{L} = e^{\sigma}L + b_i(x)y^i \tag{1.1}$$

and obtained the relation between the Cartan's connection coefficients of F^n and $\bar{F}^n = (M^n, \bar{L})$. It has been assumed that the function b_i in (1.1) are functions of co- ordinates x^i only. If in (1.1) $\sigma(x)$ vanishes and L(x, y) is a metric function of Riemannian space then $\bar{L}(x, y)$ reduces to the Randers Space which is introduced by G. Randers [3]. If L(x, y) is a metric function of Riemannian space then $\bar{L}(x, y)$ reduces to the β -conformal change. H. Izumi [2] introduced the h-vector $b_i(x, y)$ in the conformal transformation of Finsler space, which is v-covariantly constant with respect to Cartan's connection $C\Gamma$ and satisfies $LC_{ij}^h b_n = \rho h_{ij}$ where C_{ij}^h is Cartan's C-tensor, h_{ij} is the angular metric tensor, ρ a function which depends only on co-ordinates and is given by, $\rho = \frac{1}{(n-1)} L C^i b_i$ and $C^i = C_{jk}^i g^{jk}$ is the torsion vector. Thus the h-vector b_i is not only a function of co-ordinates but it is a function of directional argument satisfying $L \frac{\partial b_i}{\partial y^i} = \rho h_{ij}$. Many authors A.Taleshian et.al.[10] and S.H. Abed [11] studied the properties of such Finsler Spaces obtained by this metric. In this paper we consider the metric function given by equation $\bar{L} = e^{\sigma}L(x, y) + b_i(x, y)y^i$, which generalizes many Changes in Finsler geometry, called h- conformal transformation of Finsler metric. The section second

²⁰¹⁰ Mathematics Subject Classification. 52B40, 53C60.

Key words and phrases. Conformal transformation, h-transformation, (h)-torsion tensor, (hv)-torsion tensor, v-curvature tensor.

Submitted Sep. 9, 2016.

of this paper gives the relation between Cartan connection $C\Gamma$ of $F^n = (M^n, L)$ and $\bar{F}^n = (M^n, \bar{L})$. The third section is devoted to find the torsion tensors \bar{R}_{ijk} of \bar{F}^n and we consider the case that this space is of scalar curvature. The fourth section is devoted to find the torsion tensor \bar{P}_{hjk} and to consider the case that this space becomes a Landsberg space.

For an h-vector b_i , we have the following[2].

Lemma 1.1 If b_i is an *h*-vector then the function ρ and $\overline{l_i} = b_i - \rho e^{\sigma} l_i$ are independent of y^i .

Lemma 1.2 The magnitude b of an *h*-vector b_i is independent of y^i .

2. Cartan's connection of the space $\bar{F^n}$

Let b_i be a vector field in the Finsler space (M^n, L) , if b_i satisfies the conditions

$$(1)b_{i|j} = 0 (2)LC^{h}{}_{ij}b_{h} = \rho h_{ij} (2.1)$$

then the vector field b_i is called an h-vector[2]. Here i|j denote the v-covariant derivative with respect to Cartan's connection $C\Gamma$. C_{ij}^h is the Cartan's C tensor, h_{ij} is the angular metric tensor and ρ be a function given by

$$\rho = (n-1)^{-1} L C^i b_i \tag{2.2}$$

where C^{i} is the torsion vector $C^{i}{}_{jk}g^{jk}$. from (2.1) we get

$$\rho_j b_i = L^{-1} \rho h_{ij} \tag{2.3}$$

Throughout the paper we shall use the notation

 $L_i = \partial_i L$, $L_{ij} = \partial_i \partial_j L$...

The quantities and operations referring to $\bar{F^n}$ are indicated by putting bar, thus from (1.1) we get

$$(a)\overline{L}_{i} = e^{\sigma}L_{i} + b_{i}$$

$$(b)\overline{L}_{ij} = (e^{\sigma} + \rho)L_{ij}$$

$$(c)\overline{L}_{ijk} = (e^{\sigma} + \rho)L_{ijk}$$

$$(d)\overline{L}_{ijkh} = (e^{\sigma} + \rho)L_{ijkh}$$

$$(2.4)$$

and so on . If l_i , h_{ij} , g_{ij} and C_{ijk} denote the normalized element of support, the angular metric tensor, the fundamental metric tensor and Cartan's C-tensor of F^n respectively, then these quantities in $\bar{F^n}$ are obtained by (2.4) as [9]

$$\overline{l_i} = e^{\sigma} l_i + b_i \tag{2.5}$$

$$\bar{h}_{ij} = \tau (e^{\sigma} + \rho) h_{ij} \tag{2.6}$$

$$\bar{g}_{ij} = \tau (e^{\sigma} + \rho)g_{ij} + [e^{2\sigma} - \tau (e^{\sigma} + \rho)]l_i l_j + e^{\sigma} b_i l_j + e^{\sigma} l_i b_j + b_i b_j$$
(2.7)

$$\overline{C}_{ijk} = \tau (e^{\sigma} + \rho) C_{ijk} + (2L)^{-1} (e^{\sigma} + \rho) V_{ijk} (h_{ij} m_k)$$
(2.8)

where $\tau = \frac{L}{L}$, $m_i = b_i - \beta L^{-1} l_i$ and V_{ijk} {} denotes the cyclic interchange of indices i, j, k and summation. From (2.6) and (2.8) we get the following,

Lemma 2.1 If F^n is C-reducible Finsler space then \overline{F}^n is also a C-reducible Finsler space. From (2.7), the relation between contravariant components of the fundamental tensor is given by

$$\bar{g}^{ij} = (\tau(e^{\sigma} + \rho)^{-1}g^{ij} - \tau^{-3}(e^{\sigma} + e)^{-1}(e^{2\sigma}(1 - b^2) - \tau(e^{\sigma} + e))l^i l^j - \tau^{-2}(e^{\sigma} + \rho)^{-1}(l^i b^j + l^j b^i)$$
(2.9)

where b is the magnitude of the vector $b^i = g^{ij}b_j$. From (2.8) and (2.9), we get

$$\bar{C}^{h}_{ij} = C^{h}_{ij} + (2\bar{L})^{-1} (h_{ij}m^{h} + h^{h}_{j}m_{i} + h^{h}_{i}m_{j})$$
$$\bar{L}^{-1}[\rho + L(2\bar{L})^{-1}(b^{2} - \beta^{2}L^{-2}))h_{i}j + L\bar{L}^{-1}m_{i}m_{i}]l^{n}$$
(2.10)

 $-L^{-1}[\rho + L(2\bar{L})^{-1}(b^2 - \beta^2 L^{-2}))h_i j + L\bar{L}^{-m} m_j]l^n \qquad (2.10)$ Now we shall be concerned with Cartan's connection of F^n and \bar{F}^n , this connection is denoted by $C\Gamma = (F^i_{jk}, N^i_k, C^i_{jk})$. Here $N^i_k = F^i_{0k} \ (=Y^j F^i_{jk})$ and $C^h_{ij} = g^{hk}C_{ijk}$. Since for a Cartan's connection $L_{ij}|r = 0$, we obtain

$$\partial_k L_{ij} = L_{ijr} N_k^r + L_{rj} F_{ik}^r + L_{ir} F_{jk}^r.$$
(2.11)

Differentiation of equation (2.4b) leads to

$$\partial_k \overline{L}_{ij} = (e^{\sigma} + \rho) \partial_k L_{ij} + \rho_k L_{ij}$$
(2.12)

where we put $\rho_k = \partial_k \rho = \rho_{|k}$. If we put

$$D^i_{jk} = \overline{F}^i_{jk} - F^i_{jk} \tag{2.13}$$

then the difference D_{jk}^i is obviously a tensor of (1.2) type. In virtue of (2.11) equation (2.12) is written in the tensorial form as,

$$(e^{\sigma} + \rho)(L_{ijr}D_{0k}^r + L_{rj}D_{ik}^r + L_{ir}D_{jk}^r = \rho_k L_{ij}$$
(2.14)

In order to find the difference tensor D_{jk}^i , we construct supplementary equation to (2.14) from (2.4a) we obtain

$$\rho_j \bar{L}_i = e^\sigma \partial_j L_i + \partial_j b_i \tag{2.15}$$

From $L_{i|j} = 0$ equation (2.15) is written in the form

$$\bar{L}_{ir}\bar{N}_{j}^{r} + \bar{L}_{r}\bar{F}_{ij}^{r} = (e^{\sigma} + \rho)L_{ir}N_{j}^{r} + (L_{r} + b_{r})F_{ij}^{r} + b_{i|j}$$

By means of (2.4) and (2.13) this equation may be written in the tensorial form as,

$$(e^{\sigma} + \rho)L_{ir}D^{r}_{0j} + (l_r + b_r)D^{r}_{ij} = bi|j$$
(2.16)

To find the difference tensor D_{jk}^i we have the following[4], Lemma 2.2The system of algebraic equation

$$(1)L_{ir}A^{r} = B_{i} (2)(l_{r} + b_{r})A^{r} = B$$

has a unique solution A^r for given B and B_i such that $B_i l^i = 0$, The solution is given by

$$A^i = LB^i + \tau^{-1}(B - LB_\beta)l^i$$

where subscript β denote the contraction by b^i

Now we give the following result.

Theorem 2.1The Cartan's connection of \overline{F}^n is completely determined by equation (2.14) and (2.16) in terms of F^n . It is obvious that (2.16) is equivalent to the two equations,

$$(e^{\sigma} + \rho)(L_{ir}D_{0j}^r + L_{jr}D_{0i}^r) + 2(l_r + b_r)D_{ij}^r = 2E_{ij}$$
(2.17)

$$(e^{\sigma} + \rho)(L_{ir}D_{0j}^r - L_{jr}D_{0i}^r) = 2F_{ij}$$
(2.18)

Where we put,

$$2E_{ij} = b_{i|j} + b_{j|i}, 2F_{ij} = b_{i|j} - b_{j|i}$$
(2.19)

on the other hand (2.14) is equivalent to

$$2(e^{\sigma} + \rho)L_{jr}D_{ik}^{r} + (e^{\sigma} + \rho)(L_{ijr}D_{0k}^{r} + L_{jkr}D_{0i}^{r})$$

$$) = \rho_k L_{ij} + \rho_i L_{jk} - \rho_j L_{ki}$$

$$(2.20)$$

contracting (2.17) with y^j , we get

$$(e^{\sigma} + \rho)L_{ir}D_{00}^r + 2(l_r + b_r)D_{0i}^r = 2E_{i0}.$$
(2.21)

Similarly from (2.18) and (2.20), we obtain

 $-L_{kir}D_{oj}^{r}$

$$(e^{\sigma} + \rho)L_{ir}D_{00}^r = 2F_{i0} \tag{2.22}$$

$$(e^{\sigma} + \rho)(L_{ir}D_{0j}^{r} + L_{jr}D_{0i}^{r} + L_{ijr}D_{00}^{r}) = \rho_{0}L_{ij}$$
(2.23)

contracting of (2.21) with y^i gives

$$(l_r + b_r)D_{00}^r = E_{00} (2.24)$$

Now first consider (2.22) and (2.24) and apply lemma (2.1) to obtain,

$$D_{00}^{i} = (e^{\sigma} + \rho)^{-1} 2LF_{0}^{i} + \tau^{-1} (E_{00} - 2L(e^{\sigma} + \rho)^{-1}F_{\beta 0})l^{i}$$
(2.25)

where we put $F_0^i = g^{ij} F_{j0}$

Secondly we add (2.18) and (2.23) to obtain

$$L_{ir}D^r_{0j} = G_{ij} \tag{2.26}$$

where we put

$$G_{ij} = (2(e^{\sigma} + \rho))^{-1} (2F_{ij} + \rho_0 L_{ij} - (e^{\sigma} + \rho) L_{ijr} D_{00}^r).$$
(2.27)

The equation (2.21) is written in the form

$$(l_r + b_r)D_{0j}^r = G_J (2.28)$$

where we put

$$G_j = E_{j0} - 2^{-1} (e^{\sigma} + \rho) L_{jr} D_{00}^r.$$
(2.29)

Substituting from (2.25) in (2.27), we obtain

$$G_{ij} = (e^{\sigma} + \rho)^{-1} [F_{ij} - LL_{ijr} F_0^r + L_{ij} ((e^{\sigma} + \rho) E_{00} - 2LF_{\beta 0} + \overline{L}\rho_0) (2\overline{L})^{-1}]$$
(2.30)
By virtue of (2.22), G_j are written as

$$G_j = E_{j0} - F_{j0} \tag{2.31}$$

Thus we have obtained the system of equation's (2.26) and (2.28), and applying lemma (2.2) to these equation's we obtain

$$D_{0j}^{i} = LG_{j}^{i} + \tau^{-1}(G_{j} - LG_{\beta j})l^{i}$$
(2.32)

where we put $G_j^i = g^{ir} G_{rj}$ Finally from (2.20) and (2.17), we get

$$L_{ir}D_{jk}^{r} = H_{ijk}$$
 $(l_{r} + b_{r})D_{jk}^{r} = H_{jk}$ (2.33)

where we put

$$H_{jk} = E_{jk} - \frac{(e^{\sigma} + \rho)}{2} (L_{jr} D_{0k}^r + L_{kr} D_{0j}^r)$$

 $H_{ijk} = (2(e^{\sigma} + \rho))^{-1}(\rho_k L_{ij} + e_j L_{ik} - \rho_i L_{kj}) - \frac{1}{2}(L_{ijr} D_{0k}^r + L_{ikr} D_{0j}^r - L_{kjr} D_{0i}^r)$ Now applying lemma (2.1) to equation (2.33), we get

$$D_{jk}^{i} = LH_{jk}^{i} + \tau^{-1}(H_{jk} - LH_{\beta jk})l^{i}$$
(2.34)

where we put $H_{jk}^i = g^{hi} H_{hjk}$. By virtue of (2.32) H_{ijk} and H_{jk} are written in terms of known quantites,

$$H_{ijk} = \frac{1}{2}L(L_{kjr}G_i^r - L_{ijr}G_k^r - L_{ikr}G_j^r) + L_{ij}A_k + L_{ik}A_j - L_{jk}A_i$$
(2.35)

$$H_{jk} = E_{jk} - (e^{\sigma} + \rho) \frac{L}{2} (L_{jr}G_k^r + L_{kr}G_j^r)$$
(2.36)

where

$$A_i = (2(e^{\sigma} + \rho))^{-1}\rho_i + (2\tau)^{-1}(G_i - LG_{\beta i})$$

3. The *h*-torsion tensor \bar{R}_{hjk} of \bar{F}^n

Let F^n be a locally Minkowski space whose fundamental function L is expressed by $L(y) = (g_{ij}y^iy^j)^{\frac{1}{2}}(y^i = dx^i)$ in terms of an adoptable co-ordinate system x^i . The connection parameter C Γ of the certain connection of F^n is given by

$$F_{jk}^{i} = 0, N_{j}^{i} = F_{0j}^{i} = 0, C_{jk}^{i} = g^{ir}C_{rjk}$$

$$(3.1)$$

Thus the h-covariant differentiation $X_{i|j}$ of a covariant vector field X_i may be written as $X_{i|j} = \partial_j X_i$. In view of (2.13), (2.32) and (3.1), the connection parameter \bar{N}_i^i of \bar{F}^n may be written as

$$\overline{N}_j^i = LG_j^i + \tau^{-1}(G_j - LG_{\beta j})l^i$$
(3.2)

The value of G_{ij} in (2.30) may be written as

$$G_{ij} = (e^{\sigma} + e)^{-1} \{ A_{ij} + L^{-1}(F_{j0}(l_i + F_{i0}l_j) + L_j) + Gh_{ij} \}$$
(3.3)

where

$$G = (2L\bar{L})^{-1}((e^{\sigma} + \rho)E_{00} - 2LF_{\beta 0} + \bar{L}\rho_0)$$
(3.4)

and

$$A_{ij} = F_{ij} - 2C_{ijr}F_0^r \tag{3.5}$$

The h-torsion tensor \bar{R}_{hjk} of $(M^n, \bar{L}$ is defined

$$\bar{R}_{hjk} = V_{(j,k)} \{ \bar{h}_{hi} (\partial_k \bar{N}_j^r - \bar{N}_k^r \dot{\partial}_r \bar{N}_j^i) \}$$

$$(3.6)$$

The symbol $V_{(j,k)}$ denotes the interchange of (j,k) and substraction. In view of (2.6), we have

$$\bar{R}_{hjk} = V_{(j,k)} \{ (e^{\sigma} + \rho) \bar{L} L_{hi} (\partial_k \bar{N}^i_j - \bar{N}^r_j \dot{\partial}_r \bar{N}^i_j) \}$$
(3.7)

By virtue of (3.1) and (2.13) equation (2.26) may be written as $L_{hi}\bar{N}_{j}^{i} = G_{hi}$, by which we write $L_{hi}\partial_{h}\bar{N}_{j}^{i} = G_{h|j}$ and $V_{(j,k)}\{L_{hi}\bar{N}_{k}^{r}\dot{\partial}_{r}\bar{N}_{j}^{i}\} = V_{(j,k)}(LG_{k}^{r}\partial_{r}G_{hj})$ Thus (3.7) may be written as

$$\bar{R}_{hjk} = (e^{\sigma} + \rho) V_{(j,k)} \{ \bar{L} (G_{hj|k} - LG_k^r \partial_r G_{hj}) \}$$

$$(3.8)$$

By virtue of equation (3.3), we have

$$G_{kj|h} = (e^{\sigma} + \rho)^{-1} [A_{hj|k} + L^{-1} (l_h F_{j0|k} + l_j F_{h0|k}) + G|kh_{hj}] - (e^{\sigma} + \rho)^{-2} \rho_k (A_{hj} + \overline{L} (l_h F_{j0} + l_j F_{h0}) + G_h h_j)$$
(3.9)

$$\dot{\partial}_r G_{hj} = (e^{\sigma} + \rho)^{-1} [-2(F_{m0}\dot{\partial}_r C_{hj}^m + C_{hj}^m F_{mr}) + \dot{\partial}_r Gh_{hj} + (G^{-1})^{-1} (2C_{hjr} - L^{-1}(l_h h_{jr} + l_j h_{hr})) + L^{-2}(h_{hr} - l_h l_r) F_{j0}]$$

255

 $+ (h_{jr} - l_j l_r) F_{h0}) + L^{-1} ((l_h F_{jr} + l_j F_{hr} + 2^{-1} (\rho_j h_{hr} - \rho_h h_{jr})).$ (3.10) From equation (3.3) and (3.10), we get

$$(e^{\sigma} + \rho)^{2} V_{(j,k)} \{ G_{k}^{r} \dot{\partial}_{r} G_{hj} \} = V_{(j,k)} \{ -[A_{j}^{r} \dot{\partial}_{r} G + G \dot{\partial}_{j} G + L^{-1} l_{j} (F_{0}^{r} \dot{\partial}_{r} G + G^{2}) \\ - L^{-2} G(F_{j0} - 2^{-1} \rho_{0} l_{j} + 2^{-1} L \rho_{j})] h_{hk} + 2A_{j}^{r} (F_{s0} \dot{\partial}_{r} C_{hk}^{s} + C_{hk}^{s} F_{sr} + (2L)^{-1} \rho_{0} C_{hkr}) \\ + 2GF_{s0} (\dot{\partial}_{j} C_{hk}^{s} + 2C_{jr}^{s} C_{hk}^{r}) - L^{-2} (A_{hj} F_{k0} - F_{h0} F_{jk} - F_{0}^{r} F_{jr} l_{h} l_{k}) - L^{-1} [A_{j}^{r} F_{hr} l_{k} \\ + 2F_{0}^{r} ((F_{s0} \dot{\partial}_{r} C_{hj}^{s} + C_{hj}^{s} (F_{sr}) l_{k} + 2F_{0}^{r} C_{rj}^{s} F_{sk} l_{h})] - L^{-2} \rho_{0} C_{hjr} F_{o}^{r} l_{k} + 2^{-1} L^{-2} \rho_{0} (l_{h} A_{jk} \\ + l_{j} A_{hk} + L^{-1} l_{h} l_{j} A_{k0}) + 2^{-1} L^{-1} (\rho_{j} A_{hk} - \rho_{h} A_{jk}) + 2^{-1} L^{-2} \rho_{j} (l_{h} A_{k0} + l_{h} F_{ho})\}.$$

$$(3.11)$$

on substituting (3.9) and (3.11) in (3.8) and we get

Theorem 3.1The h-torsion tensor \bar{R}_{hjk} of the Finsler space \bar{F}^n is written in the form

$$\bar{R}_{hjk} = (e^{\sigma} + \rho)^{-1} V_{(j,k)} \{ \bar{L}L \ G'_j \ h_{hk} + L^2 K_{hjk} + (l_h k_{jk} + l_j K_{kh}) - l_h l_j k_{0k} \}$$
(3.12)
where

$$\begin{split} G'_{j} &= A^{r}_{j} \dot{\partial}_{r} G + G \dot{\partial}_{j} G - L^{-1} (G_{|j}(e^{\sigma} + rho) - (F^{r}_{r} \dot{\partial}_{r} G + G^{2}) l_{j}) \\ &- L^{-2} G F_{j0} + 2^{-1} L^{-2} G (L \rho_{j} - \rho_{0} l_{j}). \end{split}$$

$$K_{jk} = K_{jok} - \tau (A_k^i F_{ji} - 2GC_{jk}^s F_{s0} + L^{-1}(2F_{j0}F_{k0} + \rho_0 A_{jk} + \rho_0 C_{jkr}F_0^r + (2L)^{-1}(\rho_k F_{j0} + \rho_j F_{k0}))$$

$$\begin{split} K_{hjk} &= \tau [L^{-1}(e^{\sigma} + rho)A_{hjk} - 2A_j^r (F_{s0}\dot{\partial}_r C_{hk}^s + C_{hk}^s F_{sr}) - 2GF_{s0}(\dot{\partial}_j C_{hk}^t + 2C_{jr}^s C_{hk}^r) \\ &+ L^{-2} (A_{hj}F_{k0} - F_{h0}F_{jk}) + \rho_0 L^{-1} C_{hjr} A_h^r + (2L)^{-1} (\rho A_{hk} + \rho_h A_{jk})]. \end{split}$$

If the Finsler space \bar{F}^n is of scalar curvature \bar{R} then we have the equation $\bar{R}_{i0j} = \bar{R} \bar{L}^2 \bar{h}_{ij}$ [4]. If the scalar \bar{R} is constant then \bar{F}^n is said to be of constant curvature. From equation (3.12) the contracted *h*-torsion tensor \bar{R}_{i0j} of \bar{F}^n is given by

$$\bar{R}_{i0j} = (e^{\sigma} + \rho)^{-1} (\bar{L}LG'_0 h_{ij} + L^2 W_{ij} - L(l_i W_{j0} + l_j W_{i0}) + W_{00} l_i l_j)$$
(3.13)

where we put $W_{ij} = K_{i0j} - K_{ij0} + K_{ij}$ and W_{ij} is symmetric in the indices i and j. Equation $\bar{R}_{i0j} = \bar{R}\bar{L}^2\bar{h}_{ij}$ may be written as $\bar{R}_{i0j} = \tau(e^{\sigma} + \rho)\bar{R}\bar{L}^2h_{ij}$. Thus from equation (3.13) we get the following :

Theorem 3.2 Let \bar{F}^n be a Finsler space with the metric $\bar{L} = e^{\sigma}L + \beta$ where $L = (g_{ij}(y)y^iy^j)^{1/2}$, $\beta = b_i(x,y)y^i$ and b_i is an h vector in (M^n, L) . If \bar{F}^n is of scalar curvature \bar{R} then the matrix $[\lambda h_{ij} - W_{ij}]$ is of rank less than three where $\lambda = \tau((e^{\sigma} + \rho)^2 \tau^2 \bar{R} - G'_0)$.

Now we consider the case $F_{ij} = 0$. In this case $A_{ij} = 0, K_{ijk} = 0, K_{ij} = 0$ and hence $W_{ij} = 0$ holds good. Therefore the tensor \bar{R}_{i0j} of \bar{F}^n is reduced to the form $\bar{R}_{i0j} = (e^{\sigma} + \rho)^{-1} \bar{L} L G'_0 h_{ij}$. Consequently we have the following

Theorem 3.3Let \bar{F}^n be an above Finsler space. If the condition $F_{ij} = 0$ is satisfied, then \bar{F}^n is of scaler curvature $\bar{R} = ((e^{\sigma} + \rho)\tau)^{-2}G'_0$. Now we get the following,

Theorem 3.4 In the above theorem if the scalar \overline{R} is constant, then $\overline{R} = 0$ and the space \overline{F}^n is a locally Minkowskian space.

Proof. From equation (2.3) and $F_{ij} = 0$ we get

$$2\partial_r F_{ij} = L^{-1}(\rho_j h_{ir} - \rho_i h_{jr}) = 0$$
(3.14)

which after contraction with y^i gives $\rho_0 = 0$. Thus contracting equation (3.14) with g^{jr} we get $\rho_j = 0$. Therefore the scalar \bar{R} is written in the form

$$\bar{R} = ((e^{\sigma} + \rho)\tau)^{-2}(G^2b - L^{-1}(e^{\sigma} + \rho)G_{|0}$$
(3.15)

From equation (3.15) and $G = (e^{\sigma} + \rho)E_{00}(2L\bar{L})^{-4}$ it follows that the condition $\bar{R} = constant$ is written in the form

$$[2\beta E_{00|0} - 3E_{00}^{2} + 4(L^{4} + 6L^{2}\beta^{2} + \beta^{4})C] + 2L[E_{00|0} + 8\beta(L^{2} + \beta^{2})C] = 0$$
(3.16)

from above equation we see that first bracket is a fourth degree polynomial and second bracket is third degree polynomial in y^i . Therefore we write

$$2\beta E_{00|0} - 3E_{00}^2 + 4(L^4 + 6L^2\beta^2 + \beta^4)C = 0$$
(3.17)

$$E_{00|0} + 8\beta(L^2 + \beta^2)C = 0 \tag{3.18}$$

From equation (3.17) and (3.18) we get

$$3E_{00}^2 = 4C(L^2 - \beta)(L^2 + 3\beta^2)$$
(3.19)

If $C \neq 0$ then in view of $F_{ij} = 0$ and $b_{0|0} = 0$, the *h*-covariant derivative of (3.19) gives

$$3E_{00|0} = 8C\beta(L^2 - 3\beta^2) \tag{3.20}$$

Elimination of $E_{00|0}$ from (3.18) and (3.20) gives $L^2\beta C = 0$ from which we get $\beta = 0$ as $L^2 C \neq 0$. Since $\dot{\partial}_j \beta = b_j$, therefore $b_i = 0$ gives $E_{ij} = 0$. Hence Equation (3.19) gives C = 0. This contradicts our assumption $C \neq o$. Hence the scalar $\bar{R} = C = 0$ and from equation (3.19) we get $E_{00} = 0$. Since $F_{ij} = 0$ gives $\rho_i = 0$, therefore $E_{00} = 0$ implies $F_{ij} = 0$ that is $b_{i|j} = \partial_j b_i = 0$. Thus b_i does not contain x^i . Hence \bar{F}^n is Locally Minkowskian space.

4. The *hv*-torsion tensor \bar{P}_{ijk} of \bar{F}^n

The hv- torsion tensor \bar{P}_{hjk} of \bar{F}^n is defined as

$$\bar{P}_{hjk} = \bar{C}_{hjk|0} = y^r \partial_r \bar{C}_{hjk} - \dot{\partial}_r \bar{C}_{hjk} \ \bar{N}_0^r - V_{(hjk)} \{ \bar{C}_{hjr} \ \bar{F}_{ko}^r \}$$
(4.1)

where $V_{(ijk)}$ denotes the cyclic interchange of indices ijk and summation. In view of (2.8) and $P_{hjk}=C_{hjk|0}=0$, we obtain

$$y^{r}\partial_{r}\bar{C}_{hjk} = \bar{C}_{hjk|0} = 2(\bar{L}G + F\beta_{0})C_{hjk} + V_{(hjk)}\{(2L)^{-1}(\rho_{0}m_{k} + (e^{\sigma} + \rho)(b_{k|0} - L\tau^{-1}G_{o}l_{k})h_{hj}\}$$
(4.2)

$$\dot{\partial}_r \bar{C}_{hjk} = \tau (e^{\sigma} + \rho) \dot{\partial}_r C_{hjk} + L^{-1} (e^{\sigma} + \rho) C_{hjk} m_r + V_{(hjk)} \{ (e^{\sigma} + \rho) L^{-1} C_{hjr} m_k + (2L^2)^{-1} (e^{\sigma} + \rho) (n_{kr} + (\rho - \beta L^{-1}) h_{kr}) + 2L^2)^{-1} (e^{\sigma} + \rho) h_{hr} n_{jk} \}$$

$$(4.3)$$

where we put $n_{ij} = l_i m_j + l_j m_i$, therefore from (3.2), (3.3) and (4.3), we get

$$\dot{\partial}_r \bar{C}_{hjk} \bar{N}_0^r = 2\bar{L} \dot{\partial}_r C_{hjk} F_0^r - (2\bar{L}G - \bar{L}\rho_0 - 2F\beta_0) C_{hjk} + V_{(hjk)} \{2F_{r0}C_{hj}^r m_k$$

 $-L^{-1}F_{h0}n_{jk} - h_{hj}(L^{-1}F_{\beta 0}l_k - L^{-1})(\rho - \beta L^{-1})F_{k0} + (G - (2L)^{-1}\rho_0)m_k)\}$ (4.4) By virtue of equation (3.2), (3.3) and (2.8), we have

$$V_{(hjk)}\{\bar{C}_{hjr}\bar{F}_{k0}^{r}\} = 3\bar{L}GC_{hjk} + V_{(hjk)}\{\bar{L}C_{hj}^{r}(A_{rk} + L^{-1}F_{r0}l_{k}) - 2C_{hj}^{r}F_{r0}m_{k} + L^{-1}F_{h0}n_{jk} + \frac{1}{2}h_{ij}(A_{\beta k} + L^{-1}F_{\beta 0}l_{k} + L^{-2}\beta F_{k0} + 3Gm_{k})\}$$
(4.5)

from equation (4.2), (4.4) and (4.5) equation (4.1) gives the following **Theorem 4.1** The hv-torsion tensor \bar{P}_{hjk} of a Finsler space \bar{F}^n is written as

$$P_{hjk} = -2\tau T_{hjkr} F_0^r + (LG - \tau\rho_0) C_{hjk} + V_{(hjk)} \{\tau C_{hj}^r (F_{r0}l_k + LF_{kr}) + h_{hj} P_k\}$$

. where

$$2P_k = -A_{\beta k} + L^{-1}[(e^{\sigma} + \rho)E_{k0} + (\tau - \rho)F_{k0} - (F_{\beta 0} + 2\bar{L}G - \tau\rho_0)l_kG_{mk}]$$

$$T_{hjkr} = LC_{hjk|r} + C_{hjr}l_r V_{(hjk)} \{C_{rjk}l_h\}$$

If the condition $F_{ij} = 0$ is satisfied then the hv-torsion tensor \bar{P}_{hjk} of \bar{F}^n is given by

$$\bar{P}_{hjk} = (\bar{L}G - \tau\rho_0)C_{hjk} + V_{(hjk)}\{h_{hj}P_k\}$$
(4.6)

where

$$G = (2L\bar{L})^{-1} \{ (e^{\sigma} + \rho)E_{00} + \bar{L}\rho_0 \}$$

$$2P_k = L^{-1}[(e^{\sigma} + \rho)F_{k0} - (2\bar{L}G - \tau\rho_0)l_k] - Gm_k.$$

Now we shall treat a Landsberg space of \bar{F}^n . Such a space is by definition, a Finsler space with vanishing of hv-torsion tensor \bar{P}_{hjk} . On the other hand a Finsler space \bar{F}^n with $C_{hij|k} = 0$ is called a Berwald space.

Theorem 4.2 Let $\overline{F}^n (n \ge 3)$ be a Finsler space with the metric $\overline{L} = e^{\sigma}L + \beta$ where $L = (g_{ij}(y)y^iy^j)^{1/2}$, $\beta = b_i(x,y)y^i$ and b_i is an h vector in (M^n, L) . In the case $F_{ij} = 0$ if \overline{F}^n is a Landsberg space then \overline{F}^n is a Berwald space.

Proof. The condition $(\bar{L}G - \tau \rho_0) = 0$ implies that $E_{00} = 0$ i.e. $E_{ij} = 0$ and hence $F_{ij} = 0$ it follows that b_i is independent of x^i . Thus \bar{F}^n is locally Minkowskian. In the case $(\bar{L}G - \tau \rho_0) \neq 0$, from equation (4.6) it follows that \bar{P}_{hjk} is equivalent to

$$C_{hjk} = (LG - \tau \rho_0)^{-1} V_{(hjk)} \{h_{hj} P_k\}$$

Hence F^n is *C*-reducible, then \overline{F}^n is also *C*-reducible. Then \overline{F}^n is a Berwald space [5].

5. Some curvature Properties of Finsler space \overline{F}^n

The v-curvature tensor S_{ijkl} of F^n with respect to Cartan connection $C\Gamma$ is written in the form

$$S_{ijkl} = C_{ilm}C^m_{jk} - C_{ikm}C^m_{jl} \tag{5.1}$$

A Finsler space F^n $(n \ge 4)$ is called S3 -like[6] if the v-curvature tensor S_{ijkl} is of the form

$$S_{ijkl} = \frac{S}{(n-1)(n-2)} (h_{ik}h_{jl} - h_{il}h_{jk})$$
(5.2)

where the scalar S is function of co-ordinates only.

A non-Riemannian Finsler space F^n $(n \ge 5)$ is called S4-like [7] if S_{ijkl} iis of the form of

$$L^{2}S_{ijkl} = h_{ik}M_{jl} + h_{jl}M_{ik} - h_{il}M_{jk} - h_{jk}M_{il}$$
(5.3)

where M_{ij} is symmetric and indicatory tensor.

A non-Riemannian Finsler space F^n of dimension $n \ge 3$ is called C-reducible [5] if the (h)hv-torsion tensor C_{ijk} is written in the form of

$$C_{ijk} = \frac{1}{n+1} (C_i h_{jk} + C_j h_{ki} + C_k h_{ij})$$
(5.4)

where $C_i = C_{ij}^j$

A Finsler space $F^n (n \ge 2)$ with $C^2 = g^{ij}C_iC_j \ne 0$ is called C2-like[8], if (h)hvtorsion tensor C_{ijk} is written in the form of

$$C_{ijk} = \frac{1}{C^2} C_i C_j C_k \tag{5.5}$$

A Finsler space $F^n (n \ge 3)$ with $C^2 \ne 0$ 0 is called semi C-reducible[7], if the (h)hv-torsion tensor C_{ijk} is of the form of

$$C_{ijk} = \frac{P}{(n+1)} (h_{ij}C_k + h_{jk}C_i + h_{ki}C_j) + \frac{q}{C^2} C_i C_j C_k$$
(5.6)

where p and q=(1-p) does not vanish p is called the characteristic scalar of the ${\cal F}^n$.

From equation (5.1) and (2.8) and (2.10), the v-curvature tensor of \bar{F}^n is given by

$$\bar{S}_{ijkl} = \tau (e^{\sigma} + \rho) S_{ijkl} + h_{jk} d_{il} + h_{il} d_{jk} - h_{jl} d_{ik} - h_{ik} d_{jl}$$
(5.7)

where $d_{il} = (e^{\sigma} + \rho) \{ \frac{m^2}{8LL} h_{il} + \frac{\rho}{2L^2} h_{il} + \frac{1}{4LL} m_i m_l \}$ and $m^2 = m_i m^i$, $m^i = g^{ij} m_j$ Let us suppose that F^n be an S3-like Finsler space, then from equation (5.2),

(2.6) and (5.7), we have

$$S_{ijkl} = h_{il}P_{jk} + h_{jk}P_{il} - h_{jl}P_{ik} - h_{ik}P_{jl}$$

where

$$P_{ij} = \{\tau(e^{\sigma} + \rho)\}^{-1} - \frac{S}{(n-1)(n-2)}h_{ij}$$

Which shows that $\bar{F^n}$ is an S4 - like Finsler space .

Let us suppose that F^n is an S4-like Finsler space then from the equation (5.3), (2.6) and (5.7), we obtain

$$\bar{S}_{ijkl} = \bar{h}_{jk}B_{il} + \bar{h}_{il}B_{jk} - \bar{h}_{jl}B_{ik} - \bar{h}_{ik}B_{jl}$$

where

$$B_{ij} = \{ (\tau (e^{\sigma} + \rho))^{-1} d_{ij} - L^{-2} M_{ij} \}$$

Which show that \bar{F}^n is an S4 - like Finsler space.

Next let us suppose that $S_{ijkl} = 0$ then from equation (2.6) and (5.7), we get

$$\bar{S}_{ijkl} = \bar{h}_{jk}E_{il} + \bar{h}_{il}E_{jk} - \bar{h}_{jl}E_{ik} - \bar{h}_{ik}E_{jk}$$

Where

$$E_{jk} = \{\tau(e^{\sigma} + \rho)\}^{-1}d_{jk}$$

which shows that $\bar{F^n}$ is an S4-like Finsler space Summarizing all these results we get the following.

Theorem 5.1 If F^n is any one of the following Finsler spaces

- (a) S3-like Finsler space
- (b) S4-like Finsler space
- (c) A Finsler space with vanishing v-curvature tensor,

then F^n is an S4 - like Finsler space.

The v-curvature tensor S_{ijkl} of a C-redusible Finsler space has been obtained by Matsumoto[5] is of the following form

$$S_{ijkl} = (n+1)^{-2} (h_{il}C_{jk}C_{il} - h_{ik}c_{jl} - h_{jl}C_{ik})$$
(5.8)

where (a) $C_{ij} = 2^{-1}C^2h_{ij} + C_iC_j$ Since C_{ij} is a symmetric and indicatory tensor therefore (5.8) shows that F^n is an S4-like Finsler space.

Thus in view of theorem (5.1) we have the following result.

Theorem 5.2 If F^n is a C-reducible Finsler space, then \overline{F}^n is an S4-like Finsler space.

From equation (5.1) and (5.5) it can be shown that the v-curvature tensor S_{ijkl} of a C2-like Finsler space vanishes. Therefore in view of theorem (5.1) we have the following.

Theorem 5.3 If F^n is a C2-like Finsler space, then \overline{F}^n is an S4-like Finsler space. Acknowledgement: The authors are thankful to refere for his/her valuable comments and observations which help in improving the paper.

References

- M.Matsumoto: On Finsler space with Randes metric and special forms of important tensors, J. Math. Kyoto Univ., 14 (1974), 477-498.
- [2] H.Izumi: Conformal transformation of Finsler spaces. II., Tensor. N.S., 34 (1980), 337-359.
- [3] G.Randers: On the assymetrical metric in the four-space of general relativity., Phy. Rev., 56(2) (1941), 195-199.
- [4] M.Matsumoto: Foundations of Finsler geometry and special Finsler spaces., Kaiseisha Press Saikawa, Otsu, Japan, (1986).
- [5] M.Matsumoto: On C-reducible Finsler spaces, Tensor. N. S. 24 (1972), 29-37.
- [6] M.Matsumoto: Theory of Finsler spaces with (α, β)-metric, Rep. Math.Phy. 31 (1992), 48-83.
- [7] M.Matsumoto and C.Shibata: J. Math. Kyoto Univ., 19 (1979), 301-14.
- [8] M.Matsumoto and S.Numata: Tensor(N.S), **34** (1980), 218-22.
- [9] B.N.Prasad: On the torsion tensors R_{ijk} and P_{ijk} of Finsler spaces with a metric $ds = (g_{ij}dx^i dx^j)^{1/2} + b_i(x,y)dx^i$ Indian J. Pure. Appl. Math., **21**(1) (1990), 27-39.
- [10] A.Taleshian, D.M.Saghali and S.A.Arabi: Conformal h-vector-change in Finsler spaces, Journal of Mathematics and Computer Science 7 (2013) 249-257
- [11] S.H.Abed: Conformal β -changes in Finsler spaces, Proc. Math. Phys. Soc. Egypt, 86 (2008) 79-89

Manoj Kumar Singh

DEPARTMENT OF MATHEMATICS, UIET, CSJM UNIVERSITY, KANPUR, (U.P.) INDIA-208024 E-mail address: ms84ddu@gmail.com

Samidha yadav

DEPARTMENT OF MATHEMATICS, UIET, CSJM UNIVERSITY, KANPUR, (U.P.) INDIA-208024 E-mail address: samidha.yadav14@gmaill.com