ON h-TRANSFORMATION OF SOME SPECIAL FINSLER SPACE

MANOJ KUMAR SINGH AND SAMIDHA YADAV

Abstract

The purpose of the present paper is to find the relation between the v-curvature tensor with respect to Cartan's connection of Finsler space $F^{n}=\left(M^{n}, L\right)$ and $\overline{F^{n}}=\left(M^{n}, \bar{L}\right)$ where $\bar{L}(x, y)$ is obtained from $L(x, y)$ by the transformation $\bar{L}(x, y)=e^{\sigma} L(x, y)+b_{i}(x, y) y^{i}$ and $b_{i}(x, y)$ is an h- vector in $\left(M^{n}, L\right)$. we shall also study the properties of Finsler space \bar{F}^{n} under the condition that F^{n} is some special Finsler space. In particular of $e^{\sigma} L(x, y)$ is conformal change then $(v) h$ and $(v) h v$ torsion tensors of $\left(M^{n}, \bar{L}\right)$ have been obtained .

1. Introduction

Let $F^{n}=\left(M^{n}, L\right)$ be an n-dimensional Finsler space, where M^{n} is an ndimensional differentiable manifold and $L(x, y)$ is the Finsler fundamental, function. Matsumoto [1] introduced transformation of Finsler metric

$$
\begin{equation*}
\bar{L}=e^{\sigma} L+b_{i}(x) y^{i} \tag{1.1}
\end{equation*}
$$

and obtained the relation between the Cartan's connection coefficients of F^{n} and $\overline{F^{n}}=\left(M^{n}, \bar{L}\right)$. It has been assumed that the function b_{i} in (1.1) are functions of co- ordinates x^{i} only. If in (1.1) $\sigma(x)$ vanishes and $L(x, y)$ is a metric function of Riemannian space then $\bar{L}(x, y)$ reduces to the Randers Space which is introduced by G. Randers [3]. If $L(x, y)$ is a metric function of Riemannian space then $\bar{L}(x, y)$ reduces to the β-conformal change. H. Izumi [2] introduced the h-vector $b_{i}(x, y)$ in the conformal transformation of Finsler space, which is v-covariantly constant with respect to Cartan's connection $C \Gamma$ and satisfies $L C_{i j}^{h} b_{n}=\rho h_{i j}$ where $C_{i j}^{h}$ is Cartan's C-tensor, $h_{i j}$ is the angular metric tensor, ρ a function which depends only on co-ordinates and is given by, $\rho=\frac{1}{(n-1)} L C^{i} b_{i}$ and $C^{i}=C_{j k}^{i} g^{j k}$ is the torsion vector. Thus the h-vector b_{i} is not only a function of co-ordinates but it is a function of directional arguement satisfying $L \frac{\partial b_{i}}{\partial y^{i}}=\rho h_{i j}$. Many authors A.Taleshian et.al.[10] and S.H. Abed [11] studied the properties of such Finsler Spaces obtained by this metric. In this paper we consider the metric function given by equation $\bar{L}=e^{\sigma} L(x, y)+b_{i}(x, y) y^{i}$, which generalizes many Changes in Finsler geometry, called h- conformal transfofmation of Finsler metric. The section second

[^0]of this paper gives the relation between Cartan connection $C \Gamma$ of $F^{n}=\left(M^{n}, L\right)$ and $\overline{F^{n}}=\left(M^{n}, \bar{L}\right)$. The third section is devoted to find the torsion tensors $\bar{R}_{i j k}$ of $\overline{F^{n}}$ and we consider the case that this space is of scalar curvature. The fourth section is devoted to find the torsion tensor $\bar{P}_{h j k}$ and to consider the case that this space becomes a Landsberg space.

For an h-vector b_{i}, we have the following[2].
Lemma 1.1 If b_{i} is an h-vector then the function ρ and $\overline{l_{i}}=b_{i}-\rho e^{\sigma} l_{i}$ are independent of y^{i}.
Lemma 1.2 The magnitude b of an h-vector b_{i} is independent of y^{i}.

2. Cartan's connection of the space $\overline{F^{n}}$

Let b_{i} be a vector field in the Finsler space $\left(M^{n}, L\right)$, if b_{i} satisfies the conditions

$$
\begin{equation*}
(1) b_{i \mid j}=0 \quad(2) L C^{h}{ }_{i j} b_{h}=\rho h_{i j} \tag{2.1}
\end{equation*}
$$

then the vector field b_{i} is called an h-vector[2]. Here $i \mid j$ denote the v-covariant derivative with respect to Cartan's connection $C \Gamma . C_{i j}^{h}$ is the Cartan's C tensor, $h_{i j}$ is the angular metric tensor and ρ be a function given by

$$
\begin{equation*}
\rho=(n-1)^{-1} L C^{i} b_{i} \tag{2.2}
\end{equation*}
$$

where C^{i} is the torsion vector $C^{i}{ }_{j k} g^{j k}$. from (2.1) we get

$$
\begin{equation*}
\rho_{j}^{\prime} b_{i}=L^{-1} \rho h_{i j} \tag{2.3}
\end{equation*}
$$

Throughout the paper we shall use the notation
$L_{i}=\dot{\partial}_{i} L, L_{i j}=\dot{\partial}_{i} \dot{\partial}_{j} L \ldots$.
The quantities and operations refereing to $\overline{F^{n}}$ are indicated by putting bar, thus from (1.1) we get

$$
\begin{align*}
& (a) \bar{L}_{i}=e^{\sigma} L_{i}+b_{i} \\
& (b) \bar{L}_{i j}=\left(e^{\sigma}+\rho\right) L_{i j} \\
& (c) \bar{L}_{i j k}=\left(e^{\sigma}+\rho\right) L_{i j k} \\
& (d) \bar{L}_{i j k h}=\left(e^{\sigma}+\rho\right) L_{i j k h} \tag{2.4}
\end{align*}
$$

and so on . If $l_{i}, h_{i j}, g_{i j}$ and $C_{i j k}$ denote the normalized element of support, the angular metric tensor, the fundamental metric tensor and Cartan's C-tensor of F^{n} respectively, then these quantities in $\overline{F^{n}}$ are obtained by (2.4) as [9]

$$
\begin{gather*}
\overline{l_{i}}=e^{\sigma} l_{i}+b_{i} \tag{2.5}\\
\bar{h}_{i j}=\tau\left(e^{\sigma}+\rho\right) h_{i j} \tag{2.6}\\
\bar{g}_{i j}=\tau\left(e^{\sigma}+\rho\right) g_{i j}+\left[e^{2 \sigma}-\tau\left(e^{\sigma}+\rho\right)\right] l_{i} l_{j}+e^{\sigma} b_{i} l_{j}+e^{\sigma} l_{i} b_{j}+b_{i} b_{j} \tag{2.7}\\
\bar{C}_{i j k}=\tau\left(e^{\sigma}+\rho\right) C_{i j k}+(2 L)^{-1}\left(e^{\sigma}+\rho\right) V_{i j k}\left(h_{i j} m_{k}\right) \tag{2.8}
\end{gather*}
$$

where $\tau=\frac{\bar{L}}{L}, m_{i}=b_{i}-\beta L^{-1} l_{i}$ and $V_{i j k}\{ \}$ denotes the cyclic interchange of indices $\mathrm{i}, \mathrm{j}, \mathrm{k}$ and summation . From (2.6) and (2.8) we get the following,
Lemma 2.1 If F^{n} is C-reducible Finsler space then \bar{F}^{n} is also a C-reducible Finsler space. From (2.7), the relation between contravariant components of the fundamental tensor is given by

$$
\begin{align*}
\bar{g}^{i j} & =\left(\tau\left(e^{\sigma}+\rho\right)^{-1} g^{i j}-\tau^{-3}\left(e^{\sigma}+e\right)^{-1}\left(e^{2 \sigma}\left(1-b^{2}\right)\right.\right. \\
& \left.-\tau\left(e^{\sigma}+e\right)\right) l^{i} l^{j}-\tau^{-2}\left(e^{\sigma}+\rho\right)^{-1}\left(l^{i} b^{j}+l^{j} b^{i}\right) \tag{2.9}
\end{align*}
$$

where b is the magnitude of the vector $b^{i}=g^{i j} b_{j}$. From (2.8) and (2.9), we get

$$
\begin{gather*}
\bar{C}_{i j}^{h}=C_{i j}^{h}+(2 \bar{L})^{-1}\left(h_{i j} m^{h}+h_{j}^{h} m_{i}+h_{i}^{h} m_{j}\right) \\
\left.-\bar{L}^{-1}\left[\rho+L(2 \bar{L})^{-1}\left(b^{2}-\beta^{2} L^{-2}\right)\right) h_{i} j+L \bar{L}^{-1} m_{i} m_{j}\right] l^{n} \tag{2.10}
\end{gather*}
$$

Now we shall be concerned with Cartan's connection of F^{n} and \bar{F}^{n}, this connection is denoted by $C \Gamma=\left(F_{j k}^{i}, N_{k}^{i}, C_{j k}^{i}\right)$. Here $N_{k}^{i}=F_{0 k}^{i}\left(=Y^{j} F_{j k}^{i}\right)$ and $C_{i j}^{h}=$ $g^{h k} C_{i j k}$. Since for a Cartan's connection $L_{i j} \mid r=0$, we obtain

$$
\begin{equation*}
\partial_{k} L_{i j}=L_{i j r} N_{k}^{r}+L_{r j} F_{i k}^{r}+L_{i r} F_{j k}^{r} . \tag{2.11}
\end{equation*}
$$

Differentiation of equation (2.4b) leads to

$$
\begin{equation*}
\partial_{k} \bar{L}_{i j}=\left(e^{\sigma}+\rho\right) \partial_{k} L_{i j}+\rho_{k} L_{i j} \tag{2.12}
\end{equation*}
$$

where we put $\rho_{k}=\partial_{k} \rho=\rho_{\mid k}$. If we put

$$
\begin{equation*}
D_{j k}^{i}=\bar{F}_{j k}^{i}-F_{j k}^{i} \tag{2.13}
\end{equation*}
$$

then the difference $D_{j k}^{i}$ is obviously a tensor of (1.2) type. In virtue of (2.11) equation (2.12) is written in the tensorial form as,

$$
\begin{equation*}
\left(e^{\sigma}+\rho\right)\left(L_{i j r} D_{0 k}^{r}+L_{r j} D_{i k}^{r}+L_{i r} D_{j k}^{r}=\rho_{k} L_{i j}\right. \tag{2.14}
\end{equation*}
$$

In order to find the difference tensor $D_{j k}^{i}$, we construct supplementary equation to (2.14) from (2.4a) we obtain

$$
\begin{equation*}
\rho_{j} \bar{L}_{i}=e^{\sigma} \partial_{j} L_{i}+\partial_{j} b_{i} \tag{2.15}
\end{equation*}
$$

From $L_{i \mid j}=0$ equation (2.15) is written in the form

$$
\bar{L}_{i r} \bar{N}_{j}^{r}+\bar{L}_{r} \bar{F}_{i j}^{r}=\left(e^{\sigma}+\rho\right) L_{i r} N_{j}^{r}+\left(L_{r}+b_{r}\right) F_{i j}^{r}+b_{i \mid j}
$$

By means of (2.4) and (2.13) this equation may be written in the tensorial form as,

$$
\begin{equation*}
\left(e^{\sigma}+\rho\right) L_{i r} D_{0 j}^{r}+\left(l_{r}+b_{r}\right) D_{i j}^{r}=b i \mid j \tag{2.16}
\end{equation*}
$$

To find the difference tensor $D_{j k}^{i}$ we have the following[4],
Lemma 2.2The system of algebraic equation

$$
(1) L_{i r} A^{r}=B_{i} \quad(2)\left(l_{r}+b_{r}\right) A^{r}=B
$$

has a unique solution A^{r} for given B and B_{i} such that $B_{i} l^{i}=0$, The solution is given by

$$
A^{i}=L B^{i}+\tau^{-1}\left(B-L B_{\beta}\right) l^{i}
$$

where subscript β denote the contraction by b^{i}
Now we give the following result.
Theorem 2.1The Cartan's connection of \bar{F}^{n} is completely determined by equation (2.14) and (2.16) in terms of F^{n}. It is obvious that (2.16) is equivalent to the two equations,

$$
\begin{gather*}
\left(e^{\sigma}+\rho\right)\left(L_{i r} D_{0 j}^{r}+L_{j r} D_{0 i}^{r}\right)+2\left(l_{r}+b_{r}\right) D_{i j}^{r}=2 E_{i j} \tag{2.17}\\
\left(e^{\sigma}+\rho\right)\left(L_{i r} D_{0 j}^{r}-L_{j r} D_{0 i}^{r}\right)=2 F_{i j} \tag{2.18}
\end{gather*}
$$

Where we put,

$$
\begin{equation*}
2 E_{i j}=b_{i \mid j}+b_{j \mid i}, 2 F_{i j}=b_{i \mid j}-b_{j \mid i} \tag{2.19}
\end{equation*}
$$

on the other hand (2.14) is equivalent to

$$
2\left(e^{\sigma}+\rho\right) L_{j r} D_{i k}^{r}+\left(e^{\sigma}+\rho\right)\left(L_{i j r} D_{0 k}^{r}+L_{j k r} D_{0 i}^{r}\right.
$$

$$
\begin{equation*}
\left.-L_{k i r} D_{o j}^{r}\right)=\rho_{k} L_{i j}+\rho_{i} L_{j k}-\rho_{j} L_{k i} \tag{2.20}
\end{equation*}
$$

contracting (2.17) with y^{j}, we get

$$
\begin{equation*}
\left(e^{\sigma}+\rho\right) L_{i r} D_{00}^{r}+2\left(l_{r}+b_{r}\right) D_{0 i}^{r}=2 E_{i 0} \tag{2.21}
\end{equation*}
$$

Similarly from (2.18) and (2.20), we obtain

$$
\begin{gather*}
\left(e^{\sigma}+\rho\right) L_{i r} D_{00}^{r}=2 F_{i 0} \tag{2.22}\\
\left(e^{\sigma}+\rho\right)\left(L_{i r} D_{0 j}^{r}+L_{j r} D_{0 i}^{r}+L_{i j r} D_{00}^{r}\right)=\rho_{0} L_{i j} \tag{2.23}
\end{gather*}
$$

contracting of (2.21) with y^{i} gives

$$
\begin{equation*}
\left(l_{r}+b_{r}\right) D_{00}^{r}=E_{00} \tag{2.24}
\end{equation*}
$$

Now first consider (2.22) and (2.24) and apply lemma (2.1) to obtain,

$$
\begin{equation*}
D_{00}^{i}=\left(e^{\sigma}+\rho\right)^{-1} 2 L F_{0}^{i}+\tau^{-1}\left(E_{00}-2 L\left(e^{\sigma}+\rho\right)^{-1} F_{\beta 0}\right) l^{i} \tag{2.25}
\end{equation*}
$$

where we put $F_{0}^{i}=g^{i j} F_{j 0}$
Secondly we add (2.18) and (2.23) to obtain

$$
\begin{equation*}
L_{i r} D_{0 j}^{r}=G_{i j} \tag{2.26}
\end{equation*}
$$

where we put

$$
\begin{equation*}
G_{i j}=\left(2\left(e^{\sigma}+\rho\right)\right)^{-1}\left(2 F_{i j}+\rho_{0} L_{i j}-\left(e^{\sigma}+\rho\right) L_{i j r} D_{00}^{r}\right) \tag{2.27}
\end{equation*}
$$

The equation (2.21) is written in the form

$$
\begin{equation*}
\left(l_{r}+b_{r}\right) D_{0 j}^{r}=G_{J} \tag{2.28}
\end{equation*}
$$

where we put

$$
\begin{equation*}
G_{j}=E_{j 0}-2^{-1}\left(e^{\sigma}+\rho\right) L_{j r} D_{00}^{r} \tag{2.29}
\end{equation*}
$$

Substituting from (2.25) in (2.27), we obtain

$$
\begin{equation*}
G_{i j}=\left(e^{\sigma}+\rho\right)^{-1}\left[F_{i j}-L L_{i j r} F_{0}^{r}+L_{i j}\left(\left(e^{\sigma}+\rho\right) E_{00}-2 L F_{\beta 0}+\bar{L} \rho_{0}\right)(2 \bar{L})^{-1}\right] \tag{2.30}
\end{equation*}
$$

By virtue of (2.22), G_{j} are written as

$$
\begin{equation*}
G_{j}=E_{j 0}-F_{j 0} \tag{2.31}
\end{equation*}
$$

Thus we have obtained the system of equation's (2.26) and (2.28), and applying lemma (2.2) to these equation's we obtain

$$
\begin{equation*}
D_{0 j}^{i}=L G_{j}^{i}+\tau^{-1}\left(G_{j}-L G_{\beta j}\right) l^{i} \tag{2.32}
\end{equation*}
$$

where we put $G_{j}^{i}=g^{i r} G_{r j}$
Finally from (2.20) and (2.17), we get

$$
\begin{equation*}
L_{i r} D_{j k}^{r}=H_{i j k} \quad\left(l_{r}+b_{r}\right) D_{j k}^{r}=H_{j k} \tag{2.33}
\end{equation*}
$$

where we put

$$
\begin{gathered}
H_{j k}=E_{j k}-\frac{\left(e^{\sigma}+\rho\right)}{2}\left(L_{j r} D_{0 k}^{r}+L_{k r} D_{0 j}^{r}\right) \\
H_{i j k}=\left(2\left(e^{\sigma}+\rho\right)\right)^{-1}\left(\rho_{k} L_{i j}+e_{j} L_{i k}-\rho_{i} L_{k j}\right)-\frac{1}{2}\left(L_{i j r} D_{0 k}^{r}+L_{i k r} D_{0 j}^{r}-L_{k j r} D_{0 i}^{r}\right)
\end{gathered}
$$

Now applying lemma (2.1) to equation (2.33), we get

$$
\begin{equation*}
D_{j k}^{i}=L H_{j k}^{i}+\tau^{-1}\left(H_{j k}-L H_{\beta j k}\right) l^{i} \tag{2.34}
\end{equation*}
$$

where we put $H_{j k}^{i}=g^{h i} H_{h j k}$. By virtue of (2.32) $H_{i j k}$ and $H_{j k}$ are written in terms of known quantites,

$$
\begin{gather*}
H_{i j k}=\frac{1}{2} L\left(L_{k j r} G_{i}^{r}-L_{i j r} G_{k}^{r}-L_{i k r} G_{j}^{r}\right)+L_{i j} A_{k}+L_{i k} A_{j}-L_{j k} A_{i} \tag{2.35}\\
H_{j k}=E_{j k}-\left(e^{\sigma}+\rho\right) \frac{L}{2}\left(L_{j r} G_{k}^{r}+L_{k r} G_{j}^{r}\right) \tag{2.36}
\end{gather*}
$$

where

$$
A_{i}=\left(2\left(e^{\sigma}+\rho\right)\right)^{-1} \rho_{i}+(2 \tau)^{-1}\left(G_{i}-L G_{\beta i}\right)
$$

3. The h-Torsion tensor $\bar{R}_{h j k}$ of \bar{F}^{n}

Let F^{n} be a locally Minkowski space whose fundamental function L is expressed by $L(y)=\left(g_{i j} y^{i} y^{j}\right)^{\frac{1}{2}}\left(y^{i}=d x^{i}\right)$ in terms of an adoptable co-ordinate system x^{i}. The connection parameter $\mathrm{C} \Gamma$ of the certain connection of F^{n} is given by

$$
\begin{equation*}
F_{j k}^{i}=0, N_{j}^{i}=F_{0 j}^{i}=0, C_{j k}^{i}=g^{i r} C_{r j k} \tag{3.1}
\end{equation*}
$$

Thus the h-covariant differentiation $X_{i \mid j}$ of a covariant vector field X_{i} may be written as $X_{i \mid j}=\partial_{j} X_{i}$. In view of (2.13), (2.32) and (3.1), the connection parameter \bar{N}_{j}^{i} of \bar{F}^{n} may be written as

$$
\begin{equation*}
\bar{N}_{j}^{i}=L G_{j}^{i}+\tau^{-1}\left(G_{j}-L G_{\beta j}\right) l^{i} \tag{3.2}
\end{equation*}
$$

The value of $G_{i j}$ in (2.30) may be written as

$$
\begin{equation*}
G_{i j}=\left(e^{\sigma}+e\right)^{-1}\left\{A_{i j}+L^{-1}\left(F_{j 0}\left(l_{i}+F_{i 0} l_{j}\right)+L_{j}\right)+G h_{i j}\right\} \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
G=(2 L \bar{L})^{-1}\left(\left(e^{\sigma}+\rho\right) E_{00}-2 L F_{\beta 0}+\bar{L} \rho_{0}\right) \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{i j}=F_{i j}-2 C_{i j r} F_{0}^{r} \tag{3.5}
\end{equation*}
$$

The h-torsion tensor $\bar{R}_{h j k}$ of (M^{n}, \bar{L} is defined

$$
\begin{equation*}
\bar{R}_{h j k}=V_{(j, k)}\left\{\bar{h}_{h i}\left(\partial_{k} \bar{N}_{j}^{r}-\bar{N}_{k}^{r} \dot{\partial}_{r} \bar{N}_{j}^{i}\right)\right\} \tag{3.6}
\end{equation*}
$$

The symbol $V_{(j, k)}$ denotes the interchange of (j, k) and substraction. In view of (2.6), we have

$$
\begin{equation*}
\bar{R}_{h j k}=V_{(j, k)}\left\{\left(e^{\sigma}+\rho\right) \bar{L} L_{h i}\left(\partial_{k} \bar{N}_{j}^{i}-\bar{N}_{j}^{r} \dot{\partial}_{r} \bar{N}_{j}^{i}\right)\right\} \tag{3.7}
\end{equation*}
$$

By virtue of (3.1) and (2.13) equation (2.26) may be written as $L_{h i} \bar{N}_{j}^{i}=G_{h i}$, by which we write $L_{h i} \partial_{h} \bar{N}_{j}^{i}=G_{h \mid j}$ and $V_{(j, k)}\left\{L_{h i} \bar{N}_{k}^{r} \dot{\partial}_{r} \bar{N}_{j}^{i}\right\}=V_{(j, k)}\left(L G_{k}^{r} \partial_{r} G_{h j}\right)$ Thus (3.7) may be written as

$$
\begin{equation*}
\bar{R}_{h j k}=\left(e^{\sigma}+\rho\right) V_{(j, k)}\left\{\bar{L}\left(G_{h j \mid k}-L G_{k}^{r} \partial_{r} G_{h j}\right)\right\} \tag{3.8}
\end{equation*}
$$

By virtue of equation (3.3), we have

$$
\begin{align*}
& G_{k j \mid h}=\left(e^{\sigma}+\rho\right)^{-1}\left[A_{h j \mid k}+L^{-1}\left(l_{h} F_{j 0 \mid k}+l_{j} F_{h 0 \mid k}\right)+G \mid k h_{h j}\right] \\
&-\left(e^{\sigma}+\rho\right)^{-2} \rho_{k}\left(A_{h j}+\bar{L}\left(l_{h} F_{j 0}+l_{j} F_{h 0}\right)+G_{h} h_{j}\right) \tag{3.9}\\
& \dot{\partial}_{r} G_{h j}=\left(e^{\sigma}+\rho\right)^{-1}\left[-2\left(F_{m 0} \dot{\partial}_{r} C_{h j}^{m}+C_{h j}^{m} F_{m r}\right)+\dot{\partial}_{r} G h_{h j}+(G\right. \\
&\left.-\rho_{0}(2 L)^{-1}\right)\left(2 C_{h j r}-L^{-1}\left(l_{h} h_{j r}+l_{j} h_{h r}\right)\right)+L^{-2}\left(h_{h r}-l_{h} l_{r}\right) F_{j 0}
\end{align*}
$$

$$
\begin{equation*}
\left.+\left(h_{j r}-l_{j} l_{r}\right) F_{h 0}\right)+L^{-1}\left(\left(l_{h} F_{j r}+l_{j} F_{h r}+2^{-1}\left(\rho_{j} h_{h r}-\rho_{h} h_{j r}\right)\right) .\right. \tag{3.10}
\end{equation*}
$$

From equation (3.3) and (3.10), we get

$$
\begin{align*}
& \left(e^{\sigma}+\rho\right)^{2} V_{(j, k)}\left\{G_{k}^{r} \dot{\partial}_{r} G_{h j}\right\}=V_{(j, k)}\left\{-\left[A_{j}^{r} \dot{\partial}_{r} G+G \dot{\partial_{j}} G+L^{-1} l_{j}\left(F_{0}^{r} \dot{\partial}_{r} G+G^{2}\right)\right.\right. \\
- & \left.L^{-2} G\left(F_{j 0}-2^{-1} \rho_{0} l_{j}+2^{-1} L \rho_{j}\right)\right] h_{h k}+2 A_{j}^{r}\left(F_{s 0} \dot{\partial}_{r} C_{h k}^{s}+C_{h k}^{s} F_{s r}+(2 L)^{-1} \rho_{0} C_{h k r}\right) \\
+ & 2 G F_{s 0}\left(\dot{\partial_{j}} C_{h k}^{s}+2 C_{j r}^{s} C_{h k}^{r}\right)-L^{-2}\left(A_{h j} F_{k 0}-F_{h 0} F_{j k}-F_{0}^{r} F_{j r} l_{h} l_{k}\right)-L^{-1}\left[A_{j}^{r} F_{h r} l_{k}\right. \\
+ & 2 F_{0}^{r}\left(\left(F_{s 0} \dot{\partial}_{r} C_{h j}^{s}+C_{h j}^{s}\left(F_{s r}\right) l_{k}+2 F_{0}^{r} C_{r j}^{s} F_{s k} l_{h}\right)\right]-L^{-2} \rho_{0} C_{h j r} F_{o}^{r} l_{k}+2^{-1} L^{-2} \rho_{0}\left(l_{h} A_{j k}\right. \\
+ & \left.\left.l_{j} A_{h k}+L^{-1} l_{h} l_{j} A_{k 0}\right)+2^{-1} L^{-1}\left(\rho_{j} A_{h k}-\rho_{h} A_{j k}\right)+2^{-1} L^{-2} \rho_{j}\left(l_{h} A_{k 0}+l_{h} F_{h o}\right)\right\} . \tag{3.11}
\end{align*}
$$

on substituting (3.9) and (3.11) in (3.8) and we get
Theorem 3.1The h-torsion tensor $\bar{R}_{h j k}$ of the Finsler space \bar{F}^{n} is written in the form

$$
\begin{equation*}
\bar{R}_{h j k}=\left(e^{\sigma}+\rho\right)^{-1} V_{(j, k)}\left\{\bar{L} L G_{j}^{\prime} h_{h k}+L^{2} K_{h j k}+\left(l_{h} k_{j k}+l_{j} K_{k h}\right)-l_{h} l_{j} k_{0 k}\right\} \tag{3.12}
\end{equation*}
$$

where

$$
\begin{aligned}
G_{j}^{\prime}=A_{j}^{r} \dot{\partial}_{r} G & +G \dot{\partial}_{j} G-L^{-1}\left(G_{\mid j}\left(e^{\sigma}+r h o\right)-\left(F_{r}^{r} \dot{\partial}_{r} G+G^{2}\right) l_{j}\right) \\
& -L^{-2} G F_{j 0}+2^{-1} L^{-2} G\left(L \rho_{j}-\rho_{0} l_{j}\right) \\
K_{j k}=K_{j o k} & -\tau\left(A_{k}^{i} F_{j i}-2 G C_{j k}^{s} F_{s 0}+L^{-1}\left(2 F_{j 0} F_{k 0}+\rho_{0} A_{j k}\right.\right. \\
& \left.+\rho_{0} C_{j k r} F_{0}^{r}+(2 L)^{-1}\left(\rho_{k} F_{j 0}+\rho_{j} F_{k 0}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
K_{h j k}= & \tau\left[L^{-1}\left(e^{\sigma}+r h o\right) A_{h j k}-2 A_{j}^{r}\left(F_{s 0} \dot{\partial}_{r} C_{h k}^{s}+C_{h k}^{s} F_{s r}\right)-2 G F_{s 0}\left(\dot{\partial}_{j} C_{h k}^{t}+2 C_{j r}^{s} C_{h k}^{r}\right)\right. \\
& \left.+L^{-2}\left(A_{h j} F_{k 0}-F_{h 0} F_{j k}\right)+\rho_{0} L^{-1} C_{h j r} A_{h}^{r}+(2 L)^{-1}\left(\rho A_{h k}+\rho_{h} A_{j k}\right)\right] .
\end{aligned}
$$

If the Finsler space \bar{F}^{n} is of scalar curvature \bar{R} then we have the equation $\bar{R}_{i 0 j}=$ $\bar{R} \overline{L^{2}} \bar{h}_{i j}$ [4]. If the scalar \bar{R} is constant then \bar{F}^{n} is said to be of constant curvature. From equation (3.12) the contracted h-torsion tensor $\bar{R}_{i 0 j}$ of \bar{F}^{n} is given by

$$
\begin{equation*}
\bar{R}_{i 0 j}=\left(e^{\sigma}+\rho\right)^{-1}\left(\bar{L} L G_{0}^{\prime} h_{i j}+L^{2} W_{i j}-L\left(l_{i} W_{j 0}+l_{j} W_{i 0}\right)+W_{00} l_{i} l_{j}\right) \tag{3.13}
\end{equation*}
$$

where we put $W_{i j}=K_{i 0 j}-K_{i j 0}+K_{i j}$ and $W_{i j}$ is symmetric in the indices i and j. Equation $\bar{R}_{i 0 j}=\bar{R} \bar{L}^{2} \bar{h}_{i j}$ may be written as $\bar{R}_{i 0 j}=\tau\left(e^{\sigma}+\rho\right) \bar{R} \bar{L}^{2} h_{i j}$. Thus from equation (3.13) we get the following :
Theorem 3.2 Let \bar{F}^{n} be a Finsler space with the metric $\bar{L}=e^{\sigma} L+\beta$ where $L=\left(g_{i j}(y) y^{i} y^{j}\right)^{1 / 2}, \beta=b_{i}(x, y) y^{i}$ and b_{i} is an h vector in $\left(M^{n}, L\right)$. If \bar{F}^{n} is of scalar curvature \bar{R} then the matrix $\left[\lambda h_{i j}-W_{i j}\right]$ is of rank less than three where $\lambda=\tau\left(\left(e^{\sigma}+\rho\right)^{2} \tau^{2} \bar{R}-G_{0}^{\prime}\right)$.

Now we consider the case $F_{i j}=0$. In this case $A_{i j}=0, K_{i j k}=0, K_{i j}=0$ and hence $W_{i j}=0$ holds good. Therefore the tensor $\bar{R}_{i 0 j}$ of \bar{F}^{n} is reduced to the form $\bar{R}_{i 0 j}=\left(e^{\sigma}+\rho\right)^{-1} \bar{L} L G_{0}^{\prime} h_{i j}$. Consequently we have the following
Theorem 3.3Let \bar{F}^{n} be an above Finsler space. If the condition $F_{i j}=0$ is satisfied, then \bar{F}^{n} is of scaler curvature $\bar{R}=\left(\left(e^{\sigma}+\rho\right) \tau\right)^{-2} G_{0}^{\prime}$. Now we get the following,
Theorem 3.4 In the above theorem if the scalar R is constant, then $R=0$ and the space \bar{F}^{n} is a locally Minkowskian space.
Proof. From equation (2.3) and $F_{i j}=0$ we get

$$
\begin{equation*}
2 \dot{\partial_{r}} F_{i j}=L^{-1}\left(\rho_{j} h_{i r}-\rho_{i} h_{j r}\right)=0 \tag{3.14}
\end{equation*}
$$

which after contraction with y^{i} gives $\rho_{0}=0$. Thus contracting equation (3.14) with $g^{j r}$ we get $\rho_{j}=0$.Therefore the scalar \bar{R} is written in the form

$$
\begin{equation*}
\bar{R}=\left(\left(e^{\sigma}+\rho\right) \tau\right)^{-2}\left(G^{2} b-L^{-1}\left(e^{\sigma}+\rho\right) G_{\mid 0}\right. \tag{3.15}
\end{equation*}
$$

From equation (3.15) and $G=\left(e^{\sigma}+\rho\right) E_{00}(2 L \bar{L})^{-4}$ it follows that the condition $\bar{R}=$ constant is written in the form

$$
\begin{align*}
& {\left[2 \beta E_{00 \mid 0}-3 E_{00}^{2}+4\left(L^{4}+6 L^{2} \beta^{2}+\beta^{4}\right) C\right]} \\
& \quad+2 L\left[E_{00 \mid 0}+8 \beta\left(L^{2}+\beta^{2}\right) C\right]=0 \tag{3.16}
\end{align*}
$$

from above equation we see that first bracket is a fourth degree polynomial and second bracket is third degree polynomial in y^{i}.Therefore we write

$$
\begin{gather*}
2 \beta E_{00 \mid 0}-3 E_{00}^{2}+4\left(L^{4}+6 L^{2} \beta^{2}+\beta^{4}\right) C=0 \tag{3.17}\\
E_{00 \mid 0}+8 \beta\left(L^{2}+\beta^{2}\right) C=0 \tag{3.18}
\end{gather*}
$$

From equation (3.17) and (3.18) we get

$$
\begin{equation*}
3 E_{00}^{2}=4 C\left(L^{2}-\beta\right)\left(L^{2}+3 \beta^{2}\right) \tag{3.19}
\end{equation*}
$$

If $C \neq 0$ then in view of $F_{i j}=0$ and $b_{0 \mid 0}=0$, the h-covariant derivative of (3.19) gives

$$
\begin{equation*}
3 E_{00 \mid 0}=8 C \beta\left(L^{2}-3 \beta^{2}\right) \tag{3.20}
\end{equation*}
$$

Elimination of $E_{00 \mid 0}$ from (3.18) and (3.20) gives $L^{2} \beta C=0$ from which we get $\beta=0$ as $L^{2} C \neq 0$. Since $\dot{\partial}_{j} \beta=b_{j}$, therefore $b_{i}=0$ gives $E_{i j}=0$. Hence Equation (3.19) gives $C=0$. This contradicts our assumption $C \neq o$. Hence the scalar $\bar{R}=C=0$ and from equation (3.19) we get $E_{00}=0$. Since $F_{i j}=0$ gives $\rho_{i}=0$, therefore $E_{00}=0$ implies $F_{i j}=0$ that is $b_{i \mid j}=\partial_{j} b_{i}=0$. Thus b_{i} does not contain x^{i}. Hence \bar{F}^{n} is Locally Minkowskian space.

4. The $h v$-Torsion tensor $\bar{P}_{i j k}$ of \bar{F}^{n}

The hv- torsion tensor $\bar{P}_{h j k}$ of \bar{F}^{n} is defined as

$$
\begin{equation*}
\bar{P}_{h j k}=\bar{C}_{h j k \mid 0}=y^{r} \partial_{r} \bar{C}_{h j k}-\dot{\partial}_{r} \bar{C}_{h j k} \bar{N}_{0}^{r}-V_{(h j k)}\left\{\bar{C}_{h j r} \bar{F}_{k o}^{r}\right\} \tag{4.1}
\end{equation*}
$$

where $V_{(i j k)}$ denotes the cyclic interchange of indices $i j k$ and summation. In view of (2.8) and $P_{h j k}=C_{h j k \mid 0}=0$, we obtain

$$
\begin{gather*}
y^{r} \partial_{r} \bar{C}_{h j k}=\bar{C}_{h j k \mid 0}=2\left(\bar{L} G+F \beta_{0}\right) C_{h j k}+V_{(h j k)}\left\{(2 L) ^ { - 1 } \left(\rho_{0} m_{k}\right.\right. \\
\left.+\left(e^{\sigma}+\rho\right)\left(b_{k \mid 0}-L \tau^{-1} G_{o} l_{k}\right) h_{h j}\right\} \tag{4.2}\\
\dot{\partial}_{r} \bar{C}_{h j k}=\tau\left(e^{\sigma}+\rho\right) \dot{\partial}_{r} C_{h j k}+L^{-1}\left(e^{\sigma}+\rho\right) C_{h j k} m_{r}+V_{(h j k)}\left\{\left(e^{\sigma}+\rho\right) L^{-1} C_{h j r} m_{k}\right. \\
\left.\left.+\left(2 L^{2}\right)^{-1}\left(e^{\sigma}+\rho\right)\left(n_{k r}+\left(\rho-\beta L^{-1}\right) h_{k r}\right)+2 L^{2}\right)^{-1}\left(e^{\sigma}+\rho\right) h_{h r} n_{j k}\right\} \tag{4.3}
\end{gather*}
$$

where we put $n_{i j}=l_{i} m_{j}+l_{j} m_{i}$, therefore from (3.2), (3.3) and (4.3), we get

$$
\begin{gather*}
\dot{\partial}_{r} \bar{C}_{h j k} \bar{N}_{0}^{r}=2 \bar{L} \dot{\partial}_{r} C_{h j k} F_{0}^{r}-\left(2 \bar{L} G-\bar{L} \rho_{0}-2 F \beta_{0}\right) C_{h j k}+V_{(h j k)}\left\{2 F_{r 0} C_{h j}^{r} m_{k}\right. \\
\left.\left.-L^{-1} F_{h 0} n_{j k}-h_{h j}\left(L^{-1} F_{\beta 0} l_{k}-L^{-1}\right)\left(\rho-\beta L^{-1}\right) F_{k 0}+\left(G-(2 L)^{-1} \rho_{0}\right) m_{k}\right)\right\} \tag{4.4}
\end{gather*}
$$

By virtue of equation (3.2), (3.3) and (2.8), we have

$$
\begin{gather*}
V_{(h j k)}\left\{\bar{C}_{h j r} \bar{F}_{k 0}^{r}\right\}=3 \bar{L} G C_{h j k}+V_{(h j k)}\left\{\bar{L} C_{h j}^{r}\left(A_{r k}+L^{-1} F_{r 0} l_{k}\right)\right. \\
\left.-2 C_{h j}^{r} F_{r 0} m_{k}+L^{-1} F_{h 0} n_{j k}+\frac{1}{2} h_{i j}\left(A_{\beta k}+L^{-1} F_{\beta 0} l_{k}+L^{-2} \beta F_{k 0}+3 G m_{k}\right)\right\} \tag{4.5}
\end{gather*}
$$

from equation (4.2), (4.4) and (4.5) equation (4.1) gives the following
Theorem 4.1 The hv-torsion tensor $\bar{P}_{h j k}$ of a Finsler space \bar{F}^{n} is written as

$$
\bar{P}_{h j k}=-2 \tau T_{h j k r} F_{0}^{r}+\left(\bar{L} G-\tau \rho_{0}\right) C_{h j k}+V_{(h j k)}\left\{\tau C_{h j}^{r}\left(F_{r 0} l_{k}+L F_{k r}\right)+h_{h j} P_{k}\right\}
$$

. where

$$
\begin{gathered}
2 P_{k}=-A_{\beta k}+L^{-1}\left[\left(e^{\sigma}+\rho\right) E_{k 0}+(\tau-\rho) F_{k 0}-\left(F_{\beta 0}+2 \bar{L} G-\tau \rho_{0}\right) l_{k} G_{m k}\right. \\
T_{h j k r}=L C_{h j k \mid r}+C_{h j r} l_{r} V_{(h j k)}\left\{C_{r j k} l_{h}\right\}
\end{gathered}
$$

If the condition $F_{i j}=0$ is satisfied then the hv-torsion tensor $\bar{P}_{h j k}$ of \bar{F}^{n} is given by

$$
\begin{equation*}
\bar{P}_{h j k}=\left(\bar{L} G-\tau \rho_{0}\right) C_{h j k}+V_{(h j k)}\left\{h_{h j} P_{k}\right\} \tag{4.6}
\end{equation*}
$$

where

$$
\begin{gathered}
G=(2 L \bar{L})^{-1}\left\{\left(e^{\sigma}+\rho\right) E_{00}+\bar{L} \rho_{0}\right\} \\
2 P_{k}=L^{-1}\left[\left(e^{\sigma}+\rho\right) F_{k 0}-\left(2 \bar{L} G-\tau \rho_{0}\right) l_{k}\right]-G m_{k}
\end{gathered}
$$

Now we shall treat a Landsberg space of \bar{F}^{n}. Such a space is by definition, a Finsler space with vanishing of hv-torsion tensor $\bar{P}_{h j k}$. On the other hand a Finsler space \bar{F}^{n} with $C_{h i j \mid k}^{-}=0$ is called a Berwald space.
Theorem 4.2 Let $\bar{F}^{n}(n \geq 3)$ be a Finsler space with the metric $\bar{L}=e^{\sigma} L+\beta$ where $L=\left(g_{i j}(y) y^{i} y^{j}\right)^{1 / 2}, \beta=b_{i}(x, y) y^{i}$ and b_{i} is an h vector in $\left(M^{n}, L\right)$. In the case $F_{i j}=0$ if \bar{F}^{n} is a Landsberg space then \bar{F}^{n} is a Berwald space.
Proof. The condition $\left(\bar{L} G-\tau \rho_{0}\right)=0$ implies that $E_{00}=0$ i.e. $E_{i j}=0$ and hence $F_{i j}=0$ it follows that b_{i} is independent of x^{i}. Thus \bar{F}^{n} is locally Minkowskian. In the case $\left(\bar{L} G-\tau \rho_{0}\right) \neq 0$,from equation (4.6) it follows that $\bar{P}_{h j k}$ is equivalent to

$$
C_{h j k}=\left(\bar{L} G-\tau \rho_{0}\right)^{-1} V_{(h j k)}\left\{h_{h j} P_{k}\right\}
$$

Hence F^{n} is C-reducible, then \bar{F}^{n} is also C-reducible. Then \bar{F}^{n} is a Berwald space [5].

5. Some curvature Properties of Finsler space \bar{F}^{n}

The v-curvature tensor $S_{i j k l}$ of F^{n} with respect to Cartan connection $C \Gamma$ is written in the form

$$
\begin{equation*}
S_{i j k l}=C_{i l m} C_{j k}^{m}-C_{i k m} C_{j l}^{m} \tag{5.1}
\end{equation*}
$$

A Finsler space $F^{n}(n \geq 4)$ is called S3-like[6] if the v-curvature tensor $S_{i j k l}$ is of the form

$$
\begin{equation*}
S_{i j k l}=\frac{S}{(n-1)(n-2)}\left(h_{i k} h_{j l}-h_{i l} h_{j k}\right) \tag{5.2}
\end{equation*}
$$

where the scalar S is function of co-ordinates only.
A non-Riemannian Finsler space $F^{n}(n \geq 5)$ is called S4-like [7] if $S_{i j k l}$ iis of the form of

$$
\begin{equation*}
L^{2} S_{i j k l}=h_{i k} M_{j l}+h_{j l} M_{i k}-h_{i l} M_{j k}-h_{j k} M_{i l} \tag{5.3}
\end{equation*}
$$

where $M_{i j}$ is symmetric and indicatory tensor.

A non-Riemannian Finsler space F^{n} of dimension $n \geq 3$ is called C-reducible [5] if the (h)hv-torsion tensor $C_{i j k}$ is written in the form of

$$
\begin{equation*}
C_{i j k}=\frac{1}{n+1}\left(C_{i} h_{j k}+C_{j} h_{k i}+C_{k} h_{i j}\right) \tag{5.4}
\end{equation*}
$$

where $C_{i}=C_{i j}^{j}$
A Finsler space $F^{n}(n \geq 2)$ with $C^{2}=g^{i j} C_{i} C_{j} \neq 0$ is called $C 2$-like[8], if (h)hvtorsion tensor $C_{i j k}$ is written in the form of

$$
\begin{equation*}
C_{i j k}=\frac{1}{C^{2}} C_{i} C_{j} C_{k} \tag{5.5}
\end{equation*}
$$

A Finsler space $F^{n}(n \geq 3)$ with $C^{2} \neq 00$ is called semi C-reducible[7], if the (h)hv-torsion tensor $C_{i j k}$ is of the form of

$$
\begin{equation*}
C_{i j k}=\frac{P}{(n+1)}\left(h_{i j} C_{k}+h_{j k} C_{i}+h_{k i} C_{j}\right)+\frac{q}{C^{2}} C_{i} C_{j} C_{k} \tag{5.6}
\end{equation*}
$$

where p and $q=(1-p)$ does not vanish p is called the characteristic scalar of the F^{n}.

From equation (5.1) and (2.8) and (2.10), the v-curvature tensor of \bar{F}^{n} is given by

$$
\begin{equation*}
\bar{S}_{i j k l}=\tau\left(e^{\sigma}+\rho\right) S_{i j k l}+h_{j k} d_{i l}+h_{i l} d_{j k}-h_{j l} d_{i k}-h_{i k} d_{j l} \tag{5.7}
\end{equation*}
$$

where $d_{i l}=\left(e^{\sigma}+\rho\right)\left\{\frac{m^{2}}{8 L L} h_{i l}+\frac{\rho}{2 L^{2}} h_{i l}+\frac{1}{4 L L} m_{i} m_{l}\right\}$ and $m^{2}=m_{i} m^{i}, m^{i}=g^{i j} m_{j}$
Let us suppose that F^{n} be an S3-like Finsler space, then from equation (5.2), (2.6) and (5.7), we have

$$
\bar{S}_{i j k l}=\bar{h}_{i l} P_{j k}+\bar{h}_{j k} P_{i l}-\bar{h}_{j l} P_{i k}-\bar{h}_{i k} P_{j l}
$$

where

$$
P_{i j}=\left\{\tau\left(e^{\sigma}+\rho\right)\right\}^{-1}-\frac{S}{(n-1)(n-2)} h_{i j}
$$

Which shows that $\overline{F^{n}}$ is an S4-like Finsler space .
Let us suppose that F^{n} is an S 4 -like Finsler space then from the equation (5.3), (2.6) and (5.7), we obtain

$$
\bar{S}_{i j k l}=\bar{h}_{j k} B_{i l}+\bar{h}_{i l} B_{j k}-\bar{h}_{j l} B_{i k}-\bar{h}_{i k} B_{j l}
$$

where

$$
B_{i j}=\left\{\left(\tau\left(e^{\sigma}+\rho\right)\right)^{-1} d_{i j}-L^{-2} M_{i j}\right\}
$$

Which show that \bar{F}^{n} is an S4-like Finsler space.
Next let us suppose that $S_{i j k l}=0$ then from equation (2.6) and (5.7), we get

$$
\bar{S}_{i j k l}=\bar{h}_{j k} E_{i l}+\bar{h}_{i l} E_{j k}-\bar{h}_{j l} E_{i k}-\bar{h}_{i k} E_{j l}
$$

Where

$$
E_{j k}=\left\{\tau\left(e^{\sigma}+\rho\right)\right\}^{-1} d_{j k}
$$

which shows that \bar{F}^{n} is an S4-like Finsler space Summarizing all these results we get the following.
Theorem 5.1 If F^{n} is any one of the following Finsler spaces
(a) S3-like Finsler space
(b) S4-like Finsler space
(c) A Finsler space with vanishing v-curvature tensor,
then F^{n} is an S 4 - like Finsler space.
The v-curvature tensor $S_{i j k l}$ of a C-redusible Finsler space has been obtained by Matsumoto[5] is of the following form

$$
\begin{equation*}
S_{i j k l}=(n+1)^{-2}\left(h_{i l} C_{j k} C_{i l}-h_{i k} c_{j l}-h_{j l} C_{i k}\right) \tag{5.8}
\end{equation*}
$$

where (a) $C_{i j}=2^{-1} C^{2} h_{i j}+C_{i} C_{j}$ Since $C_{i j}$ is a symmetric and indicatory tensor therefore (5.8) shows that F^{n} is an S 4 -like Finsler space.

Thus in view of theorem (5.1) we have the following result.
Theorem 5.2 If F^{n} is a C-reducible Finsler space, then \bar{F}^{n} is an S4-like Finsler space.

From equation (5.1) and (5.5) it can be shown that the v-curvature tensor $S_{i j k l}$ of a C2-like Finsler space vanishes. Therefore in view of theorem (5.1) we have the following.
Theorem 5.3 If F^{n} is a C2-like Finsler space, then \bar{F}^{n} is an S4-like Finsler space.
Acknowledgement: The authors are thankful to referee for his/her valuable comments and observations which help in improving the paper.

References

[1] M.Matsumoto: On Finsler space with Randes metric and special forms of important tensors, J. Math. Kyoto Univ., 14 (1974), 477-498.
[2] H.Izumi: Conformal transformation of Finsler spaces. II., Tensor. N.S., 34 (1980), 337-359.
[3] G.Randers: On the assymetrical metric in the four-space of general relativity., Phy. Rev., 56(2) (1941), 195-199.
[4] M.Matsumoto: Foundations of Finsler geometry and special Finsler spaces., Kaiseisha Press Saikawa, Otsu, Japan, (1986).
[5] M.Matsumoto: On C-reducible Finsler spaces, Tensor. N. S. 24 (1972), 29-37.
[6] M.Matsumoto: Theory of Finsler spaces with (α, β)-metric, Rep. Math.Phy. 31 (1992), 4883.
[7] M.Matsumoto and C.Shibata: J. Math. Kyoto Univ., 19 (1979), 301-14.
[8] M.Matsumoto and S.Numata: Tensor(N.S), 34 (1980), 218-22.
[9] B.N.Prasad: On the torsion tensors $R_{i j k}$ and $P_{i j k}$ of Finsler spaces with a metric ds $=$ $\left(g_{i j} d x^{i} d x^{j}\right)^{1 / 2}+b_{i}(x, y) d x^{i}$ Indian J. Pure. Appl. Math., 21(1) (1990), 27-39.
[10] A.Taleshian,D.M.Saghali and S.A.Arabi: Conformal h-vector-change in Finsler spaces, Journal of Mathematics and Computer Science 7 (2013) 249-257
[11] S.H.Abed: Conformal β-changes in Finsler spaces, Proc. Math. Phys. Soc. Egypt, 86 (2008) 79-89

Manoj Kumar Singh
Department of Mathematics, UIET, CSJM University,Kanpur, (U.P.) India-208024
E-mail address: ms84ddu@gmail.com
SAMIDHA YadaV
Department of Mathematics, UIET, CSJM University,Kanpur, (U.P.) India-208024
E-mail address: samidha.yadav14@gmaill.com

[^0]: 2010 Mathematics Subject Classification. 52B40, 53C60.
 Key words and phrases. Conformal transformation, h-transformation, (h)-torsion tensor, ($h v$)torsion tensor, v-curvature tensor.

 Submitted Sep. 9, 2016.

