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THE BIFURCATION ANALYSIS OF THE SCHRÖDINGER

EQUATION WITH POWER LAW NONLINEARITY

M. AKBARI

Abstract. In this paper, the Schrödinger equation with power law nonlin-
earity will be considered. The bifurcation analysis will be applied to extract
travlling wave solutions.

1. Introduction

The schrödinger equation is one of the important partial differential equations
and plays a vital role in various areas of physical, biological and engineering sci-
ences. It appears in the study of nonlinear optics, plasma physics, mathematical
bioscience, quantum mechanics and several other disciplines. In recent years, some
methods were introduced in order to find the explicit and approximate solution of
this equation in linear or nonlinear case [1-11]. One of the considerable cases of
the nonlinear schrödinger equations is power law nonlinearity which was studied by
Wazwaz in [7].
In this paper, we will consider the nonlinear schrödinger equation with power law
nonlinearity with following form

iwt + wxx + a|w|2nw = 0, (1)

where a is a real parameter and w = w(x, t) is a complex-valued function of two
real variables x, t.
The integrability aspects and the bifurcation analysis will be the main focus of this
paper. The rest of the paper is structured as follows: In section 2 the bifurcation
analysis will be carried out for this paper. In section 3 we will obtain travelling
wave solutions. Finally, section 4 is devoted to our conclusions.

2. Bifurcation analysis

In this section, we investigate the bifurcation analysis of the schrödinger equation
with power law nonlinearity.
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To facilitate further on our analysis, we assume that Eq. (1) has travelling wave
solutions in the form

w(x, t) = φ(ξ)ei(αx+βt), ξ = k(x− 2αt) (2)

where k, α and β are real constants.
Substituting (2) into (1), we have

−(β + α2)ϕ+ k2φ′′ + aφ2n+1 = 0. (3)

For simplicity, we assume

A =
(β + α2)

k2
, (4)

B =
a

k2
, (5)

thus (3) leads to ordinary differential equation (ODE)

φ′′ −Aφ+Bφ2n+1 = 0. (6)

Let x = φ(ξ), y = φ′(ξ). Then Eq. (6) reduced to the following planar dynamic
system: {

dφ
dξ = y,
dy
dξ = Aφ−Bφ2n+1,

(7)

which admits the following Hamiltonian function:

H(φ, y) = y2 +
B

n+ 1
φ2n+2 −Aφ2. (8)

Now, we investigate the bifurcation phase portraits of system (7) in the parameter
space (A,B). Assume

f(φ) = Aφ−Bφ2n+1, (9)

obviously, when AB > 0, f(φ) has three zero points, φ−, φ0 and φ+, which are
given as follows:

φ− = −(
A

B
)

1
2n , φ0 = 0, φ+ = (

A

B
)

1
2n (10)

when AB ≤ 0, f(φ) has only one zero point

ϕ0 = 0.

Suppose that (φ, 0) is a singular point of system (7), then at the singular point
(φ, 0) the characteristic values of the linearized system of system (7) is

λ1,2 = ±
√
f ′(φ). (11)

According to the qualitative theory of dynamical systems, we conclude that
(1) If f ′(φ) < 0, then (φ, 0) is a center point.
(2) If f ′(φ) > 0, then (φ, 0) is a saddle point.
(3) If f ′(φ) = 0, then (φ, 0) is a degenerate saddle point.
Thus, we obtain the phase portraits of system (7) in figure 1 (when AB > 0)

and (when AB < 0).
Let

H(φ, y) = h, (12)

where h is Hamiltonian.
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Next, we consider the relations between the orbits of (7) and the Hamiltonian h.
Set

h∗ =| H(φ+, 0) |=| H(φ−, 0) | . (13)

According to figure 1, we get the following propositions.

Proposition 1. Suppose that A > 0 and B > 0, we have
(i) when h > 0, system (7) has a periodic orbit Γ1;
(ii) when h = 0, system (7) has two homoclinic orbits Γ2 and Γ∗

2;
(iii) when −h∗ < h < 0, system (7) has two periodic orbits Γ3 and Γ∗

3;
(iv) when h ≤ −h∗, system (7) does not have any closed orbit.

Proposition 2. Suppose that A < 0 and B < 0, we have
(i) when h = 0, system (7) has two periodic orbits Γ4 and Γ∗

4;
(ii) when 0 < h < h∗, system (7) has three periodic orbits Γ5,Γ

∗
5 and Γ∗

5;
(iii) when h = h∗, system (7) has two heteroclinic orbits Γ6 and Γ∗

6;
(iv) when h < 0 or h > h∗, system (7) does not have any closed orbit.

From the qualitative theory of dynamical systems, we know that a smooth soli-
tary wave solution of a partial differential system corresponds to a smooth ho-
moclinic orbit of a traveling wave equation. A smooth kink wave solution or an
unbounded wave solution corresponds to a smooth heteroclinic orbit of a traveling
wave equation. Similarly, a periodic orbit of a traveling wave equation corresponds
to a periodic traveling wave solution of a partial differential system. According to
above analysis, we have the following propositions [12, 13].

Proposition 3. Suppose that A > 0 and B > 0, we have
(i) when h > 0, (7) has two periodic wave solutions (corresponding to the periodic

orbit Γ1 in Figure 1);
(ii) when h = 0, (7) has two solitary wave solutions (corresponding to the ho-

moclinic orbits Γ2 and Γ∗
2 in Figure 1);

(iii) when −h∗ < h < 0, (7) has two periodic wave solutions (corresponding to
the periodic orbits Γ2 and Γ∗

2 in Figure 1 ).

Proposition 4. Suppose that A < 0 and B < 0, we have
(i) when h = 0, (7) has four periodic singular wave solutions (corresponding to

the periodic orbits Γ4 and Γ∗
4 in Figure 1);

(ii) when 0 < h < h∗, (7) has four periodic singular wave solutions and a periodic
wave solution (corresponding to the periodic orbits Γ5,Γ

∗
5 and Γ∗

5 in Figure 1 )
(iii) when h = h∗, (7) has two kink profile solitary wave solutions and two

singular solitary wave solutions (corresponding to the heteroclinic orbits Γ6 and Γ∗
6

in Figure 1).

3. Traveling wave solutions

First, we will obtain the explicit expressions of traveling wave solutions for the
(1) when A > 0 and B > 0. From the phase portrait, we see that are two symmetric
homoclinic orbits Γ2 and Γ∗

2 connected at the saddle point (0, 0). In (φ, y) -plane,
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Figure 1. The bifurcation phase portraits of system (7)

the expressions of the homoclinic orbits are given as

y = ±
√

B

n+ 1
φ

√
−φ2n +

(n+ 1)A

B
. (14)

Substituting (14) into dφ
dξ = y and integrating them along orbits Γ2 and Γ∗

2, we have

±
∫ φ

φ1

1

s
√
−s2n + (n+ 1)BA

ds =

√
A

n+ 1

∫ ξ

0

ds, (15)

±
∫ φ

φ2

1

s
√
−s2n + (n+ 1)BA

ds =

√
A

n+ 1

∫ ξ

0

ds, (16)

Completing the above integrals we obtain

φ = (

√
(n+ 1)A

B
sechn

√
Aξ)

1
n (17)

φ = −(

√
(n+ 1)A

B
sechn

√
Aξ)

1
n . (18)

Using the notations of (2), we get the following singular solitary wave solutions:

w1(x, t) = (

√
(n+ 1)A

B
sechn

√
Ak(x− 2αt))

1
n ei(αx+βt), (19)

w2(x, t) = −(

√
(n+ 1)A

B
sechn

√
Ak(x− 2αt))

1
n ei(αx+βt), (20)

where the parameters A and B are given by (4) and (5), respectively.
Second, we will obtain the explicit expressions of traveling wave solutions for (1)

when A < 0 and B < 0. From the phase portrait, we note that there are two special
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orbits Γ4 and Γ∗
4, which have the same Hamiltonian with that of center point (0, 0).

In (φ, y)-plane, the expressions of the orbits are given as

y = ±
√
− B

n+ 1
φ

√
φ2n − (n+ 1)A

B
. (21)

Substituting (21) into dφ
dξ = y and integrating them along orbits Γ4 and Γ∗

4, it

follows that

±
∫ φ

φ3

1

s
√
s2n − (n+ 1)BA

ds =

√
− A

n+ 1

∫ ξ

0

ds, (22)

±
∫ φ

φ4

1

s
√
s2n − (n+ 1)BA

ds =

√
− A

n+ 1

∫ ξ

0

ds, (23)

±
∫ ∞

φ

1

s
√
s2n − (n+ 1)BA

ds =

√
− A

n+ 1

∫ ξ

0

ds, (24)

Completing integrals (22)-(24), we obtain

φ = ±(

√
(n+ 1)A

B
cscn

√
−Aξ)

1
n (25)

φ = ±(

√
(n+ 1)A

B
secn

√
−Aξ)

1
n . (26)

From the notations of (2), we get the following periodic singular wave solutions:

w1 = ±(

√
(n+ 1)A

B
cscn

√
−Ak(x− 2αt))

1
n ei(αx+βt), (27)

w2 = ±(

√
(n+ 1)A

B
secn

√
−Ak(x− 2αt))

1
n ei(αx+βt), (28)

where the parameters A and B are given by (4) and (5), respectively.

4. conclusion

In this work the bifurcation analysis was used to present an analytic study for
nonlinear schrodinger equation with power law nonlinearity. Subsequently, the bi-
furcation analysis of the dynamical system was carried out. This bifurcation analy-
sis additionally obtained the phase portraits of the dynamical system. Furthermore,
several nonlinear wave solutions were extracted from this analysis.
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