Electronic Journal of Mathematical Analysis and Applications Vol. 5(2) July 2017, pp. 289-297. ISSN: 2090-729X(online) http://fcag-egypt.com/Journals/EJMAA/

ON STEKLOV BOUNDARY VALUE PROBLEMS FOR p(x)-LAPLACIAN EQUATIONS

I. EKINCIOGLU, R. AYAZOGLU(MASHIYEV)

ABSTRACT. Under suitable assumptions on the potential of the nonlinearity, we study the existence of solutions for a Steklov problem involving the p(x)-Laplacian. Our approach is based on variational methods.

1. INTRODUCTION

In recent years there has been an increasing interest in the study of various mathematical problems with variable exponent (see for example [2, 6, 7, 17]). The nonlinear problems involving the p(x)-Laplace operator are extremely attractive because they can be used to model dynamical phenomena which arise from the study of electrorheological fluids or elastic mechanics [20]. Problems with variable exponent growth conditions also appear in the modeling of stationary thermo-rheological viscous flows of non-Newtonian fluids. The detailed application background of the p(x)-Laplacian can be found in [1,3,7,11,12,13,16].

In this study, we provide existence results for the following class of Steklov boundary value problems for some p(x)-Laplacian

$$\begin{cases} -\Delta_{p(x)}u + a(x) |u|^{p(x)-2} u = f(x, u), & \text{in } \Omega; \\ |\nabla u|^{p(x)-2} \frac{\partial u}{\partial \eta} = g(x, u), & \text{on } \partial \Omega. \end{cases}$$
(P)

where $\Delta_{p(x)}u = \operatorname{div}(|\nabla u|^{p(x)-2}\nabla u)$ is the p(x)-Laplacian operator. Denote $C_+(\overline{\Omega}) := \left\{p \in C(\overline{\Omega}) : 1 < \min_{x \in \overline{\Omega}} p(x) := p^- \leq \max_{x \in \overline{\Omega}} p(x) := p^+ < \infty\right\}$ and let $p(x) < p^*(x) = \frac{Np(x)}{N-p(x)}$ if p(x) < N and $p^*(x) = \infty$ if $p(x) \ge N$ for $x \in \overline{\Omega}$, $\Omega \subset \mathbb{R}^N$, for $N \ge 2$, is a bounded domain with $\partial\Omega \in C^{0,1}$, and $\frac{\partial}{\partial\eta} = \eta \cdot \nabla$ is a normal derivative on $\partial\Omega$ and a, f, g satisfy the following conditions: $(f_1) \ a \in L^{\infty}(\Omega)$ with $a^- = ess \inf_{x \in \Omega} a(x) > 0$.

 (f_2) $f \in C(\overline{\Omega} \times \mathbb{R}, \mathbb{R})$ and there exist constant $b_0 > 0$ such that:

$$|f(x,s)| \le a_0(x) + b_0 |s|^{\alpha(x)}$$
 for all $(x,s) \in \overline{\Omega} \times \mathbb{R}$,

¹⁹⁹¹ Mathematics Subject Classification. 35J48, 35J60, 35J66.

Key words and phrases. Variable exponent Lebesgue-Sobolev spaces; Steklov problem; p(x)-Laplacian; variational methods.

Submitted Mar. 6, 2016.

where $a_0 \in L^{\frac{\alpha(x)}{\alpha(x)-1}}$ and $\alpha \in C(\overline{\Omega})$, $1 < \alpha(x) < p^*(x) = \frac{Np(x)}{N-p(x)}$ if p(x) < N and $p^*(x) = \infty$ if $p(x) \ge N$.

 $(f_3) \ g \in C(\partial \Omega \times \mathbb{R}, \mathbb{R})$ and there exist constant $b_1 > 0$ such that

$$|g(x,s)| \le a_1(x) + b_1 |s|^{\beta(x)}$$
 for all $(x,s) \in \partial\Omega \times \mathbb{R}$,

where $a_1 \in L^{\frac{\beta(x)}{\beta(x)-1}}$ and $\beta \in C(\partial\Omega), 1 < \beta(x) < p^{\partial}(x) = \frac{(N-1)p(x)}{N-p(x)}$ if p(x) < N and $p^{\partial}(x) = \infty$ if $p(x) \ge N$.

 (f_4) There exist constants $\lambda, \mu \in \mathbb{R}$ such that

$$\limsup_{|u| \to +\infty} \frac{p^+ G(x, u)}{|u|^{p^-}} \le \lambda$$

uniformly for $x \in \partial \Omega$ and

$$\limsup_{|u| \to +\infty} \frac{p^+ F(x, u)}{|u|^{p^-}} \le \mu$$

uniformly for $x \in \overline{\Omega}$, with

$$\lambda_1 \left(p^- + \mu_1 \right) \lambda + \lambda_1 \mu < 1 \text{ when } \lambda_1 \left(p^- + \mu_1 \right) \lambda < 1 \text{ and } \lambda_1 \mu < 1, \tag{1.1}$$

where $G(x,u) = \int_{0}^{u} g(x,s)ds$, $F(x,u) = \int_{0}^{u} f(x,s)ds$ and $\mu_1 > 0$, $\lambda_1 > 0$ constants. (f_5) There exist $R_1 > 0$, $\theta > p^+$ such that for all $|s| \ge R_1$ and $x \in \partial\Omega$, $0 < \theta F(x,s) \le f(x,s)s$. (f_6) There exist $R_2 > 0$, $\theta > p^+$ such that for all $|s| \ge R_2$ and $x \in \Omega$, $0 < \theta G(x,s) \le g(x,s)s$.

In this section we recall some results on variable exponent Lebesgue-Sobolev spaces. The reader is referred to [8,10] and references therein for more details.

For any $p \in C_+(\overline{\Omega})$, we define the variable exponent Lebesgue space by

$$L^{p(x)}(\Omega) = \left\{ u: \Omega \to \mathbb{R} \text{ is measurable:} \int_{\Omega} |u(x)|^{p(x)} dx < \infty \right\}.$$

The modular of $L^{p(x)}(\Omega)$ which is the mapping $\sigma_{p(x)}: L^{p(x)}(\Omega) \to \mathbb{R}$ is defined by

$$\sigma_{p(x)}\left(u\right) = \int_{\Omega} \left|u\right|^{p(x)} dx$$

for all $u \in L^{p(x)}(\Omega)$ with the norm

$$|u|_{L^{p(x)}(\Omega)} := |u|_{p(x)} = \inf \left\{ \rho > 0 : \sigma_{p(x)}\left(\frac{u}{\rho}\right) \le 1 \right\},$$

and the variable exponent Sobolev space $W^{1,p(x)}(\Omega)$ by

$$W^{1,p(x)}\left(\Omega\right) = \left\{ u \in L^{p(x)}\left(\Omega\right) : |\nabla u| \in L^{p(x)}\left(\Omega\right) \right\}$$

with the norm

$$\|u\|_{W^{1,p(x)}(\Omega)} := \|u\|_{1,p(x)} = |u|_{p(x)} + |\nabla u|_{p(x)}.$$
f1) the following norms given by

Since a verifies (f_1) , the following norms given by

$$\|u\|_{a} = \inf\left\{\rho > 0: \int_{\Omega} \left(\left|\frac{\nabla u}{\rho}\right|^{p(x)} + a(x)\left|\frac{u}{\rho}\right|^{p(x)}\right) dx \le 1\right\}.$$

$$\frac{[a^-]_{\frac{1}{p}}}{1+[a^-]_{\frac{1}{p}}} \left\| u \right\|_{1,p(x)} \le \left\| u \right\|_a \le \left(1+|a|_{\infty}\right)^{\frac{1}{p^-}} \left\| u \right\|_{1,p(x)}$$

for each $u \in W^{1,p(x)}(\Omega)$, where, for h > 0 and $t \in C(\overline{\Omega})$ with $t^- > 1$, we put

$$\left[h\right]_t := \min\left\{h^{t^-}, h^{t^+}\right\}.$$

Proposition 1 ([9,10,11]). Let $p: \mathbb{R} \to \mathbb{R}^+$ be Lipschitz continuous and satisfy $1 < p^- \leq p^+ < N$ and $q: \mathbb{R} \to \mathbb{R}^+$ be a measurable function. If $p(x) \leq q(x) < q(x)$ $p^*(x), x \in \Omega$ then there is a continuous embedding $W^{1,q(x)}(\Omega) \hookrightarrow W^{1,p(x)}(\Omega)$.

Proposition 2 ([8,9,10]). Let $\mu(u) = \int_{\Omega} (|\nabla u(x)|^{p(x)} + a(x) |u(x)|^{p(x)}) dx$. For $u \in W^{1,p(x)}(\Omega)$ we have

- $\begin{array}{ll} (1) & \|u\|_a < 1 (=1;>1) \Leftrightarrow \mu(u) < 1 (=1;>1); \\ (2) & If \, \|u\|_a < 1 \ then \ \|u\|_a^{p^+} \le \mu(u) \le \|u\|_a^{p^-}; \\ (3) & If \, \|u\|_a > 1 \ then \ \|u\|_a^{p^-} \le \mu(u) \le \|u\|_a^{p^+}. \end{array}$

Proposition 3 ([8,9,10]). If $p^- > 1$ and $p^+ < \infty$ then, the spaces $L^{p(x)}(\Omega)$ and $W^{1,p(x)}(\Omega)$ are separable and reflexive Banach spaces.

For $p(x) \equiv p = 2$, Auchmuty [5] proved that the Steklov eigenfunctions form a complete orthonormal system for the space $[H_0^1(\Omega)]^{\perp}$ in $H^1(\Omega)$ with respect to the specific inner products. Some previous studies have treated the nonlinear Steklov problem, but only [4] considered p = 2 and [21] dealt with p > 1. The inhomogeneous Steklov problems involving the p-Laplacian has been the object of study in, for example, [19], in which the authors have studied this class of inhomogeneous Steklov problems in the cases of $p(x) \equiv p = 2$ and of $p(x) \equiv p > 1$, respectively.

Existence and multiplicity of solutions for a Steklov problem involving the p(x)-Laplacian are provided in Afrouzi, Hadjian, Heidarkhani [1] and Allaoui, El Amrouss, Ourraoui [3]. Their approach is based on variational methods.

In 2015 Godoi, Miyagaki, Rodrigues [14] provided existence results for the following class of Steklov-Neumann boundary value problems for some quasilinear elliptic equations

$$\begin{cases} -\operatorname{div} |\nabla u|^{p-2} \nabla u + c(x) |u|^{p-2} u = f(x, u), & \text{in } \Omega; \\ |\nabla u|^{p-2} \frac{\partial u}{\partial n} = g(x, u), & \text{on } \partial\Omega. \end{cases}$$
(P*)

Here the functions $c: \Omega \to \mathbb{R}$ and $f, g: \overline{\Omega} \times \mathbb{R} \to \mathbb{R}$ satisfy the following conditions: (P1) $c \in L^{\infty}(\Omega), c(x) \ge 0$, for almost everywhere $x \in \Omega$ and $\int_{\Omega} c(x) dx > 0$. $(P2) f, g \in C(\overline{\Omega} \times \mathbb{R}, \mathbb{R}).$

(P3) The constants $a_1, a_2 > 0$ exist such that

$$|g(x,u)| \le a_1 + a_2 |u|^s, \forall (x,u) \in \partial\Omega \times \mathbb{R},$$

with $0 < s < p_*^1(N) - 1$, where $p_*^1(N) = \frac{(N-1)p}{N-p}$ if p < N and $p_*^1(N) = \infty$ if $p \ge N$. (P4) The constants $b_1, b_2 > 0$ exist such that

$$|f(x,u)| \le b_1 + b_2 |u|^t, \forall (x,u) \in \overline{\Omega} \times \mathbb{R},$$

with $0 < t < p_*(N) - 1$, where $p_*(N) = \frac{Np}{N-p}$ if p < N and $p_*(N) = \infty$ if $p \ge N$. (P5) The constant $\pi \in \mathbb{R}$ exist such that

$$\limsup_{|u| \to +\infty} \frac{pG(x,u)}{|u|^p} \le \pi < \pi_1$$

uniformly for $x \in \partial \Omega$ and the constant $\eta \in \mathbb{R}$ exist such that

$$\limsup_{|u| \to +\infty} \frac{pF(x,u)}{|u|^p} \le \eta < \eta_1$$

uniformly for $x \in \Omega$, with

$$\pi_1\eta+\eta_1\pi<\eta_1\pi_1$$

If conditions (P1) - (P5) are satisfied, problem (P^*) has at least one weak solution $u \in W^{1,p}(\Omega)$.

Be noted, firstly in article [18], problem (P^*) was addressed in condition p = 2. After, authors in article [14] generalized problem (P^*) to p-Laplacian.

In [14] and [18], authors used inequalities $||u||_c^p \ge \eta_1 ||u||_{p,\partial}^p$ and $||u||_c^p \ge \pi_1 ||u||_p^p$ to prove the coercivity of functional, where η_1 the first Steklov eigenvalue and π_1 the first Neumann eigenvalue, where

$$||u||_{c} = \left(\int_{\Omega} \left(|\nabla u|^{p} + c(x) |u|^{p}\right) dx\right)^{\frac{1}{p}}$$

and

$$\|u\|_{p} = \left(\int_{\Omega} |u|^{p} dx\right)^{\frac{1}{p}},$$
$$\|u\|_{p,\partial} = \left(\int_{\partial\Omega} |u|^{p} dx\right)^{\frac{1}{p}}$$

are norms in $L^{p}(\Omega)$ and $L^{p}(\partial\Omega)$, respectively.

We note that we deal with the problem (P) consist of p(x)-Laplacian, naturally, the solution of the problem have been made in the variable exponent Lebesgue-Sobolev spaces. Therefore, there exist constants η_1 and π_1 (see [14]). Thus, in this paper, we will discuss the inequalities

$$\|u\|_{1,p^{-}}^{p^{-}} \leq \lambda_{1} \|u\|_{a}^{p^{-}}, u \in W^{1,p(x)}(\Omega), \qquad (1.2)$$

where $\lambda_1 > 0$ and

$$\int_{\partial\Omega} |f| \, d\sigma \le \int_{\Omega} |\nabla f| \, dx + \mu_1 \int_{\Omega} |f| \, dx, \ f \in W^{1,1}(\Omega), \tag{1.3}$$

where $\mu_1 > 0$ (see detail [15]).

Since our approach is variational, we define the Euler–Lagrange functional associated with the problem $(P), I: (W^{1,p(x)}(\Omega), \|u\|_{1,p(x)}) \to \mathbb{R}$ by

$$I(u) = \int_{\Omega} \frac{|\nabla u|^{p(x)} + a(x) |u|^{p(x)}}{p(x)} dx - \int_{\Omega} F(x, u) dx - \int_{\partial \Omega} G(x, u) d\sigma.$$
(1.4)

$$\langle I'(u), \upsilon \rangle = \int_{\Omega} \left(|\nabla u|^{p(x)-2} \nabla u \nabla \upsilon + a(x) |u|^{p(x)-2} u \upsilon \right) dx - \int_{\Omega} f(x, u) \upsilon dx - \int_{\partial \Omega} g(x, u) \upsilon d\sigma$$

for all $u, v \in W^{1,p(x)}(\Omega)$. Therefore, the critical points of I are the exact weak solutions to problem (P).

Definition 4. Let $(E, ||u||_E)$ be a Banach space, and $I : E \to \mathbb{R}$ a C^{1} -functional. We say that I satisfies Palais-Smale condition, denoted (PS), if any sequence (u_n) in E, such that $I(u_n)$ is bounded in E and $I'(u_n) \to 0$, admits a convergent subsequence in E.

The following classic abstract result can be found in [22].

Proposition 5. Let E be a Banach space. If $J \in C^1(E, \mathbb{R})$ is bounded from below and it satisfies the (PS) condition, then $c = \inf_E J$ is a critical value of J.

2. Main results

Thus, we establish our main result.

Theorem 6. If (f_1) - (f_6) hold. Then, problem (P) has at least a nontrivial weak solution $u \in W^{1,p(x)}(\Omega)$.

Figure 1

Figure 1 shows the cartesian plane $\lambda o \mu$ of the region described by $\lambda_1 (p^- + \mu_1) \lambda + \lambda_1 \mu < 1$ with $\lambda_1 (p^- + \mu_1) \lambda < 1$ and $\lambda_1 \mu < 1$. **Proof.** Using this fact, we prove the following claim.

Claim 1. The functional I is coercive on $(W^{1,p(x)}(\Omega), ||u||_a)$, i.e.,

 $I(u) \to +\infty \ as \ \|u\|_a \to +\infty.$

First in inequality (1.3)

$$f = \left| u \right|^{p^{-}},$$

we take, then

$$\nabla f = \nabla \left(|u|^{p^{-}} \right) = p^{-} |u|^{p^{-}-1} \nabla u \ sign(u)$$

and we apply Young's

$$\nabla\left(|u|^{p^{-}}\right) \le (p^{-}-1)|u|^{p^{-}}+|\nabla u|^{p^{-}}$$

we get these inequations.

By the continuity of F, G and (f_4) , we have

$$G(x,u) \le \frac{\lambda}{p^+} |u|^{p^-} + C, \ C > 0$$
 (2.1)

and

$$F(x,u) \le \frac{\mu}{p^+} |u|^{p^-} + C, \ C > 0$$
 (2.2)

for all $x \in \overline{\Omega}$ and $u \in \mathbb{R}$. From (1.3) and (2.1) we get

$$\frac{\lambda}{p^{+}} \int_{\partial\Omega} G(x,u) d\sigma$$

$$\leq \frac{\lambda}{p^{+}} \left(\int_{\Omega} |\nabla u|^{p^{-}} dx + (p^{-} + \mu_{1} - 1) \int_{\Omega} |u|^{p^{-}} dx \right) + C |\partial\Omega|.$$
(2.3)

For $||u||_a > 1$ and (1.4) apply the inequalities (2.1)-(2.3) and (1.2) then we get

$$\begin{split} I(u) &\geq \frac{1}{p^+} \int_{\Omega} \left(|\nabla u|^{p(x)} + a(x) |u|^{p(x)} \right) dx \\ &\quad - \frac{\lambda}{p^+} \left(\int_{\Omega} |\nabla u|^{p^-} dx + (p^- + \mu_1 - 1) \int_{\Omega} |u|^{p^-} dx \right) \\ &\quad - \frac{\mu}{p^+} \int_{\Omega} |u|^{p^-} dx - C \left(|\partial \Omega| + |\Omega| \right) \\ &\quad = \frac{1}{p^+} \|u\|_a^{p^-} - \frac{\lambda \left(p^- + \mu_1 - 1 \right) + \mu}{p^+} \int_{\Omega} |u|^{p^-} dx - \frac{\lambda}{p^+} \int_{\Omega} |\nabla u|^{p^-} dx. \\ &\geq \frac{1}{p^+} \|u\|_a^{p^-} - \max \left\{ \frac{\lambda \left(p^- + \mu_1 - 1 \right) + \mu}{p^+} , \frac{\lambda}{p^+} \right\} \times \\ &\quad \times \left(\int_{\Omega} |u|^{p^-} dx + \int_{\Omega} |\nabla u|^{p^-} dx \right) - C \left(|\partial \Omega| + |\Omega| \right) \\ &\geq \frac{1}{p^+} \|u\|_a^{p^-} - \frac{(p^- + \mu_1)\lambda + \mu}{p^+} \left(\int_{\Omega} |\nabla u|^{p^-} dx + \int_{\Omega} |u|^{p^-} dx \right) - C \left(|\partial \Omega| + |\Omega| \right) \\ &= \frac{1}{p^+} \|u\|_a^{p^-} - \frac{(p^- + \mu_1)\lambda + \mu}{p^+} \|u\|_{1,p^-}^{p^-} - C \left(|\partial \Omega| + |\Omega| \right) \\ &\geq \frac{1}{p^+} \left\{ 1 - \lambda_1 \left[\left(p^- + \mu_1 \right) \lambda - \mu \right] \right\} \|u\|_a^{p^-} - C \left(|\partial \Omega| + |\Omega| \right). \end{split}$$

By condition (1.1) we have

$$\lambda_1 \left(p^- + \mu_1 \right) \lambda + \lambda_1 \mu < 1.$$

294

Hence, the functional I is coercive.

Claim 2. The functional I is bounded from below.

This is an immediate consequence of Claim 1.

Claim 3. I verifies (PS), the Palais -Smale condition.

Proof. Now, to verify the (PS)-condition it is sufficient to prove that any (PS)-sequence is bounded. To this end, suppose that $\{u_n\} \subset W^{1,p(x)}(\Omega)$ is a (PS)-sequence; i.e., there is M > 0 such that

$$\sup |I(u_n)| \le M, \ I'(u_n) \to 0 \text{ as } n \to \infty.$$

Let us show that $\{u_n\}$ is bounded in $W^{1,p(x)}(\Omega)$. Using hypothesis $(f_5), (f_6)$, since $I(u_n)$ is bounded, we have for n large enough:

$$\begin{split} M+1 &\geq \langle I(u_{n}), u_{n} \rangle - \frac{1}{\theta} \langle I'(u_{n}), u_{n} \rangle + \frac{1}{\theta} \langle I'(u_{n}), u_{n} \rangle \\ &= \int_{\Omega} \frac{1}{p(x)} \left(|\nabla u_{n}|^{p(x)} + a(x) |u_{n}|^{p(x)} \right) dx - \int_{\Omega} F(x, u_{n}) dx \\ &- \int_{\partial \Omega} G(x, u_{n}) d\sigma - \frac{1}{\theta} \int_{\Omega} \left(|\nabla u_{n}|^{p(x)} + a(x) |u_{n}|^{p(x)} \right) dx \\ &+ \frac{1}{\theta} \int_{\Omega} f(x, u_{n}) u_{n} dx + \frac{1}{\theta} \int_{\partial \Omega} g(x, u_{n}) u_{n} d\sigma + \frac{1}{\theta} \langle I'(u_{n}), u_{n} \rangle \\ &\geq \left(\frac{1}{p^{+}} - \frac{1}{\theta} \right) \int_{\Omega} \left(|\nabla u_{n}|^{p(x)} + a(x) |u_{n}|^{p(x)} \right) dx \\ &- \int_{\Omega} \left(F(x, u_{n}) - \frac{1}{\theta} f(x, u_{n}) u_{n} \right) dx \\ &- \int_{\partial \Omega} \left(G(x, u_{n}) - \frac{1}{\theta} g(x, u_{n}) u_{n} \right) dx + \frac{1}{\theta} \langle I'(u_{n}), u_{n} \rangle \\ &\geq \left(\frac{1}{p^{+}} - \frac{1}{\theta} \right) \|u_{n}\|_{a}^{p^{-}} - C_{1} - C_{2} - \frac{1}{\theta} \|I'(u_{n})\|_{\left(W^{1,p(x)}(\Omega)\right)^{*}} \|u_{n}\|_{a} \\ &\geq \left(\frac{1}{p^{+}} - \frac{1}{\theta} \right) \|u_{n}\|_{a}^{p^{-}} - \frac{C_{3}}{\theta} \|u_{n}\|_{a} - C_{1} - C_{2}, \end{split}$$

where C_1, C_2 and C_3 are positive constants. Since $\theta > p^+$, from the above inequality we know that $\{u_n\}$ is bounded in $(W^{1,p(x)}(\Omega), ||u||_a)$.

Next, we show the strong convergence of (u_n) in $W^{1,p(x)}(\Omega)$. Let $(u_n) \subset W^{1,p(x)}(\Omega)$ be (PS) sequence of I in $W^{1,p(x)}(\Omega)$, that is $I(u_n)$ is bounded and $I'(u_n) \to 0$. By the coercivity of I, the sequence (u_n) is bounded in $W^{1,p(x)}(\Omega)$. As $W^{1,p(x)}(\Omega)$ is reflexive, for a subsequence still denoted (u_n) , we have

$$u_n \rightharpoonup u$$
 weakly in $W^{1,p(x)}(\Omega)$ as $n \to \infty$.

Since $\alpha(x) < p^*(x)$ and $\beta(x) < p^{\partial}(x)$ (see $(f_3), (f_4)$), then $W^{1,p(x)}(\Omega) \hookrightarrow L^{\alpha(x)}(\Omega)$ (compact) and $W^{1,p(x)}(\Omega) \hookrightarrow L^{\beta(x)}(\partial\Omega)$ (compact) (see [9,10,11,12]). Furthermore, we have

$$u_n \to u$$
 strongly in $L^{\alpha(x)}(\Omega)$ as $n \to \infty$,

and

$$u_n \to u$$
 strongly in $L^{\beta(x)}(\partial \Omega)$ as $n \to \infty$.

Therefore

$$\langle I(u_n), u_n - u \rangle \to 0,$$
$$\int_{\Omega} f(x, u_n) u_n (u_n - u) \, dx \to 0$$
$$\int_{\partial \Omega} g(x, u_n) u_n (u_n - u) \, d\sigma \to 0.$$

Thus,

and

$$\langle A(u_n), u_n - u \rangle$$

:
$$= \int_{\Omega} \left(|\nabla u_n|^{p(x)-2} \nabla u_n \left(\nabla u_n - \nabla u \right) + a(x) |u_n|^{p(x)-2} u_n \left(u_n - u \right) \right) dx \to 0.$$

According to the fact that the operator A satisfies condition (S^+) (see [12]), we deduce that $u_n \to u$ strongly in $W^{1,p(x)}(\Omega)$, this completes the proof.

Let (u_n) be a sequence in $(W^{1,p(x)}(\Omega), ||u||_a)$, where $(I(u_n))$ is bounded in \mathbb{R} and $I'(u_n) \to 0$ in $((W^{1,p(x)}(\Omega))^*, ||u||_a^*)$ as $m \to \infty$. Since the operators $L_1, L_2 : (W^{1,p(x)}(\Omega)), ||u||_a) \to \mathbb{R}$, given by

$$L_1 = \int_{\Omega} F(x, u) dx$$
 and $L_2 = \int_{\partial \Omega} G(x, u) d\sigma$

are weakly continuous and their derivatives L'_1 and L'_2 are compacts (see [3]), it is sufficient to show that (u_n) is bounded in $(W^{1,p(x)}(\Omega), ||u||_a)$. If this is not the case, then a subsequence (u_{n_k}) of (u_n) exists such that $||u_{n_k}||_{1,p(x)} \to +\infty$, as $k \to +\infty$. Therefore, by the coercivity, $I, I(u_{n_k}) \to +\infty$, as $k \to +\infty$, which is a contradiction because $(I(u_n))$ is bounded in \mathbb{R} .

Now, we can conclude the proof of Theorem 2.1 by applying Proposition 1.4. Hence, I has at least one critical point $u \in W^{1,p(x)}(\Omega)$, i.e., I'(u) = 0. Then, u is weak solution of problem (P). Thus, the proof of Theorem 2.1 is complete.

Acknowledgement. The authors would like to express sincere thanks to the anonymous referee for his/her carefully reading the manuscript and valuable comments and suggestions. This research project was supported by BAP- 2016/01-03, Bayburt University, Turkey.

References

- G. A. Afrouzi, A. Hadjian and S. Heidarkhani, Steklov problems involing the p(x)-Laplacian, Electronic Journal of Differential Equations, Vol. 2014, No. 134, pp. 1-11, 2014.
- [2] Guven Ali and Daniyal M. Israfilov, Trigonometric approximation in generalized Lebesgue spaces L^{p(x)}, J. Math. Inequal. 4, no. 2 (2010): 285-299.
- [3] M. Allaoui, A. R. El Amrouss and A. Ourraoui, Existence and multiplicity of solutions for a Steklov problem involing the p(x) -Laplace operator, Electronic Journal of Differential Equations, Vol. 2012, No.132, pp.1-12, 2012.
- [4] A. Anane, O. Chakrone, B. Karim and A. Zerquali, An asymmetric Steklov problem with weights the singular case, Bol. Soc. Paran. de Mat. 27 (2), 35–42, 2009.
- [5] G. Auchmuty, Steklov eigenproblems and the representation of solutions of elliptic boundary value problems, Numer. Funct. Anal. Optim. 25, 321–348, 2004.
- [6] R. Ayazoglu (Mashiyev), I. Ekincioglu and G. Alisoy, Periodic solutions for a kind of Lienardtype p(t)-Laplacian equation, Acta Universitatis Apulensis, No. 47, 61-72, 2016.
- [7] G. Barletta and A. Chinn'ı, Existence of solutions for a Neumann problem involving the p(x)-Laplacian, Electron. J. Differential Equations, (158), 1–12, 2013.

296

- [8] L. Diening, P. Harjulehto, P. Hasto and M. Růžička, Lebesgue and Sobolev Spaces With Variable Exponents, Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, Heidelberg, 2011.
- [9] X. L. Fan, J.S. Shen and D. Zhao, Sobolev embedding theorems for spaces W^{k;p(x)}(Ω), J. Math. Anal. Appl., 262, 749-760, 2001.
- [10] X. L. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, J. Math. Anal. Appl., 263, 424-446, 2001.
- [11] X. L. Fan and Q. H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problems. Nonlinear Anal. 52, 1843–1852, 2003.
- [12] X. L. Fan, Q. Zhang and D. Zhao, Eigenvalues of p(x)-Laplacian Dirichlet problem, J. Math. Anal. Appl. 302, 306–317, 2005.
- [13] P. Hasto, The p(x)-Laplacian and applications, J. Anal. 15, 53–62 (special proceedings volume), 2007.
- [14] J. D. B. de Godoi, O. H. Miyagaki and R. S. Rodrigues, On Steklov-Neumann boundary value problems for some quasilinear elliptic equations, Applied Mathematics Letters, 45, 47– 51, 2015.
- G. M. Lieberman, The conormal derivative problem for elliptic equations of variational type, J. Dif. Equat., 49, 218-257, 1983.
- [16] R. A. Mashiyev, B. Cekic and O. M. Buhrii, Existence of solutions for p(x)- Laplacian equations, Electronic Journal of Qualitative Theory of Differential Equations, Vol.2010, No. 65, 1-13, 2010.
- [17] R. A. Mashiyev, G. Alisoy and S. Ogras, Lyapunov, Opial and Beesack inequalities for one-dimensional p(t)-Laplacian equations, Applied Mathematics and Computation, 216 (12), 3459-3467.
- [18] N. Mavinga and M. N. Nkashama, Steklov-Neumann eigenproblems and nonlinear elliptic equations with nonlinear boundary conditions, J. Differential Equations, 248, 1212-1229, 2010.
- [19] N. Mavinga and Mubenga N. Nkashama, Steklov spectrum and nonresonance for elliptic equations with nonlinear boundary conditions, Electronic Journal of Differential Equations, Conf.19, pp. 197-205, 2010.
- [20] M. Růžička, Electrorheological fluids: modeling and mathematical theory, Lecture Notes in Mathematics, vol. 1748. Springer, Berlin, 2000.
- [21] O. Torne, Steklov problem with an indefinite weight for the p-Laplacian, Electron. J. Differential Equations, 87, 1–8, 2005.
- [22] M. Willem, Minimax Theory, in: Progress in Nonlinear Differential Equations and their Applications, vol. 24, Birkhauser, Boston, MA, 1996.

I. EKINCIOGLU, DUMLUPINAR UNIVERSITY DEPARTMENT OF MATHEMATICS, KUTAHYA, TURKEY *E-mail address*: ismail.ekincioglu@dpu.edu.tr

R. Ayazoglu(Mashiyev), Faculty of Educations, Bayburt University, Turkey $E\text{-}mail\ address: \texttt{rabilmashiyev@gmail.com}$