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ON STEKLOV BOUNDARY VALUE PROBLEMS FOR
p(x)-LAPLACIAN EQUATIONS

I. EKINCIOGLU, R. AYAZOGLU(MASHIYEV)

Abstract. Under suitable assumptions on the potential of the nonlinear-
ity, we study the existence of solutions for a Steklov problem involving the
p(x)�Laplacian. Our approach is based on variational methods.

1. Introduction

In recent years there has been an increasing interest in the study of various
mathematical problems with variable exponent (see for example [2, 6, 7, 17]). The
nonlinear problems involving the p(x)-Laplace operator are extremely attractive be-
cause they can be used to model dynamical phenomena which arise from the study
of electrorheological �uids or elastic mechanics [20]. Problems with variable expo-
nent growth conditions also appear in the modeling of stationary thermo-rheological
viscous �ows of non-Newtonian �uids. The detailed application background of the
p(x)-Laplacian can be found in [1, 3, 7, 11,12,13,16].
In this study, we provide existence results for the following class of Steklov

boundary value problems for some p(x)-Laplacian(
��p(x)u+ a(x) jujp(x)�2 u = f(x; u); in 
;
jrujp(x)�2 @u@� = g(x; u); on @
.

(P )

where�p(x)u = div(jrujp(x)�2ru) is the p(x) -Laplacian operator. Denote C+
�


�
:=�

p 2 C
�


�
: 1 < min

x2

p (x) := p� � max

x2

p (x) := p+ <1

�
and let p(x) < p�(x) =

Np(x)
N�p(x) if p(x) < N and p�(x) =1 if p(x) � N for x 2 
, 
 � RN , for N � 2, is a
bounded domain with @
 2 C0;1, and @

@� = � � r is a normal derivative on @
 and
a, f; g satisfy the following conditions:
(f1) a 2 L1(
) with a� = ess infx2
 a(x) > 0.
(f2) f 2 C(
� R;R) and there exist constant b0 > 0 such that:

jf(x; s)j � a0(x) + b0jsj�(x) for all (x; s) 2 
� R;

1991 Mathematics Subject Classi�cation. 35J48, 35J60, 35J66.
Key words and phrases. Variable exponent Lebesgue-Sobolev spaces; Steklov problem; p(x)�

Laplacian; variational methods.
Submitted Mar. 6, 2016.

289



290 I. EKINCIOGLU AND R. AYAZOGLU(MASHIYEV) EJMAA-2017/5(2)

where a0 2 L
�(x)

�(x)�1 and � 2 C
�


�
, 1 < �(x) < p�(x) = Np(x)

N�p(x) if p (x) < N and
p�(x) =1 if p (x) � N .
(f3) g 2 C(@
� R;R) and there exist constant b1 > 0 such that

jg(x; s)j � a1(x) + b1jsj�(x) for all (x; s) 2 @
� R;

where a1 2 L
�(x)

�(x)�1 and � 2 C (@
),1 < �(x) < p@(x) = (N�1)p(x)
N�p(x) if p (x) < N and

p@(x) =1 if p (x) � N .
(f4) There exist constants �, � 2 R such that

lim sup
juj!+1

p+G(x; u)

jujp�
� �

uniformly for x 2 @
 and

lim sup
juj!+1

p+F (x; u)

jujp�
� �

uniformly for x 2 
, with
�1
�
p� + �1

�
�+ �1� < 1 when �1

�
p� + �1

�
� < 1 and �1� < 1; (1:1)

where G(x; u) =
uR
0

g(x; s)ds, F (x; u) =
uR
0

f(x; s)ds and �1 > 0, �1 > 0 constants .

(f5) There exist R1 > 0, � > p+ such that for all jsj � R1 and x 2 @
, 0 <
�F (x; s) � f(x; s)s.
(f6) There exist R2 > 0, � > p+ such that for all jsj � R2 and x 2 
, 0 < �G(x; s) �
g(x; s)s.
In this section we recall some results on variable exponent Lebesgue-Sobolev

spaces. The reader is refereed to [8, 10] and references therein for more details.
For any p 2 C+

�


�
, we de�ne the variable exponent Lebesgue space by

Lp(x) (
) =

�
u : 
! R is measurable:

Z



ju (x)jp(x) dx <1
�
:

The modular of Lp(x) (
) which is the mapping �p(x) : Lp(x) (
)! R is de�ned by

�p(x) (u) =

Z



jujp(x) dx

for all u 2 Lp(x) (
) with the norm

jujLp(x)(
) := jujp(x) = inf
�
� > 0 : �p(x)

�
u

�

�
� 1
�
;

and the variable exponent Sobolev space W 1;p(x) (
) by

W 1;p(x) (
) = fu 2 Lp(x) (
) : jruj 2 Lp(x) (
)g
with the norm

kukW 1;p(x)(
) := kuk1;p(x) = jujp(x) + jrujp(x):
Since a veri�es (f1), the following norms given by

kuka = inf
(
� > 0 :

Z



 ����ru�
����p(x) + a(x) ����u�

����p(x)
!
dx � 1

)
:
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Then, it is easy to see that kuka is a norm on W 1;p(x) (
) equivalent to kuk1;p(x).
In particular (see [7])

[a�] 1
p

1 + [a�] 1
p

kuk1;p(x) � kuka � (1 + jaj1)
1

p� kuk1;p(x)

for each u 2W 1;p(x) (
), where, for h > 0 and t 2 C
�


�
with t� > 1, we put

[h]t := min
n
ht

�
; ht

+
o
:

Proposition 1 ( [9, 10, 11]). Let p : R ! R+ be Lipschitz continuous and satisfy
1 < p� � p+ < N and q : R ! R+ be a measurable function. If p(x) � q(x) �
p�(x), x 2 
 then there is a continuous embedding W 1;q(x) (
) ,!W 1;p(x) (
).

Proposition 2 ( [8, 9, 10]). Let �(u) =
R



�
jru (x)jp(x) + a(x) ju (x)jp(x)

�
dx. For

u 2W 1;p(x) (
) we have

(1) kuka < 1(= 1;> 1), �(u) < 1(= 1;> 1);

(2) If kuka < 1 then kuk
p+

a � �(u) � kukp
�

a ;

(3) If kuka > 1 then kuk
p�

a � �(u) � kukp
+

a :

Proposition 3 ( [8, 9, 10]). If p� > 1 and p+ < 1 then, the spaces Lp(x) (
) and
W 1;p(x) (
) are separable and re�exive Banach spaces.

For p(x) � p = 2, Auchmuty [5] proved that the Steklov eigenfunctions form
a complete orthonormal system for the space [H1

0 (
)]
? in H1(
) with respect

to the speci�c inner products. Some previous studies have treated the nonlinear
Steklov problem, but only [4] considered p = 2 and [21] dealt with p > 1. The
inhomogeneous Steklov problems involving the p-Laplacian has been the object
of study in, for example, [19] , in which the authors have studied this class of
inhomogeneous Steklov problems in the cases of p(x) � p = 2 and of p(x) � p > 1,
respectively.
Existence and multiplicity of solutions for a Steklov problem involving the p(x)-

Laplacian are provided in Afrouzi, Hadjian, Heidarkhani [1] and Allaoui, El Am-
rouss, Ourraoui [3]. Their approach is based on variational methods.
In 2015 Godoi, Miyagaki, Rodrigues [14] provided existence results for the fol-

lowing class of Steklov-Neumann boundary value problems for some quasilinear
elliptic equations(

�div jrujp�2ru+ c(x) jujp�2 u = f(x; u); in 
;
jrujp�2 @u@� = g(x; u); on @
.

(P �)

Here the functions c : 
! R and f; g : 
�R! R satisfy the following conditions:
(P1) c 2 L1(
); c(x) � 0, for almost everywhere x 2 
 and

R


c(x)dx > 0.

(P2) f; g 2 C(
� R;R).
(P3) The constants a1; a2 > 0 exist such that

jg(x; u)j � a1 + a2jujs;8(x; u) 2 @
� R;
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with 0 < s < p1�(N)� 1, where p1�(N) =
(N�1)p
N�p if p < N and p1�(N) =1 if p � N .

(P4) The constants b1; b2 > 0 exist such that

jf(x; u)j � b1 + b2jujt;8(x; u) 2 
� R;

with 0 < t < p�(N)� 1, where p�(N) = Np
N�p if p < N and p�(N) =1 if p � N .

(P5) The constant � 2 R exist such that

lim sup
juj!+1

pG(x; u)

jujp � � < �1

uniformly for x 2 @
 and the constant � 2 R exist such that

lim sup
juj!+1

pF (x; u)

jujp � � < �1

uniformly for x 2 
, with
�1� + �1� < �1�1:

If conditions (P1)� (P5) are satis�ed, problem (P �) has at least one weak solution
u 2W 1;p(
).
Be noted, �rstly in article [18], problem (P �) was addressed in condition p = 2.

After, authors in article [14] generalized problem (P �) to p-Laplacian.
In [14] and [18], authors used inequalities kukpc � �1 kuk

p
p;@ and kuk

p
c � �1 kuk

p
p

to prove the coercivity of functional, where �1 the �rst Steklov eigenvalue and �1
the �rst Neumann eigenvalue, where

kukc =
�Z




(jrujp + c(x) jujp) dx
� 1

p

and

kukp =
�Z




jujp dx
� 1

p

;

kukp;@ =
�Z

@


jujp dx
� 1

p

are norms in Lp (
) and Lp (@
), respectively.
We note that we deal with the problem (P ) consist of p(x)-Laplacian, naturally,

the solution of the problem have been made in the variable exponent Lebesgue-
Sobolev spaces. Therefore, there exist constants �1 and �1 (see [14]). Thus, in this
paper, we will discuss the inequalities

kukp
�

1;p� � �1 kuk
p�

a ; u 2W 1;p(x) (
) ; (1:2)

where �1 > 0 andZ
@


jf j d� �
Z



jrf j dx+ �1
Z



jf j dx; f 2W 1;1 (
) ; (1:3)

where �1 > 0 (see detail [15]).
Since our approach is variational, we de�ne the Euler�Lagrange functional asso-

ciated with the problem (P ), I : (W 1;p(x)(
); kuk1;p(x))! R by

I(u) =

Z



jrujp(x) + a(x) jujp(x)

p(x)
dx�

Z



F (x; u)dx�
Z
@


G(x; u)d�: (1:4)
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We �nd that I belongs to C1(W 1;p(x)(
);R) and its Gateaux derivative is given by

hI 0(u); �i =
Z



�
jrujp(x)�2rur� + a(x) jujp(x)�2 u�

�
dx

�
Z



f(x; u)�dx�
Z
@


g(x; u)�d�

for all u; � 2 W 1;p(x)(
).Therefore, the critical points of I are the exact weak
solutions to problem (P ).

De�nition 4. Let (E; kukE) be a Banach space, and I : E ! R a C1- functional.
We say that I satis�es Palais-Smale condition, denoted (PS), if any sequence (un)
in E, such that I(un) is bounded in E and I 0(un) ! 0, admits a convergent
subsequence in E.

The following classic abstract result can be found in [22].

Proposition 5. Let E be a Banach space. If J 2 C1(E;R) is bounded from below
and it satis�es the (PS) condition, then c = infE J is a critical value of J .

2. Main results

Thus, we establish our main result.

Theorem 6. If (f1)-(f6) hold. Then, problem (P ) has at least a nontrivial weak
solution u 2W 1;p(x)(
).

Figure 1

Figure 1 shows the cartesian plane �o� of the region described by �1 (p� + �1)�+
�1� < 1 with �1 (p� + �1)� < 1 and �1� < 1.
Proof. Using this fact, we prove the following claim.

Claim 1. The functional I is coercive on (W 1;p(x)(
); kuka), i.e.,

I(u)! +1 as kuka ! +1:
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First in inequality (1:3)

f = jujp
�
;

we take, then

rf = r
�
jujp

��
= p� jujp

��1ru sign (u)
and we apply Young�s

r
�
jujp

��
�
�
p� � 1

�
jujp

�
+ jrujp

�

we get these inequations.
By the continuity of F , G and (f4), we have

G(x; u) � �

p+
jujp

�
+ C; C > 0 (2:1)

and

F (x; u) � �

p+
jujp

�
+ C; C > 0 (2:2)

for all x 2 
 and u 2 R. From (1:3) and (2:1) we get

�

p+

Z
@


G(x; u)d�

� �

p+

�Z



jrujp
�
dx+

�
p� + �1 � 1

� Z



jujp
�
dx

�
+ C j@
j : (2:3)

For kuka > 1 and (1:4) apply the inequalities (2:1)-(2:3) and (1:2) then we get

I(u) � 1

p+

Z



�
jrujp(x) + a(x) jujp(x)

�
dx

� �

p+

�Z



jrujp
�
dx+

�
p� + �1 � 1

� Z



jujp
�
dx

�
� �

p+

Z



jujp
�
dx� C (j@
j+ j
j)

=
1

p+
kukp

�

a � � (p
� + �1 � 1) + �

p+

Z



jujp
�
dx� �

p+

Z



jrujp
�
dx:

� 1

p+
kukp

�

a �max
�
� (p� + �1 � 1) + �

p+
;
�

p+

�
�

�
�Z




jujp
�
dx+

Z



jrujp
�
dx

�
� C (j@
j+ j
j)

� 1

p+
kukp

�

a � (p
� + �1)�+ �

p+

�Z



jrujp
�
dx+

Z



jujp
�
dx

�
� C (j@
j+ j
j)

=
1

p+
kukp

�

a � (p
� + �1)�+ �

p+
kukp

�

1;p� � C (j@
j+ j
j)

� 1

p+
�
1� �1

��
p� + �1

�
�� �

�	
kukp

�

a � C (j@
j+ j
j) :

By condition (1:1) we have

�1
�
p� + �1

�
�+ �1� < 1:
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Hence, the functional I is coercive.

Claim 2. The functional I is bounded from below.

This is an immediate consequence of Claim 1.

Claim 3. I veri�es (PS), the Palais -Smale condition.

Proof. Now, to verify the (PS)-condition it is su¢ cient to prove that any
(PS)-sequence is bounded. To this end, suppose that fung � W 1;p(x)(
) is a
(PS)-sequence; i.e., there is M > 0 such that

sup jI(un)j �M; I 0(un)! 0 as n!1:
Let us show that fung is bounded in W 1;p(x)(
). Using hypothesis (f5),(f6), since
I(un) is bounded, we have for n large enough:

M + 1 � hI(un); uni �
1

�
hI 0(un); uni+

1

�
hI 0(un); uni

=

Z



1

p(x)

�
jrunjp(x) + a(x) junjp(x)

�
dx�

Z



F (x; un)dx

�
Z
@


G(x; un)d� �
1

�

Z



�
jrunjp(x) + a(x) junjp(x)

�
dx

+
1

�

Z



f(x; un)undx+
1

�

Z
@


g(x; un)und� +
1

�
hI 0(un); uni

�
�
1

p+
� 1
�

�Z



�
jrunjp(x) + a(x) junjp(x)

�
dx

�
Z



�
F (x; un)�

1

�
f(x; un)un

�
dx

�
Z
@


�
G(x; un)�

1

�
g(x; un)un

�
dx+

1

�
hI 0(un); uni

�
�
1

p+
� 1
�

�
kunkp

�

a � C1 � C2 �
1

�
kI 0(un)k(W 1;p(x)(
))

� kunka

�
�
1

p+
� 1
�

�
kunkp

�

a � C3
�
kunka � C1 � C2;

where C1; C2 and C3 are positive constants. Since � > p+, from the above inequality
we know that fung is bounded in (W 1;p(x)(
); kuka).
Next, we show the strong convergence of (un) in W 1;p(x)(
). Let (un) �

W 1;p(x)(
) be (PS) sequence of I in W 1;p(x)(
), that is I(un) is bounded and
I 0(un) ! 0. By the coercivity of I, the sequence (un) is bounded in W 1;p(x)(
).
As W 1;p(x)(
) is re�exive, for a subsequence still denoted (un), we have

un * u weakly in W 1;p(x)(
) as n!1:
Since �(x) < p�(x) and �(x) < p@(x) (see (f3) ; (f4)), then W 1;p(x)(
) ,!,!

L�(x) (
) (compact) and W 1;p(x)(
) ,!,! L�(x) (@
) (compact) (see [9,10,11,12]).
Furthermore, we have

un ! u strongly in L�(x) (
) as n!1;
and

un ! u strongly in L�(x) (@
) as n!1:
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Therefore
hI(un); un � ui ! 0;Z




f(x; un)un (un � u) dx! 0

and Z
@


g(x; un)un (un � u) d� ! 0:

Thus,

hA(un); un � ui

: =

Z



�
jrunjp(x)�2run (run �ru) + a(x) junjp(x)�2 un (un � u)

�
dx! 0:

According to the fact that the operator A satis�es condition (S+)(see [12]), we
deduce that un ! u strongly in W 1;p(x)(
), this completes the proof.
Let (un) be a sequence in (W 1;p(x)(
); kuka), where (I(un)) is bounded in R

and I 0(un) ! 0 in (
�
W 1;p(x)(
)

��
; kuk�a) as m ! 1. Since the operators L1; L2 :

(W 1;p(x)(
)); kuka)! R, given by

L1 =

Z



F (x; u)dx and L2 =
Z
@


G(x; u)d�

are weakly continuous and their derivatives L01 and L
0
2 are compacts (see [3]), it is

su¢ cient to show that (un) is bounded in (W 1;p(x)(
); kuka). If this is not the case,
then a subsequence (unk) of (un) exists such that kunkk1;p(x) ! +1, as k ! +1.
Therefore, by the coercivity, I; I(unk)! +1, as k ! +1, which is a contradiction
because (I(un)) is bounded in R.
Now, we can conclude the proof of Theorem 2.1 by applying Proposition 1.4.

Hence, I has at least one critical point u 2 W 1;p(x)(
), i.e., I 0(u) = 0. Then, u is
weak solution of problem (P ). Thus, the proof of Theorem 2.1 is complete.
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